accellera

SYSTEMS INITIATIVE

Standard Cd&mulation
Modeling Interface (SCEMI)
Reference Manual

Version 24

November2016

Copyright © 20032016 by AccelleraSystems Initiative IncAll rights reserved.

Electronic opiesof this manual may beéownloaded atvww.accellera.org

http://www.accellera.org/

Notices

The information contained in this manual represents the definition of theMB@E reviewed and released by
AccelleraSystems Initiative (Accellerah November2016.

Attention iscdled to thepossibilty that implementation of this sendard may require useof subjed
matter covered by patent rights. By publication of this standard, no positionis taken with resped to the
existence or validity of any patent rights in connection therewith. Accdlera Systems Initiative is not
responsiblefor identifying Esential Patent Claims for which a license may be required, for
condtcting inquiries into the legal validity or scope of Patent Claims or detemmining whether any
licensingtemrms or conditionsprovided in conredion with submssionof a Letter of Assuance, if any,
or in any licensing agreements are reasorable or non-discriminatory. Users of this sendard are
expresdy advised that detemrmination of the validity of any patent rights, and therisk of infringement
of such rights, isentirely their own responsibilty. Further information may be obtained from the
Accdlera Systems nitiative IP Rights Committee

Accellera reserves the right to make changes to the-l8IC&nd this manual inusequent revisions and
makes no warranties whatsoever with respect to the completeness, accuracy, or applicability of the information
in this manual, when used for production design and/or development.

Accellera does not endorse any particular simulatatiwer CAE tool that is based on the SME

Suggestions for improvements to the SRIEand/or to this manual are welcome. They should be sent to the
SCEMI email reflecto or to the address below.

The current Working Groupbs website address is
http:/Mvorkspaceaccellera.org/apps/org/workgroup/itc

Information about Accellera and membership enroliment can be obtained by inquinngvadccellera.orgr
atthe address below.

Published asSCEMI Reference Manual
Version 24 ReleaseNovember2016.

Published byAccelleraSystems Initiative Inc.
8698 Elk Grove Blvd.

Suite 1, #114

Elk Grove, CA95624

Phone(916) 67601056

Printed in the United States of America

SCEMI 2.4 ii

http://www.accellera.org/

Contributions

The following individuals were njar contributors to the creation of the original version of this standard:
Duaine Pryor, Jason Andrews, Brian Bailey, John Stickley, Linda Prbassler, Gerard Mas, John Colley,
Jan Johnson, and Andy Eliopoulos.

The following individuals contributed tdé¢ geation, editing and review of tHeCEMI Reference Manual

Version 24
Brian Bailey Independent Consultant ITC Workgroup Chair
Per Bojsen AMD
John Stickley Mentor Graphics
Ajeya Prabhakar Broadcom
Mike Laisne Qualcomm

The following individua$ contributed to thereation, editing and review of tH@CEMI Reference Manual

Version 2.3.
Brian Bailey Independent Consultant ITC Workgroup Chair
Per Bojsen AMD
John Stickley Mentor Graphics
Ajeya Prabhakar Broadcom
Ramesh Chandra Qualcomm
Mike Laisne Qualcomm
Janick Bergeron Synopsys

The following individuals contributed to theeation, editing and review of tHeCEMI Reference Manual
Version 22. The companies associated with each individual are those that they were working fohghen t
contribution was made.

Brian Bailey Independent Consultant ITC Workgroup Chair
Per Bojsen AMD

John Stickley Mentor Graphics

Jaekwang Lee Cadence

Ajeya Prabhakar Broadcom

Ramesh Chandra Qualcomm

PingTseng Cadence

James Wang Cadence

Philippe Georgelin STMicroelectronics

Gary Howard Intel

The following individuals contributed to theeation, editing and review of tHeCEMI Reference Manual
Version 2.1.

Brian Bailey Independent Consultant ITC Workgroup Chair

SCEMI 2.4 iii

Per Bojsen

Pramal Chandraiah
Shabtay Matalon
Steve Seeley

John Stickley
Ying-TsaiChang
Amy Lim

Ajeya Prabhakar
Ramesh Chandra

Russ Vreeland

AMD

Cadence
Cadence
Cadence

Mentor Graphics
Springsoft
Cadence
Broadcom
Qualcomm

Broadcom

The following individualscontributed to the reation, editing and review of tHeCEMI Reference Manual

Version 2.0
Brian Bailey Independent Consultant ITC Workgroup Chair
Per Bojsen AMD
Shabtay Matalon Cadence

Duiane Pryor
John Stickley
Russell Vreeland
Ednund Fong
Jason Rothfus

Bryan Sniderman

The following individuals contributed to the creation, editing, and review of-BCReference Manual
Version 1.1.0

JasorAndrews

Brian Bailey

Per Bojsen

Dennis Brophy
Joseph Bulone
Andrea Castelnuovo

Fabrice Charpentier

Damien Deneault
Andy Eliopoulos
Vassilios Gerousis
Richard Hersemeule
Jan Johnson

Matt Kopser

Todd Massey

SCEMI 2.4

Mentor Graphics
Mentor Graphics
Broadcom

AMD

Cadence

AMD

AXis

Independent Qusultant

Zaiq Technologies
Mentor Graphics
ST Microelectronics
ST Microelectronics

ST Microelectronics

Zaiq Technologies
Cadence

Infineon

ST Microelectronics
Mentor Graphics
Cadence

Verisity

ITC Workgroup Chair

Shabtay Matalon
Richard Newell
Nish Parikh
Duiane Pryor
Joe Sestrich
John Stickley
Russell Vreeland

Irit Zilberberg

Cadence

Aptix

Synopsys

Mentor Graphics
Zaiq Technologies
Mentor Graphics
Broadcom

Cadence

or to prior versions of this standard.

SCEMI 2.4

SCEMI Subcommittee Chair

Revision history:

SCEMI 2.4

Version 1.0
Version 1.1
Version 2.0
Version 2.1
Version 2.2
Version 2.3

Version 2.4

05/29/03
1/13/05
03/22/07
12/21/2010
01/20/2014
06/012015
11/162016

vi

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellerastandardsdocuments are developed within Accellera and the Technical CommitisecelleraSystems

Initiative Inc. Accellera develops its standards through a consensus development process, approved by its members
and board of directors, which brings together volunteers representing varied viewpoints and interests to achieve the
final product. Volunteers are not necessarily members of Accellera and serve without compensation. While
Accellera administers the process and establishes rules to promote fairness in the consensus development process,
Accellera does not indepentty evaluag, test, or verify the accuracy of any of the information contained in its
standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether edpéwitlirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the matetd@hemb herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera
St andards documents are supplied AAS | S. 0

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Stamgandorieurt

the viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in
the state of the art and comments received from users of the standard. Every Accellera Standard is subjected to
review periodically ér revision and update. Users are cautioned to check to determine that they have the latest
edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other
services for, oon behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely
upon the advice of a competent profesaloin determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to

specific applications. When the need for interpretations ésigit to the attention of Accellera, Accellera will

initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the coamifreebalance of interests.

For this reason, Accellera and the members of its Technical Committee are not able to provide an instant response to

interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate suppiog comments. Comments on standards and requests for interpretations should be
addressed to:

AccelleraSystems Initiative
8698 Elk Grove Blvd.
Suite 1, #114

Elk Grove, CA95624

USA

www.accellera.org

Accellera is the sole entity that may authorize theaiskccelleraowned certification marks and/or trademarks to
indicate compliance with the materials set forth herein.

Authorization to copy portions of any individual standard for internal or personal use must be granted by Accellera,
provided that permigsn is obtained from and any required fee is paid to Accellera. To arrange for authorization
please contact LynBannister Accellera,8698 Elk Grove Blvd. Suite 1, #11Elk Grove, CA95624 phone(916)
6701056 email lynn@accellera.org. Permission ¢opy portions of any individual standard for educational
classroom use can also be obtained from Accellera.

SCEMI 2.4 Vii

Table of Contents

T O AV V4 | Y N 1
o7 0] = =S 1.
I] == 1 1
G T 115 1= 2.
1.4 PERFORMANCEGOALS ... itiitiite it e tee s eeat e ettt e e e st e e s e et e s e s seemsa e e sa s s aa s s e e s ba e s aa st aane s s st saasetseebnssnsssrnnn 2
1.5 DOCUMENT CONVENTIONS. ...t itttttett ittt tet et eaeesa et aa e eanestaesaa et s meesbassan st saasetsssas s nnnsssassstsestassnsesnnns 3.
1.6 CONTENTS OF THISSTANDARDtuituitnittnettnetts et reees sttt sttesassteea s annsssstesnessnesnessnsiennssstntesnesrnreens 3

P = 4 = O i T 4

G TR B T [N I I O 1A TR 5
R Tt RO I = =V 11N T 0 T 2 5

3.1.1 P21 0153 (= Toa 10 1 o o [o = .
3.1.2 P21 0 1S] (= Loa 1o e = 1S3 2= R)
3.1.3 (o= = V(0T = 1IN o o [o 5
3.14 o] 1T o L= 0 = 1] ST 5
3.15 [oT0 2= 1 4101 F= 11T o 5
3.1.6 o021 010 o 1= 1T T 5
3.1.7 controlled ClOCK (CCIOCK):. iiie ittt ettt e e e s se e e b bn e e e e e s aaees 6
3.1.8 (oT0] 0110 LYo IR 11 a1 6
3.1.9 (070] 0101 F= 1 (o o 1 6
3.1.10 CYCIE STAMPINGeeeeeieeiiiiee e te ettt e sttt e e e s rte ettt e e s sttt e e e e s smeesssbnneeeeesannnnneeeessnnnes] 6
3111 dondt car e..dUul Y. . CY. Ll b i
3.1.12 device or design UNA@ESt (DUT). ...ccciiiiiiiiiiicie s e e e e e e e e e e e e e e e aeeneaas 7
G 700 001 e T B 1O N I o0)4 Y24 PSP 7
G T O I S =13 (1o o [T 7
G 2R O ST o = 1 0 1YY=V (30 1 Lo Lo [7
G 2 O G ¢ = 10 1YLV Y (T (o [7
3.1.17 infrastructure lINKAQE PrOCESS:coi it e e re e e e et e s e e e e e s aaaesaeaeaeans 8
R Tt O 1 T 1 = Vo3 (01PN 8
Tt S 14T T Y= T [PP P PP PTOPORTPPPR 8
3.1.20 MESSAQE CRANNEL....cci i e e e e e et e e e e s e b e e e e e b 8
3121 MIESSAGE POILi. . iiieieeeeiie it et e e et e oo e e ettt teena e e e e ettt et e e e e e ennne e 8
3.1.22 MIESSAGE POt PIOXY e eeeeiieiieeiaeeieetettreree s s s s s e et e e e eneesss s e e e e e e et e ettt et e e aenn e ne e e e e et e et eeeeeeas 8.
0 c T o T<To =T o T PRSP 8
I Tt I S o To LT =T o [0[RP TP TP PP PUPRTPPTT 8
I T 1= oV o7 [0 To | o PP P PPPURT PRI 8
I 2 S T Y0 1LY Z= 1 (=T 1 110 1o (= U 8
I O A Y0 1 LY=L (ST o [R 8
I 2 S T 0 (o1 10 [= 1 4 0o [9
I 2 I 1 = ¢ 1SY=Yox 1[0 o T 9
R Tt O = 1= Yo (o 9
3.1.31 uncontrolled Clock (UCIOCK):.........uuiiiiieiiiii et 9
I C 7 VT o (o0] a1 0] [[=T0 I =TT <Y ST 9
I C JC I U T o [0 T o 0] [[=T0 IR £ L= ST 9
I C 7 S U1 o 110 4 [<To [g oo [o TPT 9
3.2 ACRONYMS AND ABBREVIATIONSituiituiiuntitnetteetnsiemettneetsstesssstsssssennteetessttesseesnessssessonrnsaessssesnes 9

N U Y 1Y (@ 15] | I TR 11

41 MACRO-BASED MESSAGEPASSING INTERFACE.......ituiiitiiitiiiniiitieimeieseetesaneetn st sanssrmns st estneeanssrerans 12
4.1.1 High-level deSCrIPHION........coii ettt eeeea bbbttt e e et e e e aeaeeeereeeeeeeeeaaaaaaaaans 12
4.2 SUPPORT FOR ENVIRONMEITS . .. ttuituiitniitnettnettnsstmeestessseeansstsetssssstansstssssssstssetnetsssseenntieriesrierene 13
4.2.1 Multi-threaded ENVIFONMENES.........uuiiiee et e e s e e e et e e st e e st e s et e e sasseneeasanesean 13
4.2.2 Singlethreaded eNVIFONMENLS........cccccuuuiiiiiieeieeers st e e e e s eenesere e errreeeeaeeeesseanreeereees 13

