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Abstract

Measuring and comparing performance, cost, and other features of advanced communication architectures for complex
multicore/multiprocessor systems on chip is a significant challenge which has hardly been addressed so far. This article presents a
modeling methodology for applications running on multicore systems and defines an XML format for documenting and distributing
network-on-chip benchmarks. It defines a black-box view of the processing elements that discloses only the computational aspects
that are relevant in interacting with the on chip data transport mechanism.
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I. I NTRODUCTION

Network-on-Chip (NoC) paradigm [1][2] brings the techniques developed for macro-scale, multi-hop networks into a chip.
The major goal of communication-centric design methodologies and NoC is to achieve greater design productivity and
performance by handling the increasing parallelism, manufacturing complexity, wiring problems, and reliability.

No optimal NoC exists in general case and a brute-force search is impossible due to vast design space. Benchmarking,
however, allows us to identify the most promising solutionswhich are then selected for detailed and time consuming analysis.
This reduces the design time notably once the major characteristics and requirements of the system are known. Benchmarking
must be done with care and by following strict scientific principles both in measurements and in reporting. A recent survey
on state-of-the-art NoC comparisons [3] together with [4][5] clearly motivated the need for a common benchmarking strategy
and test cases.

The main concepts for benchmarking NoCs in a systematic and comparable way are currently addressed by an OCP-IP
workgroup [6]. This complements that work by presenting a common modeling style and file formats which are necessary
for documenting and distribution of benchmark cases. To ourknowledge, this is the first attempt to capture a common,
disciplined benchmarking methodology targeting network-on-chip. The benchmarks will be delivered as XML (eXtensible
Markup Language) files.

This paper is structured as follows. Section III presents the overall view. Sections IV-VII introduce the four main parts of
the application models followed by conclusions in Section VIII. A short example of the utilized XML is given in Section IX.

II. EXTENSIBLE MARKUP LANGUAGE (XML) AND SPIRIT

eXtensible Markup Language (XML) is a standard for creatingmarkup languages which describe the structure of data
[9][10]. The set of elements is not fixed as in HTML. Instead, users can define their own tags. The primary purpose of the
XML is to facilitate the sharing of structured data across different information systems. XML files are plain text files, which are
less restrictive than other proprietary document formats.An XML schemadescribes the type of the XML document, typically
expressed in terms of constraints on the structure and content of documents, above and beyond the basic constraints imposed
by XML itself. The strict syntax and parsing requirements, in the form of schema, make the parsing algorithms extremely
simple, efficient, and consistent. A schema will be providedas part of the NoC benchmark set to validate the NoC XML files
(see www.ocpip.org for further details).

The NoC benchmarking XML is somewhat similar to SPIRIT consortium’s IP-XACT system model [11] but has a bit
different scope and higher abstraction level. IP-XACT (versions 1.0 and 1.2) is aimed for documenting the register transfer
level (RTL) interfaces of the intellectual property (IP) components whereas the NoC XML describes the application model and
its mapping on the hardware architecture. Furthermore, NoCXML does not specify individual signals or pins but sockets.A
socket groups together all the data and control signals present in certain interface and specifies their timing and otherrelations.

III. B ASIC STRUCTURE AND MODELING CONCEPTS

Fig. 1 depicts the proposed NoC system model. Some of the basic concepts of the system model and a very similar format
were previously presented in the Koski design automation tool set [7][8]. The model and the corresponding XML description
are divided into four main sections:

1) Applicationdefines the computation and communication load
2) Mappingbinds the application tasks to the resources
3) Platform defines the resources and the NoC interconnecting them
4) Measurementsection defines how to perform the evaluation, for example metrics and simulation length.

Fig. 1 shows a simple task in network consisting of six tasks (A−F ) and two triggering events, which trigger tasksA and
D. The tasks are grouped into five groups (I −V ) that are mapped to four PEs (PE0−PE3). The data amounts in bytes are
expressed beside each edge. Assuming that the events in thisapplication are periodical and their time interval is set properly,
all the PEs 0-3 can execute tasks simultaneously.

Separation to distinct parts is necessary to handle complexarchitectures and applications [12]. Orthogonality allows exercising
or modifying one of the components, while keeping the rest attheir previous configuration. Thus, the mapping, for example,
may be varied without touching the application or hardware models. Similarly, one can describe the particular NoC once but
change the application when needed.

The benchmarks set covers the three uppermost sections of Fig. 1 (application, mapping, computation resources) and
measurement settings but leave the network definition to theNoC designer/evaluator. The XML is given as input to a traffic
generator that will be used during the simulation. The traffic generator will inject/eject traffic to/from the NoC, calculate statistics
(PE utilization, data latencies etc.), and detect transmission errors (corrupted, dropped, out-of-order data etc.).Message-passing
communication paradigm is assumed at this stage of research.

Fig. 2 shows the major tags and their relations in the proposed XML description. The top level tag is called system, it
includes four tags under it, the first of those, application,includes two and so on. The numbers show the minimum number of
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Fig. 1. Conceptual view of the utilized system model.

occurrences of each tag. A number followed by the plus sign (+) denotes that multiple instances of the same tag are allowed.
In those cases, the upper bound is case-dependent (if any).

Next we introduce the major sections of the XML model.

IV. A PPLICATION MODEL

An application includes a task graph that models the computational load as well as the induced communication. In the basic
case, there is only one task graph. Model includes dependencies, timing, destination, and size of data transfers. In a task graph:

1) task nodes model the computation. The execution time is derived from the task’s operation count and the properties
of the PE executing that task No actual computation is performed during the simulation, only the external behavior
of application tasks is modeled. (Actual computation is possible in [7], but not necessary at the first stage of NoC
benchmarking.)

2) connectionsbetween nodes carry out the communication. Tasks nodes communicate via connection channels (directed
edges) that carry the data tokens between tasks. Channels are attached to the tasks’ ports. Bidirectional ports are not
allowed.

3) trigger eventsgenerate stimulus to the tasks
4) path definitionsare used for measurements, especially when real-time constraints are present.
Model of Computation (MoC) is similar to Kahn Process Network (KPN), where vertices represent computation tasks and

edges represent communication channels [7]. Chosen model is reactive due to dependencies. For example, when a certain
transfer is delayed, all the tasks (and transfers) depending on that transfer are also delayed. The task set is static andno tasks
are spawn during execution.

Application model may include several task graphs (smallerapplications) in order to model multitasking. Tasks in different
graphs may be connected. Even if graphs are disjoint (no communication between graphs) they can still affect each other’s
execution times as they may compete for the shared resources, i.e. PEs and NoC. Some tasks may model memory accesses
instead of computation.

A. Application tasks

Tasks are the primary means of expressing the communicationand computation load. Fig. 3 shows the tags used for describing
the tasks. Tasks communicate via unidirectional ports. A task is triggered for execution according to a condition that depends
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Fig. 2. Major tags in XML system model. The numbers show the minimum number of occurrences of each tag. Each of the four major sections occurs
exactly once. Task description is shown in Fig. 3.

on the received data tokens and possibly on the internal state of the task. A task may include several behaviors but exactly
one is executed at a time.

Triggering conditions have two variables: input ports and the execution history of the task. The number of ports in the task
or trigger condition is not limited. Hence, all inputs of thetask can be present, if needed. There are two types of dependencies
on multiple input ports

1) AND: triggered when there is data in all inputs,
2) OR: triggered when any of the input receives a token.

The OR dependency distinguishes the model from the traditional KPN. The history means here simply the count of how
many times the task has been executed. For example, a task mayhave a different behavior on the first execution but after that
the same on all other executions. Another example could be that a task performs functionA on every even execution count and
function B on every odd. In the extreme case, the task behavior is different on each execution. This is suitable for capturing
a trace for highly varying tasks for which the average valuesare misleading.

Each execution behavior is characterized by three elements:

1) the operation count,
2) data amount to be sent (in bytes) and the output ports wherethe data will be sent, and
3) the next state of the task after execution.