SCEMI 2.4 viii

4.3 USERS OF THE INTERFAE.ctttteettttuttii s e s eeeesa s s s s e e eaeteeeessssss s mmme e se s ss s sa e e e e e e et e e ennneeeeeseeeennnnnnnnnnnns 13

e N R 1 oo U 1= o PP 13
4.3.2 TranSactor iIMPIEMENTEL..........cii i i i eeee e e s e e e s e e es st re e e tae e e e e eeeessannssaesrenneeeereees 14
4.3.3 SCEMI infrastructure implemMENTAL.............ooueiiiieriieeeiiee et sme e s e e nees 14
4.4 BRIDGING LEVELS OF MQDELING ABSTRACTION. ...cttttuuuuaiaeeaatettetimmaaaeeteeeastsstnnnns e aaesaaaasaaaaeeaaaaeeeeesssnan 14
4.4.1 Untimed software level modeling abstraction..............oocuuiiiiieeeiiiinii e 14
4.4.2 Cyde-accurate hardware level modeling abstraction.............ccccoviiiieeniiiiiee e 15
4.4.3 Messages and tranSACHONS.uuiiiiiiiiiii ettt errmt e e e e et e e 16
444 Controlled and UNCONLrOIEd tIME..........uuiiiiiiiiiiii et e e e e e e e e e e s e 17
.5 WWORK FLOW. .t ttiuttiiiteessittteeeeesamee e e stbbeeeeeassntbeeee s sammee e e s sbbee e e e e e antba e e e e samme e e e e st beeeeeeeansbbeeeesammeeeennnebes 18
4.5.1 Software model COMPIIALIAN............c.uuuiiiiiiiiiieee e e e e e e e e e e e s s amnr e eaaaaeeas 19
4.5.2 INFrAStrUCTUIE INKAQGE.cci ot ee e eeest e e e e e e e e eaeeesersaeeeeeeeeaaaaaaeaens 19
45.3 Hardware model elaboratiQn...............eeeiiiiiiiieeeiiiii e 19
45.4 Software model construction and DINAING............ooeuiiiiiiiiic e 19
4.6 MACRO-BASED SCEMI INTERFACE COMPONENTS.....ctttttrtttunuuuseeaeamaaaaasaseeeeeeresessnnnsnnsnmmmssssnnnnneseess 19
4.6.1 Hardware side interface COMPONENLS.........ciiiiiiuiiiiie ettt erme e e e e s seeeeeeeean 19
4.6.2 Software side interface COMPONENTS.........ciiiiiiiiiiiieei e e e 20
4.7 FUNCTION-BASED INTERFACEuutttttttteattttt e aaaneesettieeseastaseetestsn s eeeeesta e eeeessaneesennneessn e eeeesnnnnns 20
4.7.1 L@ YT 1 Y USSR 20
4.7.2 THE DPL IS APHIESS. ... ee ettt et eaees bbbt e e e e e eeeeeeeeeeeesbasseeeeaeeaaaaaeaeeens 20
4.7.3 Define a function in one language, call it from the other...........cciiiii e 20
4.7.4 The function call is the tranNSACAN.eeiiiiiiiii e e 22
4.7.5 Function calls provide mid level of abstractionot to high, not to IOW...........cccceeveiviiiiiiieeen.e. 22
4.7.6 SystemVerilog DPI is already a standard...............ccooiiiiiiceeiiiiieie e e 22
4.7.7 (0] 0 = =1 1Y/ 0L 23
4.7.8 (707 01 (=TS g =TT |1 T T 23
4.7.9 S\MConnecti Using DPI with SystemVerilog HVL ..o 25
4.8 PIPE-BASED INTERFACE......cittttttttttuuuuaaaseeeaeaaaaaaeeeaeeeeeeeaeetntn mmmeesteesna i aeeeeeaeeeeeaenaaeaaaeeeeeesssnnnnnaaaeens 31
48.1 L0 Y SRR 31
4.8.2 Streaming PiPeS VS. TLM FIFQS......ooiiiiiiiiiiii ettt emne e 32
4.8.3 Reference vs. optimized implementations of transaction.pipes..........cceveevvicceriiriiieeee e, 33
4.8.4 (1= T= o][0T Q=Yoo = 1 o =SSP 34
4.8.5 LT 0T U LA o] 1= PR 34
4.8.6 L 11 10T 01 A o] o 1= S 35
4.8.7 Implementation defined buffer depth for pipes, user defined buffer depth for FIFOs............. 36
4.8.8 Variable |ength MESSAQING.........ccoiiiiiiiiii e e e e ere e e e e ernnr e e e e eaaaes 36
e T O [0 Tt (= To o] o 1= PP OPP PPN 38
4.9 BACKWARD COMPATIBILITY AND COEXISTENCE OFFUNCTION- AND PIPESBASED APPLICATIONS WTH
MACRO-BASED APPLICATIONS ...ctttueetetttieeteetti s eaeeseeseeti s e eeeesa e ee ettt s e et eebaa s eeeeebaaeeeannneeetaaeeeeebnn e eaeesnnnnnn 39
4.9.1 What dOES NOt CRANGE2.... . ettt e et eeet e e e e s e naneeeae s 39
49.2 Error handling, initialization, and ShUtdOWN ARL..........couiiiiiiiiei e 40
4.9.3 Requirements and limitations for mixing madrased models with functioand pipebased models
40
4.9.4 Definition of macrebased vs. functierand pipe-based Models..........ccoviiiiiiiiiiien 40
4.9.5 Requirements for a functienr pipe-based Model..............oooi e 41
4.9.6 Subset of DPI fOr SGRAL 2.......uuviiiiiiiiiiiiiiee e ieeee e AL
4.9.7 Use of SCEMI DPI subset with Verilog and VHDL ... 41
4.9.8 Support for multiple Messages HIMNE...........ooooi i 41
4.10 SCOPE OF CALLINGDPIEXPORTED FUNCTIONS.....uuuuuiaiaeeaeeieeeeeiineneeeeeeeeersnnnnnnaaseeeesaaasasseeeesseeeeeessnnns 42
4.10.1 The calling application is linked with the simulation kernel:............ccccccoviveer i, 42
4.10.2 Calling application is not linked with the simulation kernel:............ccccccoiiieer e, 43
4.10.3 DPI function calls are determiniStiC...........oiuureiiie e reee e e s nnes 43
4.11 BACKDOOR MEMORY AND REGISTERAPISctiiiiiiiiiiiieiie e reeee sttt ettt e e rmnee st e e e e s st eeee e sme 44
5. FORMAL SPECIFICATION ..ottt ettt ettt e seme e e s kbt e e e e e sabb e e e e smmme e e s e nnbbeeeeeeennnesd 45
L A 1 =1 PSPPSRI 45

SCEMI 2.4 iX

51.1 RESEIVEA NAMESPACES.......cii i e it i it i et e ier e e e e e e et s e e e e eees e s s e s s s a et retbasseeseeenssnnnsnnrnnrennnnesd 45
5.1.2 [== T LT g 1= T PPPPPOPPPPPPRPN 45
5.1.3 (000] 0 [A= 100 U] 0 g1 1Y 1= T PR POPPPR PRSPPI 45
5.1.4 ArguMENt HTELIMES.eiieiiii ettt e s rmmne s e e s as 45
5.1.5 SCEMI COMPIBNCE........eeiiiiieiiiti et et srme e e e e e e 45
5.2 MACRO-BASED HARDWARE SICE INTERFACE MACROS.........cctttiiiiuiiiiiseseeriniaaesaeeaeeeeeeessssnnnmeeeesesseenn. 4D
5.2.1 Dualready ProtOCOL.........cccoiiiiiiiiiiiiieieiiiiie ettt seeesbre et e s e eesnnree e e nnnneee e DD
5.2.2 SCeMIMESSAGEINPOM MEACKQciitteeieeet it ireetie et e e sttt e e et b e eet b e e e e s sanbbreeeeessbbeeensrseeeeessad 46
5.2.3 SceMiMeSSageOULPOI MACLQ.........cuiiiiiiiiiiei e ettt e sttt eeeae e e e st e e e e st e e e e emameeeeeaaes 49
5.2.4 SCEMICIOCKPOI MACKD..... .. uteiiiie ittt ettt et ereee e e st e e s s sbb s e ennteeeeesannneeeeae s 51
5.25 SceMICIOCKCONIIOI MACTQ........uuiiiieiiiiiiii ettt et e e s et e e st e e e e nnneees 55
5.2.6 SCEMI 2 support for clock definitioNs...........euvviiiiiiiiiii e 59
5.3 MACRO-BASED INFRASTRUCTURELINKAGEiiieeeeeiieeeennnnnnunnmmsesesnnnnaaasaeeeeseeeesannneesaeeeesssnssnnnnnseseean 59
531 ParAMETIEIS ...ttt e e e e et e e e e ene e e e e e e nE e e e e e aaa e as 59
5.4 MACRO-BASED SOFTWARE SIDENTERFACE - CH+ APoiiiiiiiiiiii e eree e 61
5.4.1 PrimitiVe data tYPES. ...ttt et e bbb e e 61
54.2 Miscellaneous INtEIACE ISSUBS.........cciiiiiiiiiiiieees st e e e rseeseee e eeeeeeeaeeeesseeseeeeeees 61
5.4.3 Class SceMi SCEMI software side interface...........cooccveiiiiiiieeniiicieee e 64
5.4.4 Class SceMiParametergarameter ACCESS.cuuuutitiaiiiriieieeeeeee s aitreeeeesaibeseeeeereeeeesanneneeaess 69
5.4.5 Class SceMiMessageDatanessage data ODJECL..........coooiiiiiiiiiieenie e 72
54.6 Class SceMIMeSSageINPOIPIOXY.........cuvveeeeeiiiiiireeiieee e e s siireee e e s ssrrieesireeeeeesssirneeeeeessenneesnned &
54.7 Class SCEMIMESSAGEOULP OIPIOXY ... uuuuuiieie e e e ee i et ieeee e e e e e e et e s e e e e e e e e e e e e eeaeeesrnnns 76
55 MACRO-BASED SOFTWARE SIDENTERFACE - C AP ..ottt e 7
55.1 e LAY F= U= T 4 =SSRy 4 4
5.5.2 Miscellaneous interface SUPPOM ISSUES..........ovuvuuuiiiiirieieies s e e e e e e e e e eeeerree e e e e eeeeannra s 78
5.5.3 SceMi- SCEMI software Side INTErfACE.uviiiiiiiii e, 79
554 SceMiParametersParamMeter ACCESS.o uurriiie ittt ieeete e e e e ettt e e e et eaeet et e e e s aebbr e e e e e e eaneeas 80
55,5 SceMiMessageDatamessage data ODJECL..........cooiiiiiiiiiiicc e 81
5.5.6 SceMiMessagelnPortProxymessage iNPUL POIT PrOXY......coorurrereeriiiiiiieeeiiee e e eriiiee e e e eevreeeaed 82
5.5.7 SceMiMessageOutPortProxynessage Wput POIt PrOXY.......ceeeeirvrreeeeeriiiiemmnireeeeeesnirreeeeesanens 83
5.6 FUNCTION-BASED INTERFACEuuuuittteeeeeteteteetttaameeeeeeeeentasan e aaaeaaeaaaaaasaaaaaaeteeeeeasssnnnnnaaansssssnnnsaeeeens 83
B5.6. 1 ThE DPI GIAYEI ..ttt ettt e e sttt e eamt e e s eebb et e e e s nebneeeeeas 83
5.6.2 The DPI SYStemMVErilOQ IaY@E.......vueiii i e e e e e e e e e e e aasenneeeeeaeenes 90
5.6.3 S\VtConnecfi Using DPI with SystemVerilog HVL...........coooiiiiiiiiiieee s, 91
5.7 TIME ACCESS ..t eiie ettt et e oo oo e e ettt ettt emete et et e et b e b oo e oo e e e eaaee e e e e e e e eteeeeetnbran s aanrnnn s 93
5.8 PIPESBASED INTERFACE TRANSACTION PIPESuuititteeeitiiiittttttimmmeeeeetstssn e s aaeeesetenenaaeaeseseeesnsnnnnnnnns 95
5.8.1 SCEMI 2 PIipeS COMPIIANCE.....cii ittt e ee e e enaenees 95
5.8.2 TranSACLON PIPES....citiiiiiieeeie ittt e e oo e e bbbt b e et e e e b b n b bt bt e eeeeeeeen a5
5.8.3 PIPE NANAIES......ooiiiiieiie et e et e e e e e nbeenae 112
5.8.4 Transaction pipes API: blocking, threaavare interface.........cccccccviiiiiiiccecieieeeeeee e 112
5.8.5 Basic transaction pipes API: ndvlocking, threaeheutral interface..............cccccccviiiieeniicccnnnns 117
5.9 DIRECT MEMORY INTERFACE. .. .tteeettttttsiiasasusestnnnsesssssaaaasnssssssssssssennassssssssssessenseeseeeessammassssssneeeereeees 145
59.1 12 ToTod SqT] (=] = (o = SRR 147
5.9.2 LAY o IR g1 =T o = Lo = 148
5.9.3 BIOCK Of DYIES INTERACE........eeeiiiiiiiiiee et e e e neenees 149
5.9.4 L LTI =] o = Lo = SRR 149
5.9.5 Pattern fill INTEITACE. e e e 150
5.10 REGISTER ACCESS INTERACE ...cctttttuuuuaiaaeaetetttimaaaaeaetteeetstasaaa s e s e aaaasn e s aaeeeteeeeessssnsnnmmmessssnnnnnnes 150
5.11 STOPPING A SIMULATION. ¢ cttttttuuuaaseeeeetetteemeeeaeaeaeeeasstassaa s e s s eaaesaa s e aaaeaeeeteeesssssssnmmmeeessabnnn e eeaeeeas 151
APPENDIX A: EXAMPLE USING DYNAMI C CALLBACKS ...ttt e e 152
APPENDIX B: VHDL SCE-MI MACROS PACKAGEcoiiiiiiiiiiieeee e e 153
APPENDIX C: MACRO -BASED MULTI -CLOCK HARDWARE SIDE INTERFACE EXAMPLE 154
APPENDIX D: USING TRANSACTION PI PES COMPATIBLY WITH ACCELLERA SYSTEMS
I NI T1T AT VEO S-TLBMABPALEAMITBONS ...ooiiiiiiiiiiiiie ettt ireie et ee e e e s stbeeesrteee e e e s snnbaeeeeeeaan 158
SCEMI 2.4 X

APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:

SCEMI 2.4

SAMPLE HEADER FILES FOR THE MACRO-BASED SCEMIccccociiiiiiiiiieee 162
SAMPLE HEADER FILE F OR BASIC TRANSACTION -PIPES CG-SIDE API............... 179
SAMPLE HEADER FILE FOR SCE-MIDMIINTERFACEccccoiiiiiiiinis 185
BIBLIOGRAPHY oottt e e 188

Xi

1. Overview

The broadntentof the standard is to create a modeling interfacentteats all the requirements f@mulation,
and enabletransactor model® be easily migrated from simation to emulationas long as they adher@the
requirements resulting frothe additional demands of emulators.

The Verilog language was extended to create SystemVerilog (see Bibliog&fhahd as part of thinew
standard a new interface was creatededdle Direct Programming Interface (DPI). This interface is intended

to allow the efficient connection of an HDL model with a C mofidfilling one of the goals of this standar

This standard has thusied to adopt the DPI interface for SystemVerilog whergassibleand has triedto

add additional capabilities to facilitate the efficient connection of the host based code with an emulator through
additionalmechanismasuch as pipes.