The operation count and data amount are expressed with either a statistical distribution (uniform, normal, or Poisson), or as
a polynomial function, which depends on the received data amount (a constant value is subset of the latter). Polynomial and
statistical are mutually exclusive choices and hence denoted with (i) and (ii) in Fig. 3. However, the choice is done per task;
certain tasks may have polynomial count/amount values and others statistical ones.

Each output is assigned a certain probability. The same output is always chosen if its probability is equal to1.0, i.e. in
100% of cases. Other probability values allow compacting the model as less triggering conditions are needed. There is one
send tag for each destination.

Few possible example behaviors with different triggering conditions are

• Always perform the same action (same number of operations, same amount of output data, same destinations) irrespective
of execution count or input port.
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Fig. 3. XML tags for describing the tasks.
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b: Scheduler selected the task for execution 
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d: Fully executed and is not dependent on any data anymore

b
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ac

d

Fig. 4. The possible states of an application task during simulation.

• Operation count and data amount depend on the received data amount but not on the execution count; destination(s) are
always the same.

• Select the output according to the input port similarly on every execution; however, operation count and data amount may
be constants, polynomial, or statistical.

• All parameters depend on both the input port list and execution count.

1) Task state machine :During simulation, the internal state of a task is expressedwith an execution counter and a status
variable. Fig. 4 illustrates the scheduling state machine of a single task. Tasks start in state “wait”. Once it receivesenough
data tokens and triggering condition is fulfilled, it will become ready for execution. Scheduling policy of the PE defineswhich
task from the ready list is selected for execution (edge b). Parameters related to scheduling are defined in the mapping part.
After execution, task’s next state is usually set again to ”wait”. It may also be ”free” (as indicated in Fig. 4 which meansthat
the task won’t be executed anymore. The execution counter isincremented every time when the task leaves the state ”Run”
(pre-emption necessitates detecting the completion of execution and not just state change).

Every task may have other restrictions and settings, for example, can a task be pre-empted or to which PEs is may be
mapped. Hence, these affect the mapping and scheduling possibilities. This section is included mainly for future extensions.

B. Connections

The connections simply define the structure of the task graph: which tasks communicate with each other. Their only
parameters include the source and destination ports of the tasks.
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C. Triggering events

Triggering events model the environment and usually at least one event is required to start the task graph. In other words,
they generate the input data stream that is ”processed” by the application.

Their behavior is similar to that of timers. Events are special nodes because they are not mapped to any PE, and hence
do not reserve computational resources. However, they use regular connections to transmit their data to the tasks. Events are
either periodic or one-shot. Their data emission may have a probability less than 100% ifneeded. This means that an event
does not always send data at all although it is triggered. They do not consume ”CPU-time” of the resources or NoC capacity.

As mentioned, all tasks are initially in state ”wait” and, therefore, at least one event is needed to trigger the execution.
Currently, events do not have input ports so they cannot react to the application’s outputs.

D. Real-time constraints and paths

A task graph can also include real-time constraints, for example, computation deadlines with tasks and communication
deadlines with connections. In addition to single tasks (node) or connections (edges),pathsthat constitute several tasks may
be defined.

A path is a list of tasks and/or connections that is used for benchmarking. For example, pathp includes tasksA, B, andC
(in this order) and this path has a real-time constraint of2 ms. It is measured from the triggering of taskA to the completion
of task C. The transaction generator will monitor is the deadline always met and report violations. In addition, the average
runtime of the path may be also used in to define the cost function.

There are multiple choices to start event respect to which the real-time constraints are given. The time may be measured
starting from the time instant when

• triggering conditionX occurs,
• current task received all its input data,
• previous task is completed,
• current task last completed.

V. M APPING MODEL

Mapping model defines on a per-PE basis where the tasks are executed. Mapping is performed in two stages: grouping of
tasks together, and mapping the groups to resources. A less expressive mapping could be done without the groups, but the
chosen method allows more possibilities (including the simple mapping). If uncertain, users can have just one task per group.
The main ideas in grouping are to model operating system threads and to restrict mapping exploration. Both tasks and groups
may have parameters related to scheduling, such as priorities.