Note: Verilog is now officially incorporated into SystemVerilog. When SystemVerilog is mentioned in a design context it can
also mean Verilog.

It is customary for Accellera standards to have been verified in practice beforslardtes established. This
ensures that the basis for the standard has been tested in the field on a number of real cases and is thus likely to
be reasonably stable.

1.1 Scope

The scope of this document shall be restricted to what is specifically referred to hetteenSéandard Co
Emulation API: Modeling Interface (SCEMI).

1.2 Purpose

There is an urgent need for the EDA industry to meet the exploding verification requsesh&oC design
teams. While the industry has delivered verification performance in the form of a variety of emulation and
rapid prototyping platforms, there remains the problem of connecting them into SoC modeling environments
while realizing their fullperformance potential his standard defines a mutthannel communication interface

that addresses these cleiges and caters to the needsvefification poth simulation andemulatior) end

users and supplie@nd providers of verification IlAn many places in this documentnitakes referenceto
emulation aghis was the focus of the maebasedvl.X version of this specification. The new functibased

and pipes capabilities added time 2.X version of the specification am@pplicable to both simulation and
emulation environmentbut each case isn't definext suchbecausedt would unnecessarily and significantly
increase the length of the standard

The SCEMI can be used to solve the followingrificationtool use problems.

1 Mostemulatorsoffer someproprietary APIsn addition to SCEMI 1.1 API. The proliferaibn of APIs
makes it very difftult for softwarebased verification products to port to the different emoug thus
restricting the slutions available t@mulator usersThis also leads to losv productivity and lover
return on investment (ROI) for emulataserswho build their own solutions.

The emul a tthatexist tollay Bré ariénted to gdevel andnot systerdevel verification.
The industry needs an ARMattakes full advantage of emulation performance.

A method is provided thanables the portability of transactor models between emulsygiams
making it possible for IP providers write a single modeln addition, with the extensiaror the 2.0
version of this standarthe standarénables transactor models to be migrated from a simulation
environment into an emulation environmesstong as certaimequirematsaremet Models will also
migrate in the other direction without aolganges.

=a =a =4

The SCEMI can also be used to solve the followwegrificationtool providerproblems.

SCEMI 2.4 1

Emulator usersre reluctant to invest in builty applications on proprietary APIs.

Traditional simulator APls like programmable language interftd) @nd VHDL PLI slow down
emuators.

Third parties are reluctant to invest in building applications on proprietary APIs.

The establishment of a commai| that supports boteimulabrsand emuladrswill encourage more
third part model developers to make transactor available thatsarguitable for emulators.

=A =

=a =4

1.3 Usage

This document specifiea modeling interface which provides riple channels of communication that allow

software modelgletailing system behavior to connect to structural models describing implementation of a

device under test (DUT). Each communication channel is designed to transgionedmmessages efbitrary
abstraction between its two end points or fAportso of

These message channels are not meant to connect software models to each other, but rather to connect software
proxy models to message port interfaces on the hardware side of iga. ddse means to interconnect
software models to each other shall be provided by a software modeling and simulation environment, such as
SystemC, which is beyond the scope of this document.

Although the software side of a system can be modeled at sdifégednt levels of abstraction, including-un
timed, cycleaccurate, and everatglevel, the focus othis standards to interface purely wtimed software
models with a register transfer lev@RTL) or gatelevel DUT.

This can besummarized with the following recommendations regarding the API

I This standard should not lbeal to bridge evenbased or subycle-accurate simulation environments
with the hardware side

It is possible, but not ideal, to use this to bridgele accurate simulation environments.

This standards best used for bridging antimed simulation environment with a cyekecurate
simulation enviroment.

f
f

Note: There are many references in the document to SystemGéstien 2i References [4]as the modetig environment for

untimed softvare models. This is because, although SystemC is capable of modeling at the cycle accurate RTL abstraction level,
it is also considered ideally suited for-timed modeling. As such, it has been chosen foriuseany of the examples in this
document. However it should not be inferred that the only possible environment thatVBGHpports is SystemC and could
equally be ANSI C, C++, or a number of other languages.

1.4 Performance Goals

While software side of the deribed interface is generic in its ability to be dise any C/C++ modeling
envirorment, it is designed to integrate easily with spveemptive multthreaded C/C++ modeling
environments, such as SystemSimilarly, its hardware side is optimized to pretveindwe throttling of an
emulator dung a comodeling session run.

Throughout this document the term emulation or emulator is used to denote a structural or RTL model of a
DUT running in an emulator, rapid prototype, or other simulation environmentidingl software HDL
simulators.

That said, the focus othis interface is to avoid communication bottlenettiet might becomepparent when
interfacing software models to an emulator as compared to interfacing themldwer software HDL
simulator or even an HDL accelerator. Such bottlenexzks severely compromise the fsemance of an
emulator, which is otherwise very fast. Although some implementations of the interface can be more inefficient
than othersit is a requirement of this standard tinathing in the specification of the intec&itselfrenders it
inherently susceptible to such bottlenecks.

For this reason, the communication channels described herein are messeayesactiororiented rather than
eventoriented, with the idea that a single message over a channel originating from a software model can
trigger dozens to hundreds of clocked events in the hardware side of the channel. Similarly, it can take

SCEMI 2.4 2

thousands of clocked events on tiegdware side to generate the content of a message anmethbriginating
from the haravare which is ultimately destined for an-timed software model.

1.5 DocumentConventions

This standard uses the following documentation notations.

il

il
1

Any references to agal literal names that can be found in source code, identifiers that are part of the
API, file names, and other literal names are representasbiier ~ font.

Key concept words or pisas arén bold type. See Chaptédive for further definitions of thesgerms.

In this document, informative and normative text is intermixed to allow easier understanding of the
concepts. The normative text is shown in regular types, aridftrenative is shown in blue italicized
type

Note sectiongreincluded as informative material and are meamrtvidethe reader with an
understanding of the reasoning behind certain standardization choices

1.6 Contents of thisStandard

The orgairation of the remainder of this standardssfollows

SCEMI 2.4

1 Chapter 2 provides references to other applicable standards that are assumed or required for this
standard.

1 Chapter 3 defines terms used throughout this standard.

1 Chapter 4 provides an overall deption and use modefor the SCE Modeling Interface (SEE
MI).

1 Chapter 5 is a formal functional specification of the #REnseles

1 AppendixA provides arexampleusingdynamic callbacks to implement a usksfined blocking

send function on top of the ndmdockingfunctions.

1 AppendixB provides a VHDL package which can be used to supply-BCBacro component
declarations to an application.

1 AppendixC provides a simple muktlock, multitransactor schematic example and its VHDL
code listing.

1 AppendixD provides an example demonstratirgnsaction pipeompatibly withAccellera
Systems | nit-dTlavtapplicatiors Sy st e mC

1 AppendixE (Sample header files for the S@H) provides headers for both C and C++

implementations.

AppendixF Provides aanple Header File for Basic Transaction PipeSiGe API

Appexdix GSample lkeader ifle for the Direct Memory Interface

AppendixH Bibliography- provides additional documents, to which reference is made only for

information or background purposes.

=a =4 =4

2. References

This standard shall be used in conjunction with the following publications.
[1] IEEE Std 107&2002, IEEE Standard VHDL Language Reference Manual.

[2] IEEE Std 1364005, IEEE Standard for Verilog Hardware Description Langu@gperseded by [3]
[3] IEEE Std 180€r012: IEEE Standard for SystemVerilog.
[4] IEEE Std 1662011 IEEE Standard for SystemC.

SCEMI 2.4

3. Definitions

For the purposes of this standard, thkofving terms and definitions applyhe IEEE Standard Dictionary of
Electrical and Electronics Termee Bibliography [B1]) should be referenced for terms not defined in this
standard.

3.1 Terminology
This section defines the terms used in this standard.

3.1.1 abstraction bridge:

A collection of abstraction gasket components that disguise-ayles accurate, register transfer level, device
under test (BCA RTL DUT) model as a purely untimed model. The idea is that to the untimed testbench
models, the DUT itself@pears untimed (sddgure 4.3 when, in fact, it is a disguised BCA model ($égure

4.4).
3.1.2 abstraction gasket:

A special model that can change the level of abstraction of data flowing from itsdnutput and vice versa.
For example, an abstraction gasket might convert atimed transaction to a series of cycle accurate events.
Or, it might assemble a series of events into a single message. BCASty¢lmuaccurate shell) models and
transactos are examples of abstraction gaskets.

3.1.3 behavioral model:

See: untimed model.
3.1.4 bridge netlist:

The bridge netlist is the top level of the usapplied netlist of components making up the hardware side of a
co-modeling process. The components typically foumstantiated immediately under the bridge netlist are
transactorsaand theDUT. By convention, the top level netlist module the user supplies to the infrastructure
linker is called Bridge and, f@ystenVerilog (see Referend@])* models is placed in aile called Bridge.v.

3.1.5 co-emulation:

A shorthand notation for eemulation modeling, also known as-ewdeling. See also: emodeling.

3.1.6 co-modeling:

Although it has broader meanings outside this document, hemeodeling specifically refers to transaction
oriented cemodeling in contrast to a broader definition ofroodeling which might include eventiented ce
modeling. Also known as eemulation modeling, transactiariented cemodeling describes the process of
modeling and simulating a mixture of sofime models represented with antimed level of abstraction,
simultaneously executing and irlesmmunicating through an abstraction bridge, with hardware models
represented with the RTL level of abstraction, and running on an ematatosimulator Figure 3.1depicts
such a configuration, where the StandardEDaulation API- Modeling Interface (SCHBMI) is being used as

the abstraction bridge. See section 3.2 for the definitions of the acronyms used here.

1) .
For more information on references, see Chapter 2.

SCEMI 2.4 5

Software Abstraction Hardware

Models Bridge Models
™ B BCASH Emulator
ISS E SCE-MI gate
M RTC netlist
Figure 3.1 Using the SCE-MI as an abstraction bridge

Another illustration can be seenhigure 4.2
3.1.7 controlled clock (cclock):

A clock defined in the macrbasednterfacethat drives the DUT and can be disabled by any transduatorg

operationghat, if clockedwould result in erroneous operation of the DWWhen performing such operations,

any transactor can fAfreezedo controlled time | ong eno
theDUT to resume. The term cclock is often used throughout this document as a synonym for controlled clock.

3.1.8 controlled time:

Time defined in the macrbasedinterfacewhich is advanced by the controlled clock and frozen when the
controlled clock is suspenddry one or more transactors. Operations occurring in uncontrolled time, while
controlled time is frozen, appear between controlled clock cycles.

3.1.9 co-simulation:

The execution of software modelgth different levels of abstraction that interact wehch other through
abstraction gaskets similar to BCASH (lm&le accurate shell) model&igure 3.2illustrates such a
configuration. (See section 3.2 for definitions of the acronyms used here.)

C-algorithm
ISS —— BCASH UTC |— BCASH RTC
\—/)
HDL
Figure 3.2 Modeling abstraction gaskets

The key difference between-simulation and ce&emulation is the former typically couples software models to
a traditional HDL simulator interface through a proprietary API, whereas the latter couples software models to
an emuladr through an optimized transaction oriented interface, such asvVBCE

3.1.10 cycle stamping:

A procesdlefined in the macrbasednterfacewhere messages are tagged with the number of elapsed counts
of the fastest controlled clock in the hardware side ofmodeled design.

SCEMI 2.4 6

3.1.11d o n 6 t dutg eyclee

A posedge active dondt car e dutinytheongcobasgedntedacewhensay of s
the user only cares about the posedge of the clock and does not care about where in the period the negedge
falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyHi parameter is

given as a 0. The DutyLo can be given as an arbitrary number of units which represent the whole period such

that the Phase offset can ski# expressed as a percentage of the period (i.e., DutyHi+Dutyke.2.4.1for

more detail s. A negedge active donét ircthermacrddasedy cycl e
interfacewhere the user only carabout the negedge of the clock and does not care about where in the period

the posedge falls, particularly in relation to other cclocks in a functional simulation. In such a case, the DutyLo
parameter is given as a 0. The DutyHi can be given as an arbitrarber of units that represent the whole

period such that the Phase offset can still be expressed as a percentage of the period (i.e., DutyHi+DutyLo0).
Seeb.2.4.1for more details.

3.1.12 device or design under testUT):

A deviceor design under test that can be modeled in hardware and stimulated and responded to by a software
testbench through an abstraction bridge such as thehNBGBown inFigure 4.2

Emulator / Simulator
SW model
(testbench) = SCEM| u / DUT \
4 CPU
v IP
core
In Out
file file L Mem)
Figure 3.3 Modeling a DUT via an abstraction bridge

3.1.13 DUT proxy:

A model or collection of models that presents (to the rest of the system) an interface to the design under test
which is untimed. This is accomplished by a translation ofinmed messages to cyesecurate pin activity. A

DUT proxy contains one anore abstraction bridges which perform this function. If the abstraction bridge is
SCEMI, the untimed communication is handled by message port proxy interfaces to the message channels.
SeeFigure 4.4for an illustration of DUT proxies.

3.1.14 fastestclock:

If the user instantiates a 1/1 cclock without a don't care duty d@ydlee macrebasedinterface then that
becomes the fastest clock in the system, although it limits performance to be only laasif as the uclock,
since in this case, both edges must be scheduled on posedges of uclock.

3.1.15 hardware model:

A model of a block that has a structural representation (i.e., as a result of synthesis or a gate netlist generated
by an appropriate tool) which mapped onto the hardware side of antodeling process (i.e., an emulator

other hardware simulation platforor a simulatoy. It can also be real silicon (i.e., a CPU core or memory

chip) plugged into an emulator or simulation accelerator.

3.1.16 hardware side

See: software side.

SCEMI 2.4 7

3.1.17 infrastructure linkage process

The processlefined in the macrbasedinterfacethat reads a user description of the hardware, namely the
source or bridge netlist describing the interconnect between the transactors, the DUT, ande-Me SC
interface components, and compiles that netlist into a form suitable for executing im@debng session.