Group contents may be modified by automated design automation tools if allowed (mutable=”yes”) or they can be moved
elsewhere (movable=”yes”). The former restriction can be also done for a PE and the latter for a task. Although the application
is fixed in each benchmark, there are various options:

• assign fixed mapping for a NoC of a certain size, say16 terminals. Designers can easily vary NoC parameters without
modifying other parts of the XML description.

• assign fixed grouping of tasks, and let the designer map them to his/her NoC freely. Note that the number of NoC terminals
can be smaller than the number of groups.

• as previous, but without groups. This option gives full freedom in mapping.

The tag software platform is included for the sake of future extensions.

VI. PLATFORM MODEL

Platform has two parts: resources and NoC. The resources will be defined by the benchmark set and the NoC by its
designer/evaluator.

A. Resource model

Computation architecture is modeled on a very coarse level.The PEs are characterized with few parameters, such as
operations-per-cycle, silicon area, power consumption. In [3], these values are stored in separate PE library but herethey are
directly in the XML for simplicity. For each resource the benchmark defines

1) type: processing element (PE) or storage
2) NoC terminal where it is connected to
3) operating frequency, number of operations per cycle, area (mm2 or kilogates, aspect ratio), active and idle power

consumption
4) inclusion of DMA controller
5) the associated communication overheads.
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The PE model performs the scheduling of tasks. The scheduling choices are FIFO (default choice), preemptive/nonpreemptive
static priority, and round-robin. Priorities are set at compile-time. When a task is mapped on a PE and scheduled for execution,
the simulation engine calculates the associated runtime. The cycle count becomes:

Ncycles,i,pe = Nops,i/IPCpe, (1)

whereNops,i is the operation count of the taski, andIPCpe defines how many operations the PE can execute in one clock
cycle. The runtime of taski on that PE is then:

ti,pe = Ncycles,i,pe/fpe. (2)

When the task has finished its execution, it emits data token(s). A direct memory access (DMA) controller allows simultaneous
computation and communication which means sending or receiving data while executing application tasks. The PE model checks
the destination of the transfers in order selects whether the data is transmitted to the NoC or is the communication internal to
PE.

This defines which PE-specific communication costs are applied [13]. The communication overhead has the form

tcomm,pe = a + bx, (3)

wherea is constant cost (cycles),x is the data amount in bytes, andb is the cycles per byte. Values ofa andb are defined
separately for each PE type and its software platform. They are fixed in the benchmark’s XML document.

Time overhead is smallest when the source and destination tasks are in the same group (thread). A different cost is used
when the destination is in another group but still on the samePE. The largest overhead occurs when the destination task is
mapped on a different PE. In that case, the delay induced by the network will be added totcomm,pe. However, note that the
network delay is not static, unlikea andb, but it is determined at the simulation time.

For example in Fig. 1, communication between the tasksE and C is type intragroup, betweenC and F intergroup and
betweenC and any other taskinter-PE. The two latter can possibly cause a context switch at the receiver PE. Only the inter-PE
communication is passed via network model.

Fig. 5 presents two examples of inter-task communication. In a), the communication occurs between two tasks in the same
PE whereas b) presents inter-PE communication. In both cases, the execution times of the tasks are the same. The network
delay is naturally not present in a), but otherwise the communication procedure is the same as in b). In addition, both send
and receive costs are shorter in a), because the data does nothave to be prepared for the network transaction.

B. Network model

This section presents an XML description of a NoC, although the NoC is not usually defined in the benchmark. The purpose
is to promote a consistent way of documenting the experiments and also to enhance inter-operability of EDA tools. The main
emphasis is on documenting the topology and basic parameters. NoC is here defined by its:

1) Terminals which may include network interfaces
2) Topology, i.e. routers and links
3) Parameters (optional part).
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1) Terminals and Network Interfaces:PEs are bound to NoC terminals which are the ”public interface” of a NoC. This
provides a generic way to bind PEs without exposing the internals of the NoC. It depends on the NoC internals how the
terminals are connected inside the network. In contrary, connecting PEs directly to router ports is a network-specific way and
not reusable.

Fig. 6 illustrates three different terminal types.

1) On the left, there is a direct point-to-point link betweenPE0 andPE1. The corresponding terminals are simply the two
ends of the link. Of course, the PEs must have directly compatible interfaces.