Part of this compile process can include adding more structure to the bridge netlist it properly interfaces the
usersupplied netlist to the GE-MI infrastructure implementation components.

3.1.18 macros

These are implementation components provided by a hardware ensdatiionto implement the hardware
side of the SCHEMI infrastructurein the macrebasedinterface examples include: SceMiMessagetnt,
SceMiMessageOutPort, SceMiClockControl, and SceMiClockPort.

3.1.19 message

A data unit of arbitrary size and abstracttbat isto be transported over a channel. Messages are generally not
associated with specific clocked events, but can trigger ortriesal many clocks of event activity. For the

most part, the term message can be used interchangeably with transaction. However, in some contexts,
transaction could be thought of as including infrastructure overhead content in addition to user payload data
(and handled at a lower layer of the interface), whereas the term message denotes only user payload data.

3.1.20 messagechannet
A two-ended conduit of messages between the software and hardware sides of an abstraction bridge.
3.1.21 message port:

The hardware sidef@a message channel. Transactors use these ports to gain access to messages being sent
across the channel to or from the software side.

3.1.22 message porproxy:

The software side of a message channel. DUT proxies or other software models use these praixies to g
access to messages being sent across the channel to or from the hardware side.

3.1.23 negedge:

This refers to the falling edge of a clockthe macrebasednterface
3.1.24 posedge:

This refers to the rising edge of a claokthe macrebasednterface
3.1.25 serviceloop:

This function or method calh the macrebasedinterfaceallows a set of software models running on a host
workstation to yield access to the S®E software side so any pending input or output messages on the
channels can be serviced. The softmaeeds to frequently call this throughout thensodeling session in
order to avoid backup of messages and minimize the possibility of system deadlock. Hthmeatted
environments, place the service loop call in its own continually running theea8.4.3.7for more details.

3.1.26 software model:

A model of a block (hardware or software) that is simulated on the software side ofrmaeling session

(i.e., the host workstation). Such a model can be an algorithm (C or C++hguani aninstruction Set
Simulator (SS), a hardware model that is modeled using an appropriate language environment, such as
SystemC, or an HDL simulator.

3.1.27 software side:

This term refers to the porti-modelimgfsessn, runs enrtiiedhostdesi gn
workstation, as opposed to the portion running on the emulator (which is referred to as the hardware side). The
SCEMI infrastructure itself is also considered to have software side and hardware side components.

SCEMI 2.4 8

3.1.28 structural model:

A netlist of hardware models or other structural models. Because this definition is recursive, by inference,
structural models have hierarchy.

3.1.29 transaction:
See: message.
3.1.30 transactor:

A form of abstraction gasket. A transactor decomposes ammau transadbn to a series of cyclaccurate
clocked events, or, conversely, composes a series of clocked events into a single message.

3.1.31 uncontrolled clock (uclock):

A freerunning system clocldefined in the macrbasedinterface generated internally by the S@GH
infrastructure, which is used only within transactor modules to advance states in uncontrolled time. The term
uclock is often used throughout this document as a synonym for uncontrolled clock.

3.1.32 uncontrolled reset

This is the system resalefined in the mao-based interface generated internally by the SQH
infrastructure, which is used only with transactor modules. This signal is high at the beginning of simulated
time and transitions to low an arbitrary (implementaii@pendent) number of uclocks latdrcan be used to

reset a transactor. The controlled reset is generated exactly once by tihdl &t ware side infrastructure at

the very beginning of a eanodeling session.

3.1.33 uncontrolled time:

Time defined in the macrbasedinterface that is advanak by the uncontrolled clock, even when the
controlled clock is suspended (and controlled time is frozen).

3.1.34 untimed model:

A block that is modeled algorithmically at the functional level and exchanges data with other models in the
form of messages. An tiimed model has no notion of a clock. Rather, its operation is triggered by arriving
messages and it can, in turn, trigger operations in othtmad models by sending messages.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviatieesiun this standard.

API Application Programming Interface

BCA Bus-Cycle Accurate modelsometimes used interchangeably with RTL model
BCASH BusCycle Accurate SHell model

BFM Bus Functional Model

BNF extended BackuBlaur Form

DPI SystemVerilog Diect Programming Interface

DUT Device or Design Under Test

EDA Electronic Design Automation

HDL Hardware Description Language

HVL Hardware Verification Language

High-level Verification Language

IP Intellectual Property

SCEMI 2.4 9

ISS

PLI

RTC

RTL
SCEAPI
SCEMI

UT or UTC
VHDL

SCEMI 2.4

Instruction Set Simulato

Programmable Languagetérface

Register Transfer Level C model

Register Transfer Level

Standard Cd&mulation API

Standard C&mulation API- Modeling Interface
Untimed C model

VHSIC Hardware Descriptiondnguage

10

4. Usemodels

SCEMI directly supports three primary use modfas connecting a model written in HDL to a model running

on a workstationEach of these usmodels is enabled by a corresponding interfad¢e software side of the
interface allows amess from the workstation side, while the hardware side of the interface allows access from
the HDL side. The three interfaces are a (mespagsing) macrbased interface which was standardized in

the previous SCBMI 1.1 version of this standard and Haeen updated and extended in the S@R release,
secondly a new functiebased interface based on the SystemVerilog DPI (see sdctjoand thirdly, a new
pipesbased interface (see sectib®). These are shown Figure 4.1

Host Workstation Emulator/Accelerator or Simulator
C/C++ Testbench side SCE-MI 2 HDL side
Interfaces
Proxy <
Testbench [€| Model Macro-Based — pu
Model |« (Message Passing | Transactor | <—
— Proxy
Model

< Function-Based
< | SystemVerilog | Transactor
T

Proxy
€ ?_ Model

a ¢ PipesBased | Transactor |«
Transaction Pipes <<

A A
Untimed transactions between TB and/or Choice of 3 transaction Timed events between
optional proxy models and transactors transport use models transactors and DUT
Figure 4.1 Three Interfaces

Each of these threaterfacesareselfcontainedsuch that a model that utilizes any one of them will be able to
communicate with a model on the ettside of an interface so long as the implementation of the interface also
supports thainterface Models that use multiplenterfaceswill require complete support for eadhterface

plus any additional requirements brought about byrttexfacecompaibility issues.

A significant difference between tHanctionbasedinterface and the two others that an implementation
running on a simulator (or on an emulator) that supports a larger subset of DPI than the one defined by SCE
MI 2 functionbasedinterfaceis still compatible with the functiebased interface standardd. addition, the
functionbased implementation on a simulator is not required to flag errors as long as it is compliant with DPI
as defined by th&ystemVerilog LRM (se&ection2 Referace$3]). This is contrary to the mactmsed and
pipe-based interfaces when all implementations must support the same set of features define by these interfaces
on any implementation-or SCEMI 2 a sibset of theDPI was chosen thas more easily synthesized to
support current emulath technologyAs time goes on, it may become fides for emulators to support a
broader subset of the DPI and the standard may be exparttedtandard thudefines theminimum sub-set

of DPI features that should be supportadthe SCEMI 2 functionbased interfacéo be deeme&CEMI 2
compliant, but eaclimplementationis free to add additional feature$ the SystemVerilog DPI standatd

their function-based interfee implementation

However, his impacts what it means for a modelb® portable and SCHII 2 functionbased compliantTo
be portable the model can only utilizéhe functionbased DPlfeatures defined in this standatdsing any
additional features assied to be available by a specific implementation make it -portable to other

SCEMI 2.4 11

implementationslt also impacts model compliance with SGH 2 functionbased interface as a model that
uses the additional DPI features makes it MM functionbased norcompliant model.

Each of the three interfaces constitutes a corresponding use model carrying the same name described in the
subsequent sections of the SBIE2 specification

4.1 Macro-basedMessage Passininterface

This section of the document will descriltee thacrebasedmessage passing environment. The description of
the function call mechanism will be given in sectb? and the pipedased interface in sectich8. This
message passing interfasdantended to be used in several different use models and by several different groups

of users.

4.1.1 High-leveldescription

Figure 4.2shows a higHevel view of how SCBEMI interconnects untimed software modéds structural

hardware transactor and DUT models.

Viessage Por
UTC Mode

RTC Mode
=
UTC Mode A__Proy3

C/C++ kernel
such as SystemC

Software Side (host workstation)

Figure 4.2

\ |

S [

SCE-MI Infrastructure

Message| Transactor 1
Port 1

\

Transactor 2

Clock/Reset
Generation
and Contro

DUT

Hardware Side (emulator)

High-level view of run-time components

The SCEMI provides a transport infrastructure between the emulator and host workstation sides of each
channel, which interconnectsansactor models in the emulator to C (untimed or RTL) models on the
workstation. For purposes of this document, the temnmlatorcan be used interchangeably with any simulator

capable of executing RTL or galevel models

, including software HDL sifators.

These interconnects are provided in the form of message channels that run betveeéméne sideand the

hardware sideof the SCEMI infrastructure. Eacimessage channel hagat ends. The end on the software side

is called anessage port proxyhich is a C++ objeabr C functionthat gives API access to the channel. The

end on the hardware side igreessage portwhich isinstantiated inside a transactor and connected to other
components in the transactor. Each message channel is either an input or an output channel with respect to the

hardware side.

Note: While all exposition in this standard is initially given using C€+equivalents exist for all functionality. See Chapter 5 for

more details.

Message channebre not unidirectional or bidirectional busses in the sense of hardware signals, but are more
like network sockets that use message passing protocols. It idtbétiee transactors to serve asstraction

SCEMI 2.4

12

gasketsand decompose messages arriving on input channels from the software side into sequences of cycle
accurate events which can be clocked into the DUT. For the other directitowoftfansactors recompose
sequences of events coming from the DUT back into messages to be sent via output channels to the software
side.

In addition, the SCBJI infrastructure provides clock (and reset) generation and shared clock control using
handshakesignals with the transactdn the macrebased use model Thi s all ows the trans
controlled timewhile performing message composition and decomposition operations.

4.2 Support for environments
The SCEMI provides suppdrfor both single and muklthreaded environments.

4.2.1 Multi-threaded environments

The SCEMI is designed to couple easily with multireaded environments, such as SystemC, yet it also
functions just as easily in singtereaded environments, such as simpl@r@grams. SCEBMI macrebased
interfaceprovides a speciaervice loofunction (see.4.3.79, which can be called from an application to give

the SCEMI infrastructure an opportunity to service its comneation channels. Calls to service loop result in

the sending of queued input messages to hardware and the dispatch of arriving output messages to the software
models.

While there is no threaspecific code inside the service loop function (or elsewhetdanSCEMI), this
function is designed to be called periodically from a dedicated thread withintathreaded environment, so
the interface is automatically serviced while other threads are running.

When only using tb functiorbased or pipebased use model, calling the service loop is not required.

4.2.2 Singlethreaded environments

In a singlethreaded environment, calls to the service loop funciiothe macrebased use modalan be
fisprinkledo throughout the application code at strat
CPU to the SCEMI infrastructure so it can service its messages channels.

4.3 Usersof the interface

A major goal of this specification is to addrelse hieeds of three target audiences, each with a distinct interest
in using the interface. The target audiences are:

1 enduser
i transactor implementor
1 SCEMI infrastructure implementor

4.3.1 End-user

The enduseris interested in quickly and easistablishing a bridge between a software testbench which can
be composed of higkevel, untimed algorithmic software models, and a hardware DUT which can be modeled
at the RTL, cycleaccurate level of abstraction.

While endusers might be aware of theend f or a fAgasketo that bridges the
want the creation of thessbstraction bridgeso be as painless and automated as possible. Ideally, the end

users are not required to be familiar with the idletaf SCEMI API. Rather, on thédardware sidethey might

wish to rely on theransactorimplementer(see4.3.2 to provide predefinedransactormodels which can

directly interface to their DUT. Thiemoves any requirement for them to be familiar with any of the-BICE
hardwareside interfacedefinitions Similarly, on thesoftware side the endusers can also rely on the
transactorimplementergo furnish them withplug-and-play software models, cust-tailored for a software

modeling environment, such as SystemC. Such models can encapsulate the details of interfacing to the SCE

MI software side and present a fullptimed easy to-use interface to the rest of the software testbench.

SCEMI 2.4 13

4.3.2 Transactor implementer

The transactor implemeat is familiar with the SCBMI, but is not concerned with its implementation. The
transactor implemeat provides plugandplay transactor models on thardware sideand proxy models on
the sotware sidewhich enduserscan ug to easily bridge their untimed software models with their RTL
represented DUT. Additionally, the transactor impleraeain supplyproxy modelson the software side
which provi de uhettranseetdrs.isocket so to t

Using the models is like using any other statmhe IP models and the details of bridging not only two
different abstraction levels, but possibly two different verification platforms (such as SystemC and an
emulator), is completely hiddewmithin the implementations of the models which need to be distributed with
the appropriate object code, netlists, RTL code, configuration files, and documentation.

4.3.3 SCE-Ml infrastructure implementor

The SCEMI infrastructire implementeris interested in furnishing a working implementation of an S@E
that runs on some verification platform, including bothgb&ware sideand thehardware sideconponents of
the SCEMI. For such a release to be complaint, it needs tdoconto all the requirements set forth in this
specification.

4.4 Bridging levels of modeling abstraction

The central goal of this specification is to provide an interface designed to bridge two modeling environments,
each of which supports a different levélnoodeling abstraction.

4.4.1 Untimed software level modeling abstraction

Imagine a testbench consisting of several, possibly independent mbdektimulate and respond t®&T at

different interface points (as depictedRigure 4.3. This configuration can be used to test a processor DUT

which has some communications interfaces that can include an Ethernet adapter, a PCI interface, and a USB
interface. Thaestbench can consist ahseral models that independently interact with these interfaces, playing

their protacols and exchanging packets with them. These packets can be recouesbagewith the intent of
verifying the processor gl dhe systdm shownh iFigute @.3ndgatdbeé wi t h
implemented fully at thentimedlevel of abstraction by using the SystemC software modeling environment.

Suppose the ultimate desire here is to create a-agcigrate RTL mael of a design and eventually synthesize

this model to gates that can be verified on a high speed emulation platform. Afterwards, however, they might
also be tested with the unaltered, untimed testbench models. To do all of this requires a way of somehow
bridging the untimed level of abstraction to thescycle accuratdBCA)level.

SCEMI 2.4 14

o

°

E

m

=

-

o

©

2 DUT Model

]

-
z
°
Z

= |:|<_!—
—
Untimed Untimed
Testbench (TB) Models DUT Model
Figure 4.3 Untimed software testbench and DUT models

4.4.2 Cycle-accurate hardware level modeling abstraction

Take the purely untimed system shownFigure 4.3 fApry apartod the direct coupl
models and the untimed DUT model, and inserabstraction bridgerom the still untimed system testbench

model to what is now a emulator resideRT L-represented DUT. This bridge consists of a séddT proxy

models, SCEMI message input andutput port proxiesa set ofmessage channelshich are transdion

conduits between the software simulator and the emulaiessage input andutput ports and a set of user
implementedransactors Figure 4.4depicts this new configuration.

The SCEMI infrastructure performs the task of serving as a transport layer that guarantees delivery of
messagebetween thenessage port proxgndmessage pornds of each channel. B&ages arriving on input
channels are presented to the transactors throiggsage input portSimilarly, messages arriving on output
channels are dispatched to th&JT proxy software models vianessage output port proxieghich present

them to the restfahe testbench as if they had come directly from the original untimed DUT model (shown in

Figure 4.3. In fact, the testbench models do not know the messages have actually come from and gone to a
totally different abstractiotevel.

The DUT input proxies accept untimed messages from various C models and send them to the message input
port proxies for transport to the hardware side. The DUT output proxies establish caliivagksvide
functionsthat monitor the message outputrjpproxies for arrival of messages from the hardware side. In other
words, the SCEMI infrastructuredispatcheghese messages to the specific DUT proxy models to which they

are addressed. Taking this discussion back to the context of users of theentiegaribed ifrigure 4.3, the
enduseronly has to know how to interface the DUT proxy models on the software siligofe 4.4with the
transactor models on the hardware sideenghs, théransactorimplementerauthors the proxy and transactor

models using the SCHI message portand clock control components between tharthe macrebased use
model) and provides those models to the-eisdr.

SCEMI 2.4 15

Software Side Hardware Side

N N
! ! ~
Message Input Message Input
5 i Port Proxy 0 ‘9— > Port 0 >
Message Output| Message Output
Port Proxy 0 * () (} Port 0
Message Input Message Input
D > Port Proxy 1 9 (} ’ Port 1 — D
—: 3
= ©
- DUT ’ DUT
Proxy T
Message Channels

|

Message Output*h Message Outpu
D4_' < Port Proxy N-1 —G Port N-1 D‘—!—
W N\ W

[

Untimed User-Defined DUT SCE-MI Infrastructure User-Defined DUT Model
Testbench Models Proxy Transactors (RTL, BCA)
) > 4
e

Abstraction Bridge

Figure 4.4 Multi-channel abstraction bridge architecture

4.4.3 Messages and transactions

In a purely untimed modeling environment, messages are not associated with specific clocks or events. Rather,
they can be considered arbitrary data types ranging in abstraction fromple bit, Boolean, or integer, on up

to something as complex as a C++ class or even some aggregate of objects. It is in this form that messages can
be transported eithday valueor by referencever abstract ports between fully untimed software models of the

sort described ifrigure 4.4(and, in substantially more detail, in bibliography [B2]).

However, before messages can be transported asv&CEMI message channel, they need to be serialized

into a large bit vector by the DUT proxy model. Conversely, after a message arrives on a message output
channel and is dispatched to a DUT output proxy model, it cale-berializedback into an abstch C++ data

type. At this point, it is ready for presentation at the output ports of the DUT proxy to the connected software
testbench models.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger dozens to
hundreds bclocks of event activity. The transactor decomposes the message data content to sequences of
clocked events that are presented to the DUT hardware model inputs. Conversely, for output messages, the

SCEMI 2.4 16

transactor can accept hundreds to thousands of cloekesdseoriginating from the DUT hardware model and
then assemble them into serialized bit streams which are sent back to the software sideratizigtion back
into abstract data types.

For the most part, the termessagean be used tarchangeably witfransaction.However, in some contexts,
transactioncan be thought of as including infrastructure overhead content, in addition to user payload data
(and handled at a lower layer of tmerface), whereas the temessagelenotes only user payload data.

4.4.4 Controlled and uncontrolled time

One of the implications of converting between message bit streams and clockedrettentaacrebased use
modeli s t he transact or controlighhtime whilee pbrformiog thieseropeeatioasdso the
controlled clockthat feeds the DUT is stopped long enough for the operations to btthe. other use modes,
time on the HW side is frozen implicitly when the SW side Ikda

Visualizing the transactor operations strictly in terms of controlled clock cycles, they appear between edges of

the controlled clock, as shown in tientrolled timeview within Figure 4.5 But if they are shown for all

cycles of theuncontrolled clockthe waveforms would appear more like thecontrolled timeview shown in

Figure 4.5 In this view, the controtfd cl ock is suspended or disabled anct
ti me. o

Now, suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple
transactors controlling them. Any one of these transactors has the opstoppihg any clock. If this happens,

all controlled clocks in the system stop in unison. Furthermore, all other transactors, which did not themselves
stop the clock, shall still sense the clocks were globally stopped and continue to function corradtipegk

they themselves had no need to stop the clock. In this case, they might typically idle for the number of
uclock s during which theclock s are stopped, as illustratedriigure 4.5

SCEMI 2.4 17

Controlled Time View

uclock

cclock

Transactor operation occurs
between edges of controlled clock.

Uncontrolled Time View

eetoek [MMM LML LU

eclock [LI B

Transactor operation occurs

" while controlled tjme is >
suspended by using extra

uncontrolled clock cycles.

Figure 4.5 Controlled and uncontrolled time views

In the SCEMI macrebasednterface the semantics of clock control can be described as follows.

Any transactor can instruct the SGH infrastructure to stop the controlled clock and thus cause controlled
time to freeze.

1 All transactors are told by the SGH infrastructure when the controlled clock is stopped.

1 Any transactor shall function correctly if controlled time is stopped due to operations of another
transactor, even if the transactor in question does not itselftoetalp the clock.

1 A transactor might need to stop the controlled clock when performing operations that involve
decomposition or composition of transactions arriving from or going to a message channel.

1 The DUT is always clocked by one or more controllextks which are controlled by one or more
transactors.

1 A transactor shall sample DUT outputs on valid controlled clock edges. The transactor can use a clock
control macro to know when edges occur.

91 All transactors are clocked by a free running uncontralledk provided by the SCGEII hardware
side infrastructure.

4.5 Work flow

There are four major aspects of work flow involved in constructing system verification with theBCE
environment:

1 software model compilation
1 infrastructure linkage
1 hardware model elabation

SCEMI 2.4 18

1 software model construction and binding

4.5.1 Software model compilation

The models to be run on the workstation are compiled using a common C/C++ compiler or they can be
obtained from other sources, such as tpiadty vendors in the form of IP, ISS simulators, etc. The compiled
models are linked with the software side of the SW@ENfrastructure to form an executable program.

4.5.2 Infrastructure linkage

Infrastructure linkagds the processsed by in the macrbased use mod#hat reads a user description of the
hardware, namely the source laiidge netlist which describes the interconnect between the transactors, the
DUT, and the SCHMI interface components, and congslthat netlist into a form suitable for emulation. Part

of this compile process can involve adding additional structure to the bridge netlist that properly interfaces the
usersupplied netlist to the SCHI infrastructure implementation components. Putrensimply, the
infrastructure linker is responsible for providing the core of the-SiCiterface macros on the hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated
interface macrosi the usessupplied bridge netlist and uses them to properly establish the dimensions of the
interface, including the:

number of transactors

number of input and output channels
width of each channel

number of clocks

clock ratios

clock duty cycles

=A =4 =4 -4 -4 -4

Once thefinal netlist is created, thmfrastructure linker can then compile it for the emulation platform and
convert it to a form suitable to run on the emulator.

Thelnfrastructure linkageprocess is optional as when only thediion-based and pipdsased use models are
used as this step is provided natively by the interfaces for these two use models.

4.5.3 Hardware model elaboration

The compiled netlist is downloaded to the emulator, elaborateghrapdred for binding to the software.

4.5.4 Software model construction and binding

The software executable compiled and linked in the software compilation phase is now executed, which
constructs all the softwamaodels in the workstation process image space. Once construction takes place, the
software models bind themselves to the message port proxies using special calls provided in the API.
Parameters passed to these calls establish a means by which spesiigenest proxies caendezvousvith

its associated message port macro in the hardware. Once this binding occursmiteeliog session can
proceed.

4.6 Macro-basedSCE-MI interface components

The SCEMI run-time environment consists afset ofinterface components on both therdware sideand the
software sideof the interface, each of which provides a distinct level of functionality. Each side is introduced
in this section and detailed later in this docuisee Chapter 5).

4.6.1 Hardware side interface components

The interface components presented by the $@Ehardware sideconsist of a small set of macros which
provide connection points between the transactors and theMB@irastructue. These compactly defined

and simpleto-use macros fully present all necessary aspects of the interface to the transactors and the DUT.
These macros are simply represented as eSydyenverilog or VHDL models with clearly defined port and
parameter intéaces. This is analogous to a software API specification that defines function prototypes of the
API calls without showing their implementations.

SCEMI 2.4 19

Briefly stated, the four macros present the following interfaces to the transactors and DUT:

1 message inputqet interface

1 message output port interface

1 controlled clock and controlled reset generator interface

1 uncontrolled clock, uncontrolled reset, and clock control logic interface

4.6.2 Software side interface components

The interface presentdsy SCEMI infrastructure to the software side consists of a set of C++ objects and
methods which provide the following functionality:

version discovery

parameter access

initialization and shutdown

message input and output port proxy binding and callbegistration
rendezvous operations with the hardware side

infrastructure service loop polling function

message input send function

message output receive callback dispatching

message inputeady callback dispatching

error handling

=8 =4 =4 -8 -8 -8 _-8_-9_9_°9

In addition to the C++ okt oriented interface, a set of C API functions is also provided for the benefit of pure
C applications.

4.7 Function-basedinterface
4.7.1 Overview

This section describes some of the attributes of the funbtisedinterfacebased onSystemVerilog DPI.
These atibutes are listed follows:

The DPI is APHless

Define a function in one language, call it from the othemiversal programming concept, easy to
learn

9 The function call is the transaction

1 Function callgprovidemid-level of abstraction not too high, nbtoo low

1 SystemVerilog DPI is already a standard

f
f

These attributes are discussed in more detail in the following sections.

4.7.2 The DPI is API-less

The SystemVerilog DPI was designed to provide an easy to usdantgrage communication mechanism
based on sinlp function calls. The idea is, rather than providing an API, simply allow the user to create his or
her own API by defining functions in one language and calling them from the other.

4.7.3 Define a function in one language, call it from the other

Functions aredefined and called in their native languages. This requires very little training for a user to
understand. The fAgolden principleo of DPI i s, on ea
function calls for that language.

The following figuredepict this simple principle both for thet6-HDL and HDL-to-C directions:

SCEMI 2.4 20

module MyTransactor H DL Slde
m reg [7:0] currentState;
reg isParityEnabled;
export ADPI-C0 function configQul
void MyModel::SetParity(int enableParity) function bit [7:0] configQuery;
svBitVecVal transactorState; input enableParity;
svSetScope(dHdIContext);] begin
transactorState = configQuery(isParityEnabled = enableParity;
(svBit)enableParity); configQuery = currentState;
if(transactorState == ERRO R_STA"E\ end
|l ogError (0 0. ndfunction
} '
Figure 4.6 Define a function in HDL, call it from C

C Side HDL Side

i mport ADPI-C0 function [15:0] Ro
input bt [47:0] destAddr);

always @(pdsedge cclock)
begin

svBitVecVal PortID(svBitVecVal32 *destAddr){
svBitVecVal ret; .
state == S1) begin

ret = RouterTables.Lookup(destAddr); ortID <= PortlD(destAddr);

return ret; else

end

Figure 4.7 Define a function in C, call it from HDL

The DPISystemVerilodayer is described in detail the SystemVerilog LRM (see Referencq)[3

The DPI SystemVeriloglayer is designed to allow imported and exported function calls to be used with
identical semantics to plain SystemVerilog functions. This means that argument passing and calling
conventions remain identical.

In addition, all scojpg considerations remain identical. For example the calling scope of a call to any
SystenVerilog function call is the scope where the function is defaednot the caller site. In the case of an
imported function special function declaration syntax #es as a place holder for where the function would
actually be defined if it were a plaBystenVerilog function. That placeholder represents a declaration of the
actual function definition itself which is on the C side. As with pl8istenVerilog functins, the calling
scope of this function is considered to be the scope of this import declaration rather than the cdalles site.
becomes important when understanding calling scope for purposes of context handling as diessebioh

4.7.8

Here is an example of an imported function declaration in SystemVerilog:

/I Declare an imported context sensitive C function with cname "MyCFunc"
import "DPI - C" context MyCFunc = function integer MaplD(int portID);

This declaration is téng the Systenver i | og si de that, fyChuec() ah@itscandbe C f unc
called directly fronmSystenVerilog as the aliase8ystenverilog nameMa p | D() o .

When theSystenVerilog code makes a call tdapIiD(), this results in the C functioMyCFunc() being

called. This is very useful when resolving incompatibilities in legal names between the C language and the
SystenVerilog language. For exampleSystenVerilog name could be an escaped identifier that is illegal in C.
This can be easily fixed by obsing a legal C nhame and using aliasing in the import declaration.