2) In the middle,PE2 andPE3 communicate via two routers. Each terminal is associated with certain router port. PEs
must use the communication protocol (signals, their timing, and packet structure) as the router ports. Hence, the terminals
may be conceptual, i.e. just aliases to certain router ports, which do not require any logic in HW implementation.

3) On the right, there are network interfaces (NIs) in addition to the routers. This is the most generic and probably the
most common option. The interface does conversion between communication protocols. For example,PE4 could have
an OCP-IP compliant interface but the router could use a different, proprietary protocol and expects exactly 8-word long
packets with 2-word headers. The NI executes packetization(adding/removing headers), checks integrity, and possibly
reordering of packets.

A terminal may include network interface logic, as shown on the right, but it is not always necessary. One might consider
defining NI together with the resource. Here, they are withinthe NoC because that part is commonly left undefined in benchmark
and completed by the NoC designer or evaluator.

One might consider also point-to-point links with network interfaces, although this option seems rare. It is left out from the
figure but its behavior is easy to understand with the previous examples.

2) NoC topology:The NoC may be instantiated as awhite-boxmodel that defines all necessary topological details, or as a
black-boxthat defines only the terminals and parameters in XML.

Fig. 6 illustrates also the internal structure of a NoC: there are links and routers. Links connect the ports of the routers
which can be uni- or bidirectional. Bidirectional ports andlinks simplify XML description in many cases although in practice
they are likely realized as a pair of unidirectional ports/links.

Each router includes the following basic parameters

1) varying number of ports and their directions
2) flit width and optionally also frequency
3) buffer capacity (number of flits per buffer) per port.
4) number of virtual channels per port
5) minimum latency for forwarding the packet header

Each link defines

1) the end points, each defining a router and its port
2) number of wires in one direction
3) pipeline depth, default is 0 which means no pipelining



SALMINEN ET AL., NOC BENCMARKS SPECIFICATIONS PART I, WHITEPAPER, c© OCP-IP, APRIL 2008 9

4) operating frequency (optional).

The connections between routers and PEs are included in terminal description. Occasionally, the link or router list maybe
empty.

3) (Default) NoC Parameters:Default values can be defined for any parameters, such as datawidth, to avoid repeating
them for every single router or link instance. However, theycan be overridden on a per-component basis.

The most common parameters, see the previous subsection, have specific tags but it is possible to include additional,
arbitrary parameters asname-value-pairs. This supports using XML as input for proprietary configuration and synthesis tools.
For example, specific arbitration, routing, queue management options may be given this way. The XML file may define arbitrary
parameters for the NoC or its sub-lists.

Another use case is when the NoC is used as black-box and the actual structure is described separately in VHDL files (or
similar) instead of XML. The compilation and synthesis parameters are extracted from the XML and passed to corresponding
EDA tools. This allows instantiating third-party NoCs without knowledge of their internals while allowing parameterization.

The white-box NoC model can represent arbitrary network topologies but might be somewhat awkward for a large, say
100-node, NoC. The black-box approach is suitable in such case,especially for regular topologies. The designer/evaluator
must only define the name of the library component (e.g. 2-D mesh), network dimensions (x = 10, y = 10), terminal list
(0 − 99), and possibly some other parameters. Effort is minimized as there is no need to describe individually all the routers
and links. There is no need to describe individually all the 100 routers, all 360 links, connect links between westout(x,y) to
eastin(x+1,y) (except on the edges!), and so on. The detailed XMLdescription, such as IP-XACT, may be eventually generated
automatically based on the above parameters, if desired.

VII. M EASUREMENT CONSTRAINTS

This section includes restrictions related to the simulation and benchmarking. The simulation time may be defined as a
constant value, for example200 miliseconds. However, adequate absolute time is hard to come up with in general case and
hence there are other, dynamic conditions for the simulation length:

• total of B bytes has been injected/ejected
• total count of all tasks’ executions equalsN
• taskX has been executedN times
• communication edgeX has been executed (used)N times
• pathP has been traversedN times (paths are defined inside a task graph)
• same as previous but for several tasks/edges/paths are measured and average or maximum time will be used.