SCEMI 2.4 21

For exported functions, the entire function body is defined in some module sc8gstémVerilog. Special
additional declaration syntax is used to declare that function is allowed tallbd rom the C side, for
example,

export -CTOPISet ParityGetConfig = function configQuery;
function int configQuery;
input bit enableParity;
begin
isParityEnabled = enableParity;
configQuery = currentState;
end
endfunction

In this example the variablesParityEnabled andcurrentState are defined in the same module scope
as the functioronfigQuery() and can thus be accessed freely by the function itself.

Like imported functions, @ame aliasing works for exported functions as waellthis case, when the C side
calls the functiorsetParityGetConfig() the HDL functionconfigQuery() will actually get called.

4.7.4 The function call is the transaction

1 The function call itself is the transaction and the function call arguments (input plus) @atpyrise
the transact i on 8-shisavaidsdalingtausessliceseam biefields of a single big
vector

Function calls can have individually named input args, or output args, or both, or neither

In SystemVerilog a wide range of data tygas be used for function arguments but for MR it is
restrictedto a useful subset consisting of bit vectors and integers

=a =4

4.7.5 Function callsprovide mid level of abstraction- not to high, not to low

Function calls provide a good "lowest common denoroifianid level abstractiorfor transportingsimple
transactions across language domains.

Low enough abstraction for:

1 synthesizeability
1 use with legacy ANSI C

High enough abstraction for:

9 building user definedimpletransactor applications

9 building simulaton-oriented reusable verification IP

1 providing a good base upon whiakers can builtiigher abstraction interfaces (such as TLM,
SystemVerilog mailboxes)

1 optimal implementation for targeted verification engine (simulation or acceleration)

1 providing a deterministic programming interface

1 avoiding the need to be aware of uncontrolled time and clock control in HDL

4.7.6 SystemVerilog DPI is already a standard
SCEMI 2 is leveraging the fact that the SystemVerilog DPI:

1 Has been a standasthce2007. It went through a thorough development process and has been proven
in several arenas. It has also had significant industry exposureiliiegraphy [B4], [B5] and [B6).

1 Clearly defined syntax of function declarations in SystemVerilog.

1 Clearly defined argunmd data type mappings between SystemVerilog anse€ gection5.6.1.3.

1 Clearly and rigidly defined semantics of calling functions in terms of argument passing conventions,
time consumption of the function{ime vs. time casuming- seesection5.6.2.3, and other details.

1 Is explicitly designed to be binary compatible acliagslementatiorfor any given C host platform and
compiler tool (such as GNU g@&:2).

SCEMI 2.4 22

4.7.7 DPI datatypes

The philosophy that was uséuthe development of the DPI was to make the type mappings between C and
SystemVerilog as common sense and simple as possible and to minimize the requirements for special helper
functions that are used to convert from one type to the other. In other, wlefaw a type in SystemVerilog,

define the same type in C the way your common sense would tell you to, and the two will match.

Basic C scalar types, structures, and unpacked arrays of such types, will map directly to equivalent
SystemVerilog types almobterally. There are some caveats to this however:

1 SystemVerilog integer types are specified to be of fixed size regardless of the inherent data width of
a given machine architecture. For example the SystemVerilog types byte, shortint, int, and longint
specifically have widths of 8, 16, 32, and 64 bits respectively.

1 Unfortunately, by contrast in ANSI C, integer types do not have widths that are as cast in stone as
the corresponding types in SystemVerilog (see Wikipedia reference for ANSI C datp Whas
this means is that even though there is a fixed correspondence between fixed sized SystemVerilog
integer tyges and notfixed sized ANSI C integer typei will be up to the user to understand which
bits of data passed between SystemVerilog and C are significant and where padding/msask
implied/required Despite this caveathe use of scalar types to pass small data values by value back
and forth between the language domains is extremely usefuthalsdsupported to the extent
possible in the SCiI 2 standard (see proposed type support for- 8LR2 below).

Additional complexities arise with bit vector (packed arrgyet and open arraysoiFthese, great care was
taken to make their mappings as easy to use and intuitive as possible

4.7.8 Context handling

Context handing in DPI is the term used to refer to the mapgdiag imported function call to an instance of
user C data (such as an object pointer) that was previously associated v@ifstiveyerilog caller module
instance.

This is useful for maintaining an association between, for example, a pointer to a Spstetn@odule and

the instance of th&ystenVerilog transactor associated with it. Because an imported function call ia st
function, by definition, it has no context as would say a method or member function of a C+€olasxt
handling in System¥rilog DPI is very similar to context handling fiarceive callbackin the SCEMI macre
basedinterface(see5.4.7.). In the case of SCHEIlI macrabased interfacehe Context data member of the
SceMiMessageOutPortBinding struct is used to pass a user model context to the receive callback function
that can be associated with an instance of an output message port, as dfigwreid.8

SCEMI 2.4 23

/I Define the function and model class on the C++ side:
class MyCModel {

private:
int | ocallyMaped (int portlD); [/ Does somet

sc_event notifyPortldRequest;
i nt portlD;

pPublic:
/I Constructor
MyCModel (const char * instancePath) {
SceMiMessageOutPortBinding outBinding =
= { this, myCFunc, NULL }

SceMiMessageOutPortProxy outPort = outPort - >BindMessageOutPort (
instancePat h,MefsScaggM Out Port o, out Bi ndi
}
friend int myCFunc (int portID);
2
/I Implementations of receive callback function SCE - Ml

void MyCFunc (void *context, const SceMiMessageData *data) {
MyCModel* me = (MyCModel*)context;

me >portID = data - >Get(0);
me- >notifyPortldRequest.notify();

Figure 4.8 Context handling in SCE-MI Macro-based interface

In SCEMI 2 functiontbased interfacecontext binding is similarly established at initialization time by storing a
context pointer with &ystenVerilog module instance scope and later retrieving itsvi@etScope() and

svGetUserData()
Figure 4.9shows an example of context handingsi@E-MI 2 function-based interface

SCEMI 2.4 24

SV Side:
/'l Declare an i mported context sensitive C f
import #A@OPIcontext MyCFunc = function integer
C Side:
/I Define the function a nd model class on the C++ side:
class MyCModel {
private:
int |l ocallyMapped (int portlID); [/ Does
public:
/I Constructor
MyCModel (const char* instancePath) {
svScope scope = svGetScopeFromName (instancePath) ;
/'l Associate fAthiso with the correspondin
/I for fast retrieval during runtime.
svPutUserData (svScope, (void*) MyCFunc, this);
}
Friend int MyCFunc (int portID);
h
/I Implementation of imported context function callable in SV
Int MyCFunc (int portlD) {
/'l Retrieve SV instance scope (i.e. this u
svScope = svGetScope();
/I Retrieve and make use of user data stored in SV scope.
MyCModel* me = (MyCModel*)svPutUserData (svScope, (vo id*) MyCFunc);
Return me - >locallyMapped (portID);
}

Figure 4.9 Context handling in SCE-MI 2 function-based interface

In this example notice that because functions can have both input and output arguments, the return argument
can be set directly out of the function return argument. In the S@Emacrobased interfacethe receive

callback must notify another thread to send the mappetb

4.7.9 SV-Connecti Using DPI with SystemVerilog HVL

This section will discuss usage of a DPI functltased interface that can be used to connect SystemVerilog
HVL testbenches to SGHI compliant DPtbased HDLside transactors. This interfacing mechanism is

referred to a§*Connectand its architecture is depictedrigure 4.10

SCEMI 2.4

25

D

Thin
C-DPI BFM

|ayer module
D D
: * - : ()

Figure 4.10 SV-Connect architecture

4.7.9.1 HDL -side commonality between C and SystemVerilog testbenches

In the S*Connect architecture, there are no differences between thévB&tandard for the HDlside of the

DPI and for usage with SystemVerilog HVL testbenchEffectively, a SCEMI compliant HDL-side
(everything in the rightmost block &igure 4.1 is 100% portable between C testbenches and SystemVerilog
HVL testbenches.

The remaining discussion in this section applies in itsedptto SystemVerilog HVL testbenches.
4.7.9.2 The implied C layer

DPI is inherently a croslanguage function calbased interface between C and SystemVerilog. When using
DPI to interface SystemVerilog HVL to SystemVerilog HDL, there must be a C layer in measakepicted in

the middle block ofigure 4.10 The implementation details of the C layer are left to EDA vendors as long as
the SystemVerilog HViside and SystemVerilog HD&ide are compliant with the SystemVerilog DPI
standhrd.

DPI imported function calls in SystemVerilog call C function implementations. DPI exported function calls in
C call SystemVerilog implementations. Therefore, the function calling chain for communication in either
direction is:

1 SystemVerilog (HDL or HVY) calls an imported function.
1 The imported function implementation is in the C layer. It calls an exported function.
1 The exported function implementation is in SystemVerilog (HVL or HDL).

The functionality of the C layer is limited to passing data thrabghHunction calling chain and some minimal
scope handling as discussedbif.3.4Binding and scopehandling.

4.79.2.1 Automatic generation of the implied C layer
It is the irtent of this standard to allow and encourage EDA vendors to produce C layer implementations that
are transparent to the user and which can be automatically generated. It is possible to derive all information
needed to generate a C layer by utilizing thet&yVerilog standard VPI interface to examine Hsite
import DPIC function declarations and HVside export DRIC function definitions matching the default
prefix or a specified prefix (see sectibr.3.1.1Naming convention), and exact function name and argument
profile information.

SCEMI 2.4 26

Providers of IP models shall be able to agémerate separately linkable C layer packages for each of their
models or model families.

An example of a C layer that can be automatically generated as described above is shown iA.gexdon
Example ofthnC code fimi ddl emano | ayer

4.7.9.3 Completeexamples of ¥-Connect based function calls

The following examples demonstrate a completeGWnect based calling flow for suppodi DPI calls in
both directions:

il nbound éo-HPV furldtdr_calls

i Out b o u ntad3V HMLfunction calls
4.7.9.3.1 Example of Inbound (HVL -to-HDL) function call

package HvIToolsPkg;
import svdpi::*; // Import standardized S\-Connect package name 6svdpi 6
/I Inbound HVL - to - HDL DPI function
import "DPl - C" context function void svcServicelngressTransaction(

input chandle scope,

input bit [31 :0] count,

input bit [63:0] data,
input bit [31:0] status);

class PipelinelngressProxy extends uvm_driver #(MyType);
‘uvm_component_utils(PipelinelngressProxy)

l ocal string hdl Pat h; /'/ Hierarchical path tsmwlethis proxyos a
/I transactor module

l ocal chandle hdl Scope; [/ / The scope ofsidd his proxy objectédés HD
/I transactor module

function void build_phase(uvm_phase phase);
if(luvm_config_db #(string)::get(this, " ", "HDL_PATH", hdIPath))
uvm_report_fatal("build_phase", "Failed to get string HDL path");

hdlScope = svGetScopeFromName(hdIPath);
endfunction

task run _phase(uvm_phase phase);
MyType request;

forever begin
seq_item_port.get (request);

svcServicelngressTransaction(hdiSco pe, request.Count, request.Data,
request.Status);

/I Wait for confirmation of receipt from egress proxy ...
@(dTransactionServicedEvent);

end
endtask

endclass

endpackage
In this example théuild_phase() function does a onetme setup of the DPI scope which is stored in the
chandle hdIScope variabl e after cal l-CGing DRIhe wutiimpiotry fAU
svGetScopeFromName() . This scope handles passed as the required figrgument to any inbound DPI
function such as the/cServicelngressTransaction() HVL -to-HDL function shown above.

ThepairedHDL-si de export function that gets c¢adol efdunicst i soinmg
with exactly the same name and arguinprofile as the HVEs i d e i mpCor tf umRRIi on above
without the prefix and without the firshandle scope argument as is shown in the following example,

SCEMI 2.4 27

export "DPI - C" function ServicelngressTransaction;
function void ServicelngressTransaction (
input bit [31:0] countin,
input bit [63:0] dataln,
input bit [31:0] statusin);
holdingCount = countlin;
receivedCount = countln;
receivedData = dataln;
receivedStatus = statusin;
- >serviceCallDetected;
endfunction

4.7.9.3.2 Example of outbound (HDL -to-HVL) function call
When the HDLside makes an outbound call to its paired HVL proxy, an imported function call is made into
the thin C layer which, in turn calls an exported function implemented in a package in HVL.

In the thin C layesvGetScope () is called to retrieve the HDkide caller scope. This scope is passed into the
exported function call and is used on the HVL side to look up the proxy object paired with theid€¢Ddaller.

The lookup is done using a static associative array contgningg x y handl es keyed by the

During some initialization phase, prior to the onset of any DPI function calls, each proxy object handle is
added to the associative array, keyed by the scope of its pairedsidBlmodule. Here is an example to
demonstrate this concept. This class is assumed to be contained in thrada@ye HviToolsPkg shown in

the previous section.

SCEMI 2.4 28

class PipelineEgressProxy extends uvm_monitor;
“uvm_component_utils(PipelineEgressProxy)

uvm_analysis_port #(MyType) ana lysisPort;
local MyType rsp;

local string hdlPath;
local chandle hdiScope;
static PipelineEgressProxy userData[chandle ;

function new(string nm, uvm_component p);
super.new (nm, p);
analysisPort = new("analysisPort", this);
rsp = new;

endfunction

function void build_phase(uvm_phase phase);
if(luvm_config_db #(string)::get(this, ", "HDL_PATH", hdIPath))
uvm_report_fatal("build_phase", "Failed to get string HDL path");

hdIScope = svGetScopeFromName(hdIPath);
svcSetScope_HvlToolsPkg();
userData[hdIScope] = this;

endfunction

/I Callback from HDL: uart has received character
function void serviceEgress;

input bit [31:0] count;

input bit [63:0] dataOut;

input longint unsigned statusOut;

rsp.Count = count;
rsp.Data = dataOut;
rsp.Status = statusOut;
analysisPort.write(rsp);
endfunction
endclass

export "DPI - C" function svcUploadEgressTransaction;
function void svcUploadEgressTransaction;
input chandle scope ;
input bit [31:0] count;
input bit [63:0] dataOut;
input bit [31:0] statusOut;
automatic PipelineEgressProxy me = PipelineEgressProxy::userData[scope];

uvm_report_info("export DPI - C function”, $psprintf(
"svcUploadEgressTransaction() ca lled from scope '%s",
svGetNameFromScope(scope)));
me.serviceEgress(count, dataOut, statusOut);
endfunction

Using the scopeuserDath b array(above), oathoant Hwkiele eRported DPI function
implementations can now look up thandle of the proxy to which they are associated using the HDL scope
passed in from the C layer as |llustrated in thexport -€COPI function
svcUploadEgressTransaction() above.

Things to note in the above example:

T The associusedatav® iagn-loaalystat@ member of the proxy class. So, there is only
one such array for all class objects and it is accessible from outside the class.

1 Scopes are of typghandle in SystemVerilog HVL
T The SystemVernhisloo g sk eay worrodx yii hemngabristeuctéddo t he obj ect

SCEMI 2.4 29

1 Any DPI function implementation must be outside of a SystemVerilog class but local to the package
scope shared by that class.

1 The input chandle scope argument must be the first argument passed into aftC&\hect
outbound exported DPI funoh implementation. It is thehandle f or the cadel er d6s I
transactor modle instance scope passed in from the @iayer.

1 A handle to the proxy paired with the caller HDL BFM is looked up inu@Data associative
array using the scope as a key

1 A proxy class method is then called, passing along function arguments omitting the scope, which has
served its purpose.

ThepairedHDL-s i de i mport function that gets c¢aQd efdu nicst isoinmg
with the exactly the same namedaargument profile asthe HV& i de exq€or tf uMPBPi on above
without the prefix and without the firgtputchandle scopeargument as is shown in the following example,

import "DPI - C" context function void UploadEgressTransaction(
input bit [31:0] countOut,
input bit [63:0] dataOut,
input bit [31:0] statusOut);

always @(posedge Clock) begin
if(Reset 1= 1 && TokenOut !=0)
/I Send egress transaction to consumer model.
UploadEgressTransaction(
TokenOut[31:0], // countOut
TokenOut[95:32], // dataOut
TokenOut[127:96]); // statusOut
end

479.4ExampleofthinC code fAmi ddl emand | ayer

For the inbound and outbound examples shown above the following listing shows the thin C cotletayer
couples the paired HVL and HDL functions. As mentioned in seei@rd.2.1Automatic generation of the
implied C layer, vendors are encouraged to automaticallyegate this C layer.

SCEMI 2.4 30

/I SV - Connect Thin C Layer File

#include "svdpi.h"
#include <stdio.h>

extern "C" {

)
/I SV - Connect C layer for package HvIToolsPkg
I

static svScope HvIToolsPkg_ scope;

void svcSetScope_HvIToolsPkg() {
HvIToolsPkg_scope = svGetScope();
}

/I Inbound function
void svcServicelngressTransaction(
void *ARGO, svBitVecVal *ARG1, svBitVecVal *ARG2, svBitVecVal *ARG3) {
svSetScope((svScope)ARGO);
Servicelngres sTransaction(ARG1, ARG2, ARG3);
}

/I Outbound function
void UploadEgressTransaction(svBitVecVal * ARGO, svBitVecVal * ARG1, svBitVecVal *
ARG2) {
svScope scope = svGetScope();
svSetScope(HvIToolsPkg_scope);
svcUploadEgressTransaction((void *)sc ope, ARGO, ARG1, ARG2);
}

The inboundmport i DRCo function svcServicel ngr relays Talafromehet i on ()
HVL side to the actuaxport i DRCO0 function ServicelngreerstietHbhsacti on()

side.

Conversely the outbourichport i DRC o6 f u n o WploadEgressTransaction() relays calls

from the HDL side to the actuakporti DRCO function svcUploadEgreomsTransact.i
the HVL side.

Note the statically storedvScope HvIToolsPkg_scope which is set up from the HVL side onceimit time by caling
the function svcSetScope_HviToolsPkg() . This variable is referenced by the outboundfunction
UploadEgressTransaction() toset theHVL-side package scope.

4.8 Pipe-basedinterface
4.8.1 Overview

As currently defined,hte DPI standard handles strictactive semaits for function calls. There are no
extensions for variable length messaging and streadaitay

The SCEMI 2 supports constructs callegdansaction pipeswvhich can be implemented &slilt- in library
functions. Transaction pipes can potentially be imp@ated with reference source code that uses basic DPI
functions, or can be implemented in an optimizagdlementatiorspecific manner.

A transaction pipe is a construct that is accessed via function calls that provides a means for streaming
transactions tand from the HDL side.

Two operation modes are defined for transaction pipes that enable different data visibility semantics. They are
called deferred visibility and immediate visibility modes.

Generally speaking, ideferred visibilitymode, there is arpcisely defined lag between when elements are
written to pipe by the producer side and when they are actually visible and available for consumption by the

SCEMI 2.4 31

consumer side. In this mode a pipe may absorb one or more elements wH#ackorg send calls anmade
but the consumer will not see these elements until the pipe either fills or is flushed.

Whereas, inmmediate visibilitymode, any elements written by the producer side are immediately visible by
the consumer side that next time it gains executiotrabfor any reason.

Transaction pipes are as easy to use as simple function calls, yet have semantics that can be thought of as a
hybrid between UNIX sockets, UNIX file streams and UNIX named pipes.

91 Like UNIX sockets, transaction pipes provide a faciliy sending onevay message passing through
simple function calls. Transaction pipes are composed of send and receive calls that look very much
like write and read calls to UNIX sockets (but are much easier to create and bind endpoints).

1 Like UNIX file streams, items written to the pipe can be buffered by the infrastructure which allows
for more optimal streaming throughput. Pipes leverage the fact that in some cases round trip latency
issues can be avoided by using pipelining, and therefore more effgrtughput of streamed
transactions can be realized.

1 Like UNIX file streams, transaction pipes can be flushed. Flushing a transaction pipe has the effect of
guaranteeing to the writer of the transaction that the reader of the transaction at the other end h
consumed it. This is useful for providing synchronization points in streams.

1 Like UNIX named pipes, each transaction pipe is uniquely identified with a name. In the case of
transaction pipes, that name is the hierarchical path to the interface instéme¢iDL endpoint of
the pipe.

Transaction pipes are unidirectional meaning that in any given pipe, the transactions only flow in one direction.
The data sent by the producer is guaranteed to be received by the consumer in the same order when the
consume asks for the data (by calling a function). However, the data is not guaranteed to be available to the
consumer immediately after it was sent depending on how buffering is used. That is, if the pipe has some
amount of buffering, that could continue to fiked by a producer thread as long as there is room. The
consumer would not see it until control is yielded to the consumer. This could happen if either the pipe filled
while being written to, thus suspending the producer, or via a flush operatioreditigtthe producer. See
5.8.4.3for more information on flush operations.

Transaction pipes that pass emay transactions from the C side to the HDL side are cailaat pipes Pipes
that pass transactions from the HDL sidé¢he C side are callezutput pipes

Unlike normal DPI calls, in which one erahlls and the other ends called models on both ends of a
transaction pipe call into the pipe, with one end callingsedfunction and the other calling threceive
function.

4.8.2 Streaming pipes vs. TLM FIFOs

A blocking interface is well suited to true streaming applications and follows the easy use model of UNIX
streams as discussed previously.

It is useful to compare and contrast the semantics of streaming pipes to thts@of Farticularly the FIFOs

that follow the semantics of TLM FIFOs described in the cel | era SystemsTLMni ti at.
standard. A possible reastor confusionwhen discussing issues like user vs. implementation specified buffer

depth, its effect on determinism, etcdige topeoplethinking of a FIFO model rather than a pipe model.

Both pipes and FIFOs are deterministic and have similar functions in term of providing buffered data
throughput capability. But they hadéferent basic semantics.

Here is a small listing that tries to compare and contrast the semantics of FIFOs vs. pipes:

FIFOs
1 Followclassicahccel | era Syst e msiLMlikeiFtFO mddélve ds Syst emC
1 User specified fixed sized buffer depth
1 Automatic syichronization
1 Support blocking and neblocking put/get operations
1 "Under the hood" optimizations possiblbatching

SCEMI 2.4 32

T No notion of a flush
Pipes

Follows Unix stream model (future/past/present semantics)
Implementation specified buffer depth

User controlledsynchronization

Makes concurrency optimization more straightforward
Support only blocking operations (for determinism)

"Under the hood" optimizations possiblbatching, concurrency
More naturally supports data shaping, vim, eom, flushing

E R]

One could argu¢hat we may wish to entertain the notion of a "S@E FIFO" reference library to augment
the "SCEMI_PIPE' reference library currently proposed and thus provide two alternative DPI extension
libraries that are part of the SENMH 2 proposal that address fiifent sets of user needs.

But it is useful to make the clear distinction between FIFOs and pipes and, for now, at least converge on the
semantics of proposed pipes and making sure they address the original requirements of variable length
messaging.

Pipesare intended for streaming, batchingriable length messages, and potentially can be used even for more
exotic purposes if the modeling subset allows it. Given that pipes can be implemented at the application layer,
the choice between using pipes and D®lone of convenience in many cases. However, since an
implementation can choose to provide an optimized version of the pipes, this would be a factor as well in the
choice to use them.

In order to facilitate this FIFO model, the following chapter propoEEM compatible, threaheutral
transaction FIFO interface.

4.8.3 Reference vs. optimized implementationsef transaction pipes

The HDL-side API can be implemented as a binllibrary, but it must allow the user to use the API with a
syntax that is exactly corafible with the SystemVerilog interface declarations as described above.

On the Gside, the transaction pipes API might be used to build a higher level C++ object oriented interfaces to
pipes that may provide a more user friendly object oriented inteidduasic pipes.

The Gside transaction pipes API could also conceivably be used to build alternative native HVL: object
oriented interfacessuchAsc c el | er a Sy SSysem&LM imerfdcésat i ve 6 s

While not required, it is possible to implement pipssa reference model of library functions of source code
built over basic DPI function calls. As such they can be made to run on any DPI compliant software simulator.

It is an absolute requirement however that DPI based implementations arid bajiiementations of pipes
must have identical deterministic behavior and must strictly adhere to the semantics defined in this
specification.

4.8.3.1 Implementation of pipes in multi-threaded C environments

Pipes blocking access functions does not have a tmesattlal API that can be used to aid in adapting the
implementations of user friendly (but threadiare) blocking pipe functions to arbitrary threading systems on
the C side.

To satisfy this requirement the pipes interface was designed to address the followsig need

1 A userfriendly, but threaeaware pipe interface (which the blocking pipe functions already provide)

1 Alower level implementatioffiriendly, but threaeheutral pipe interfaceessentially implementation
API and callback functions to facilitate easyatien of adapters that allow implementation of the -user
friendly API in selected C threading environments.

Transaction pipes provide a solution to the second requirement. It provides:

1 Easyto-use blocking pipe access API at the user level

SCEMI 2.4 33

1 Thread neutral Rl and callback functions that implementations can choose to use to create adapter
layers that implement pipes over a selected threading system

1 Easy to demonstrate reference implementation of the blocking pipe calls that uses the pipe APl and
callback furctions in their implementation. The example below shows a working reference model of
such an implementation for the HDL side.

In summary, the neblocking calling and callback functions for pipes described in se&iB2 provide
threadneutral functions that can be used by any implementation to implement the-dwablocking pipe
access calls.

4.8.4 Deadlockavoidance

SCEMI pipe implementations are in no way expected to guard against application induced deadlocks.
Note: An example of an application induced deadlock is the case where arstdBlprocess is blocking while waiting for data
on an empty input pipe, a yield to thest@e producer thread occurs, but thai@e never feeds more data into the pipe. In this
case, thispecific HDL-side process would never advance (deadlg&kdther example is in the output direction where an HDL
side process is blocking while trying to feed data to a full output pipe, a yield toglte Consumer thread occurs, but the C

side never dhins data from the pipe. In this case, this specific Hidle process would never advance (deadldckpoth of
these cases it is up to the application to be properly designed to avoid such deadlocks.

4.8.5 Input pipe
Figure 4.11shows an example of the use ofiaput pipeon both the C and HDL sides:

SCEMI 2.4 34

C-Side HDL -Side

void serviceThread(){

void* pipe _handle = sce mi_pipe_c_handle (module PipelinelngressTransactor(
"top.ingress.p0 ") Clock, Reset, TokenlIn);
for(;;X output [127:0] Tokenln;
svBitVecVal pipeData[4]; input Clock, Reset;
pipeData[0] = locallngress.Count;
pipeData[1] = locallngress.Data; /I FSM States
pipeData[2] = 0; parameter int GetNextinput = 3'h1;
pipeData[3] = locallngress.Status; parameter int Ho Idinput = 3'h2;
parameter int Done =3'h3;
scemi_pipe_c_send(pipe_handle, reg [2:0] state;

4, pip eData, (locallngress:

scemi_input_pipe #(4, 128) p0();

if(locallngress.Status == 0)

scemi_pipe_c_ flush(pipe_handl); reg [127:0] pipeData;
reg lastData;

integer numRead;

I dge Clock) begin
Basic Input\\\ HDL av:;y;ei@ét;;ossgige ock) beg
Pipe Pipelf

nd

}

I On the writing end (&ide), the pipe is written to by _
calling the scemi_pipe_c_send() function. Ise begin

 On the reading en(HDL side, the pipe is read from by case(state)
calling thereceive() task of the pipe interface instance GetNextinput: begin

9| When the last transaction is sent, the-efithessage pO.receive(
(eom) argument is set to 1. This is followed by 4, numRead, pipeData, lastData);

scemi_pipe_c_flush() d
en

1 On the HDLside, the pipe is instaated with statically
specified parameters for bytes per element and payloac .e;.ndcase
width (in bits) of 4 and 128 respectively. end
f Onthe Gside, the pipe is constructed with a bytes per end
element of 4 that must match the HDL side. endmodule
Figure 4.11 Example of Input Pipe

4.8.6 Output pipe
Figure 4.12hows an example of the use ofartput pipeon both the C and HDL sides:

SCEMI 2.4

35

C Side HDL Side

void serviceEgressThread(){ module PipelineEgressTransactor(
void *pipe_handle= scemi_pipe_c_handle TokenOut, Clock, Reset);
top.egress.p0"); input [127:0] TokenOut;

input Clock, Reset;

svBitVecVal pipeData[4];

svBit lastData; wire [31:0] countOut, statusOut;
int numRead; wire [63:0] dataOut;
for(;)}{ /I FSM Sates
scemi_pipe_c_receive(pipe_handle, parameter GetNextOutput = 3'h0;
4, &numRead, pipeData, &lastData); parameter Done =3'h;

assert(numRead == 4);) HDL | reg [2:0] state;
Rasic Outpuy” pipelf
Pipe

localEgress.Count = pipeData[0]; assign ¢ountOut = TokenOut[31:0];

assign t = TokenOut[95:32];
if(lastData) assign dtatusOut = TokenOut[127:96];
printf(
"PipelineEgressProxy: last data receivedn"); scemi_ou ipe #(4, 128) p0();
}
} always @(posedge Clock) begin

if(Reset)

state <= GetNextOutput;

else begin

Figure 4.12 Example of output pipe

4.8.7 Implementation defined buffer depth for pipes, user defined buffer depth for FIFOs

For a typical streaming use model, a user may instantiate a pipe witBY#&S_PER_ELEMEN®&nd/or
PAYLOAD_MAX_ELEMENBPecifed but theBUFFER_MAX_ELEMENTE€ft alone, for example,
scemi_input_pipe #(
.BYTES_PER_ELEMENT(32),
.PAYLOAD_MAX_ELEMENTS(16)) pO(...);

By not specifying depth, pipes used in streaming applications can benefit from pipe depthes dpstel for

a given implementation. This will allow streaming of transactions in an optimal manneeafdr
implementation This use model may typically choose to use a flush/eom mechanism with the pipe as well to
define proper synchronization points\ween producer and consumer.