These conditions ensure that the evaluated system reaches steady state and that enough data has been transferred to obtain
reliable performance results.

This section defines also the criteria that must be measured and reported and at least one cost function. Cost function combines
various metrics into single value (smaller the better) thatcan be used for direct comparison and ranking of approaches.Example
metrics are silicon area, power or energy consumption, simulation time, path time, execution count of a task, sum of all tasks’
execution counts, deadline violations, and packet latencies. The deadline related information defined separately in the application
description.

Basic arithmetic operations (sum, subtract, multiply, divide, power) and weights are applied to the metrics. The delivered
benchmark set fixes a certain minimum set of criteria and costfunctions. Researchers are, of course, encouraged to perform
other complementary measurements and the same XML format can be used for reporting those studies also. The workgroup is
currently preparing separate rules and guidelines for conducting the NoC studies in order to avoid ambiguities and loopholes.

VIII. C ONCLUSIONS

This paper presents a common modeling style and XML file format for performing and delivering network-on-chip bench-
marks. They capture the necessary aspects in an easy to manage format. Authors believe that common, publicly available
benchmarks in the form presented here offer a valuable contribution to the current state-of-the-art in NoC research. The goal
is to promote disciplined evaluation, sharing of ideas and test cases, as well as to promote healthy competition within NoC
and MP-SoC communities.

In the fufure the workgroup will prepare general guidelinesand instructions for performing NoC evaluations as well as
publish the actual benchmarking cases. Since this is work inprogress, we encourage the readers to contact the authors and
other workgroup members in any relevant issue or improvement suggestion.
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conf. on Digital System Design, Lübeck, Germany, Aug. 2007, pp. 173-180.

Erno Salminen, MSc ’01, works as a research scientist at Tampere University of Technology (TUT) towards PhD degree.
He is a member of DACI research group and OCP-IP NoC benchmarking workgroup. His research interests along the NoC
include multiprocessor SoCs, system-level design, and digital design in general.

Cristian Grecu, MSc ’03, is Ph.D. Candidate at University of British Columbia, expected graduation on May 2008. His
research interests include design of fault-tolerant massive multi-core integrated systems, as well as post-manufacturing test
methods and the performance of network-on-chip communication structures. He is a member of OCP-IP NoC benchmarking
workgroup
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IX. PART II: EXAMPLE

This short example aims to show the basic properties of the proposed XML format. The symbols correspond to Fig. 1 and
Fig. 6.
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<?xml version='1.0'?> 
<!DOCTYPE system_description> 
 
<system_description xmlns:noc=“http://www.ocpip.org/namespace/noc” xsi:SchemaLocation=“../xsm_content_model.xsd”> 
 
    <application> 
      <task_graph id=”Example_application”> 
 <task id=“A” name=“filter” class=“general” > 
   <in_port port_id=“0”/> 
   <out_port port_id=“1”/> 
 
   <trigger dependence_type=“or”> 
     <in_port_ref value=“0” /> 
                    <exec_count> 
                       <op_count> 
                          <int_ops> 
                               <distribution> 
                      <uniform min=“100” max=“150”/> 
                 </ distribution > 
            </int_ops> 
                       </op_count> 
                       <send out_port_ref=“1” prob=“1.00”> 
                             <byte_amount> 
                 <polynomial> 
                     <param value=“28” exp=“0”/> 
                  </polynomial> 
             </byte_amount> 
                       </send> 
                       <next_state value=“READY”/> 
                    </exec_count> 
   </trigger> 
                <restriction> For future enhancements </restriction> 
 </task> 
 <task id=”B”>…</task>...<task id=”F”>… </task> 
  
              <task_connection>  <!-- Event’s data goes to task A --> 
                  <src task_ref=“e0” port_ref=“0”/> 
                  <dst task_ref=“A” port_ref=“0”/> 
              </task_connection>  
 <task_connection> … </task_connection> 
 
 <event_list> 
                 <event id=“e0” name=“timer_1” out_port_id=“0” amount=“1”  
                                     trigger_type=“one-shot” prob=“1” time_sec=“5.0e-006”/> 
 </event_list> 
 
 <path id=”p1” name=”upper_branch”> 
    <task> A </> 
    <task> B </> 
    <task> C </> 
 </path> 
      </task_graph> 
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       <!-- Several task graphs may be combined to form a single, heterogeneous application -->  
      <task_graph> Another application model  </task_graph> 
 
      <connection> 
 <src tg_ref=”Example_application” task_ref=“F” port_ref=“5”> 
 <dst tg_ref=“other_tg_identifier” task_ref=“start” port_ref=“4”> 
      </connection> 
    </application> 
 
 
    <mapping> 
       <resource ref=“PE0” contents=“mutable”>  
          <group id=“I” position=“movable” contents=“mutable“>         
              <task ref=“D” position=“movable“/> 
          </group> 
       </resource> 
       ... 
       <resource ref=“PE3” contents=“mutable”> 
         <group id=”IV” position=“movable” contents=“mutable“> 
    <task ref=”E” position=”movable”/> 
    <task ref=”C” position=”movable”/> 
          </group> 
          <group id=”V” position=“movable” contents=“mutable“> 
    <task ref=”F” position=”movable”/> 
          </group> 
      </resource> 
      <Other resources here...>       
     </mapping> 
 
 
    <platform> 
 
      <resource_list> 
        <defaults>  
           <frequency MHz=“100” /> 
        </defaults>  
        <resource id=“PE0” type=“pe” > 
           <port id=“portX” terminal_ref=“0” /> 
           <frequency MHz=“200” /> 
           <performance ops_per_cycle=”1.0” /> 
           <area kilogates=”50e3” ratio_y_per_x=”1.0”/> 
           <dma activated=“yes” /> 
           <sw_platform  context_switch_cycles=”500” ... /> 
        </resource> 
        <Other resources here...>  
      </resource_list> 
 
      <noc>  
         <router_list> 
            <defaults> 
                  <data_width bits=“32” /> 
                  <buff_depth flits=“5” /> 
                  <n_virtual_chan value=“2” /> 
            </defaults> 
            <router id=“r_x0_y0” > 
               <port id=“east” buff_depth=“10”/> 
               <port id=“resource” /> 
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               <latency cycles=“3” /> 
               <parameter name=“my_proprietary_param” value=“hpk” /> 
            </router> 
            <Other routers here...> 
         </router_list> 
 
         <link_list> 
            <defaults> ... </defaults>  
            <link id=“l0”> ...</link> 
            <link id=“l1”> 
               <src router_ref=“r_x0_y0” port_ref=“east” /> 
               <dst router_ref=“r_x1_y0” port_ref=“west” /> 
               <pipeline_depth value=“1” /> 
            </link> 
            <link id=“l2”> ...</link> 
         </link_list> 
 
         <terminal_list> 
            <defaults> ... </defaults> 
             <terminal id=“0”> <!-- direct connection on the left of Fig. 6 -->  
     <connection link_ref=“l0” />  
            </terminal> 
             <terminal id=“1”> 
     <connection link_ref=“l0” />  
            </terminal> 
             
            <terminal id=”2”> <!-- middle of Fig. 6 --> 
                    <connection router_ref=”r_x0_y0”  port_ref=”resource”> 
             </terminal> 
            <terminal id=“4”>  <!-- right side of Fig. 6 --> 
  <connection router_ref=”r_x2_y0” port_ref=”resource”> 
               <address value=”0x35000” />   
               <network_interface type=“OCP/AXI/other”> 
                  <delivery value=“in-order” dropping=“no”/>... 
               </network interface> 
            </terminal> 
            <Other terminals here...>           
         </terminal_list> 

 

         <parameter name=“param_for_blackbox_noc” value=“cmx” /> 
         <Other arbitrary params that have no special tags in XML /> 
      </noc> 
    </platform> 
 
    <measurements> 
 
      <simulation_time sec=”500e-3” /> <!-- i.e. 500 ms -->  
      <cost_function f=“A*t_p1” /> 
      <Other measurement settings> 
    </measurements> 
 
  </system_description> 
 