For a typical FIFO oriented use model (such as TLM FIFOs), a user will explicitly want to specify the pipe to
be a specific depth which will facilitate consistent behavior in terms of how long threads continue to write to or
read from pipes before yielding.

Such a use model may typically choose not to use a flush mechanism.
4.8.8 Variable length messaging

In addition to providing a means of highly optimizing streaming performance, transaction pipes can be a
natural mechanism to implemievariable length messaging

SCEMI 2.4 36

Consider the case of the transmission of an Ethernet frame transaction. fw g&EE 802.3 Ethernet
standard a frame can be anywhere up to 1500 byethough there is some disagreement if this is data
payload size or tat frame size)However, in some applications, typical frames may be far smaller. This is a
classic example of where a variable length transaction would be useful as it saves the overhead of transmitting
a fixed width 1500 byte transaction every time retgss of actual length.

Using pipes one could implement this example as foll
transmitting frames from the C side to the HDL side:

1 The HDL side declares an input piwéh BYTES_PER_ELEMENStaticallyspecified as 1 (i.e. the
default value)n its transactor module scope and makes calls to it withmaelements = 1
1 Using thedata shapingapability, each time the C side calls the send function it sends an array of bytes
with num_elements set to whagver the desired number of bytes is which can vary from call to call
(hence variably sized messages)
On each send call, the C side setsito 1 since it is sending all the bytes at once
Because the receive side is only reading a byte at a time, it wkreaheom indication until the last
byte is received.

= =

Because pipes can, at the option of the implementer, be optimized for streaming, one can imagine that if there
are several such interfaces generating traffic simultaneously (say with goortilEhernet packet router) the

benefit from concurrency of execution (between the multiple threads on the workstation and the emulator)
within the transmission of each frame could be appreciable.

One can also envision another scenario where a sequence of segeential frames could be sent before an
actualflushis performed. This would support streaming of multiple sequential variable length frames before
synchronization is required.

One can also consider a pure streaming data thread to be one long \tarigiiemessage (or sequence of
them) that lasts the entire simulation, essentially requiring no synchronizations in the interim, such as feeding
the entire contents of a file as traffic for an interface with a flush only occurring at the very end.

4.8.8.1 Variabl e length messaging features of transaction pipes
Three areas have been identified that are desirable to support with transaction pipes:

9 Data shaping
1 Endof-message <eom> marking mechanism
1 Support for multiple pipe transactions iftithe

48.8.1.1 Data shaping
Data $aping is a concept that addresses the need for random access to variable length messages. Data shaping
simply allows a transaction pipe to have a different width at one end than the other.

For example suppose a frame of 100 elements of data is desivedsent over an input pipe 1 element at a
time but the consumer of the frame wants random access to the entire variable length message of 100 elements.
The consumer could read the entire 100 elements in one call. The producing end could write 1 eleralknt per

In this case transmission of the elements would be buffered but time would be stopped on the reading end until
all 100 elements are received since, the read is blocking. Once received, any or all elements could be accessed
as desired.

In this caselte send end of the pipe is narrower than the receive end. One can refer to such amigelas a

Conversely suppose the producer wished to send the frame of 100 elements of data all at once but the
consumer only wanted to read 1 element at a time. Tdduper could send all 100 elements in a single call.
The producer end of the pipe could receive only one element with each read call.

In this case, transmission of the elements would be buffered but time could advance on the reading end
between each elemeread since each is a separate call that can be separat@dpdisedge clock)
statements for example.

In this case the send end of the pipe is wider than the receive end. One can refer to such dpipelas a

SCEMI 2.4 37

4.8.8.1.2 End-of-messge <eom> marking mechanism
Using theeomt he user can mark the end of a message or #dal as

This flag can be queried at the receive end to know if it is the end of the message. The infrastructure does
nothing with this flag (unless autoflush is enabiedee sectiorb.8.4.3.3, it is simply passed as received.
However, if data shaping is involved, the infrastructure does not passrtiftag until the last element is read

by the consumer, regardless of the shape of the data.

So for example, in the ca®f a funnel, if the sender sends 100 elements all at once and sais ftag to 1
and the receiver only reads one element at a time, it will not seertteet to 1 until the last element.

Conversely, in the case of a nozzle, if the sender sendsrieet at a time and only sets ten flag to 1 on
the last one, and the receiver reads 100 elements at a time, the receiver wilkseefldge set to 1 on the first
read of the message.

Special considerations must be made if a producer endpoint afzéerdoes a data send operation with a
smallernum_elements than that requested by the subsequent data receive operation at the consumer endpoint
of that nozzle. If amromis specified on that send operation, in order to satisfy its request the consiireee w

a return ofnum_elements_valid that is smaller than its requestatin_elements . This is because, in order

to satisfy the producersom condition, the consumer's blocking receive call must have satisfactorily returned
from its read operation evehthat read operation was asking for a larger number of elements than had been
sent as of the time of tleam.

So, referring back to the nozzle example above where the consumer reads 100 elements, if the producer only
sends 75 elements before settiogn, the request to read 100 elements will return withetbre bit set but with
anum_elements_valid of only 75.

4.8.8.1.3 Support for multiple pipe transactions in G-time
Operation of pipes is identical whether successive access operations (sends or receives) mi@tiooaer
over user clock time, i.e. 1 access per clock. It is strictly a function of modeling subset as to wiietker 0
operations are supported or not. But the pipe interface dsel nothing to preclude transmission of multiple
transactions in@ime without requiring the need for user awareness of uncontrolled time. This is true whether
the transactions are variable or fixed length messages transmitted through a pipe or whether they are just
simple DPI.

4.8.9 Clocked ppes

Digital systems include manynterfaces to a DUT andckach interfacemay have different clocking
requirements. A C testbench modeled on the -8{Cparadigms may provide streaming data to one interface
of a DUT based on some reactive signal coming from another interface on the DUBattiee signal may
come in the form of a DPI import call and the streaming data may go in as datd pushen input SCEJI
pipe. This will lead to a modeling situation of the kind where the model surrounding theMb@Epe instance

will have to be prpared for timing behavior that is not alignedatclock known to that interface.

This behavior is not confined to the outputs of pifee call only. Any register assignments right after the call

to thepipe now have this ambiguous timing behavior depegdain when theipe call wakes up. Any reads of
values after theipe call have the ambiguous behavior that they might be reading some values too early at
some times but not at other times. The behavior and the probleEmsimilar topoorly written RTL coeé

where not all signals are assigned in a-btmtking manner. The problems range fromaxpected modeling
behavior to mismatches between simulation and synthesis behavior.

When using SCEJI pipes, special considerations need to be made to support RGktedisemantics.

Often times, the pipe's blocking interface may need to be used in the context of an RTL style of finite state
machine (FSM). In this case there can be a slight conflict between the statements which block on the RTL
clock vs. the statementghich block on the pipe. The pipe itself may unblock at some time other than the
relevant edge of the RTL clockn which caseghe RTL clocked semantic structure of the state machine is
invalidated.

One solution to this problem is to use only théinde ron-blocking API to the pipes as depicted in the
following example:

SCEMI 2.4 38

scemi_input_pipe #(...) input_pipe();
always @(posedge clock)begin

if(input_pipe.try_receive(0,1,data,eom) == 0) begin
while(input_pipe.try_receive(0,1,data,eom) ==0) @(p osedge clock);
end

<process received data>

end

However, this solution is not always practical when using the pipe with data shaping (see4s@@iari) or
other such complex use models that make calls with neildements at a time and involve managing the
byte_offset argument of the pipe.

As such, the SCIMI standard supports the notion of a clocked pipe in addition to the unclocked pipe
described previously. In the clocked pipe usage, the pipe itself hagianabport to which a clock can be
connected. The following example sholsythe example above can be rewritten using a clocked input pipe:

scemi_input_pipe #(..., .IS_CLOCKED_INTF=1) input_pipe(clock);
always @(posedge clock)begin

input_pip e.receive(0,1,data,eom);

<process received data>

end

This simpler blocking interfacevill achieve the same function as the original example that used the non
blocking call in a clocked looplhe receive will unblock synchronously to edges of thelchttached to the

pipe rather than at any arbitrary time and will thus be timing consistent with the surrounding RTL compliant
always block. The blocking interface is also easier to use with more complex data shaping operations because
all housekeeping asciated with data shaping management is kept internal to the call.

Se e s &.8.5.4.l1tomdetails about how to parameterize and use a clocked pipe.

4.9 Backward compatibility and coexistence ofunction- and
pipes-basedapplications with macro-basedapplications

The SCEMI 2 standardenablesnew use modslthat allows higher modeling abstraction and improved
modeling eas®f-use overthe original macrdased standard his improvement is embodied mainly in the
DPI specifcation and the capabilitiesf transaction pipes.

At the same time however, one requirement of the -8R standard is backward compatibility with and
coexistence withmacrebasedapplicationsdefined by the SCIMI 1 standard The main idea is that pui2PI
applications can run in either a simulator that natively supports the SystemVerilog DPI or in a simulator or
emulator platform that supports S@H 2 standard (which implies that it also supports S@EL).

The following sections provide more detail loow the twointerfacescan ceexist.
4.9.1 What does not change?

Aside from guaranteeing compatibility with legaeyacroebasedmodels, the SCBI 2 interfacespecifically
does not change the following:

1 The SCEMI Initialization/Shutdown API
1 SceMiClockPort Suppobfor Clock Definitions

SCEMI 2.4 39

4.9.2 Error handling, initialization, and shutdown API

SCEMI 2 function and pipébasedapplications can continue to use thecrobasedinitialization and
shutdown API functions without changes:

SceMi::RegisterErrorHandler()
SceMi::Regi sterInfoHandler()
SceMi::Version()

class SceMiParameters
SceMi::Init()

SceMi::Shutdown()

The following rules dictate the use of thesacrebasedcalls:

1 They areonly required for applications that usgacromodels.
1 They are optional for applications thate purelyfunction or pipemodels (see definitions dacro-
basedss. Functionbasednodels insection4.9.4.

Applications with onlyfunction or pipemodels that choose not to use the error handling, initialization, and
shutdown functions above will run on any simulator that supports DPI but does not necessarily support the
SCEMI macrebasednitialization and shutdown ARdtandardunctions

4.9.3 Requirements andlimitations for mixing macro-basedmodels withfunction- and
pipe-basedmodels

This section describes the formal requirement for preventing mixes@foconstructs witlfunction and pipe
constructs in the same transactor and C models.

Macro models can cexist in an application witfiunction and pipanodels but concepally the following
requirements must generabg followed:

1 Macromodels would be ported as a whole and would not be allowed to intemaition (DPI) and
pipe constructs withmacroconstructs

1 function and pipebasednodels would not be allowed to usecroconstructawithin the calling
hierarchy.In other words, mixing of uncontrolled time interactions with controlled time interactions
within the same model would not be allowed (see seéti6r2.d.

1 Legacymacrebasedmodels andunction and pipebasednodels would be allowed to exist in a
single simulated environment.

1 These models can share clocks (SceMiClockPorts), butnoatyebasedmodels are allowed to use
SceMiClockControls)

1 Onthe C side imported DPI functions canhetcalled frommacrocallbacks.
1 Onthe C sidenacromessage input port ::Send() functions cannot be called from DPI imported
functions.
1 In multi-threaded C environments, calls to ::ServiceLoop() would be restricted to one thread that could
be embeddedian i mpl ement ati onds infrastructure so as
1 Macro-basedcallbacks andunctionbasedmported functions alike would be serviced by this same
thread

1 For single threaded HVL, use of ::ServiceLoop() would not change.

The following sections present a more formal specification of how the above constraints for model and
construct mixing are enforced.

4.9.4 Definition of macro-basedvs.function- and pipe-basedmodels

For purposes of describing requirements of model mixing, the folloveéfigitlons are given.

The uses of the term model here are somewhat arbitrary but convenient. A model is some level of hierarchy
and all its descendants.

A Macro-basedHDL model is defined as a hierarchy with the following properties:

SCEMI 2.4 40

1 Atleast onemacrebasdmessage port or clock control macro (but not clock port macro) is
instantiated at the highest level of the hierarchy within the model.

1 More macrebasedmessage ports or clock controls may be instantiated at lowéistdrchies of the
model.

A Functian or pipebasedHDL model is defined as a hierarchy with the following properties:

1 Atleast oneDPI functioncall or pipebasedunction callis declared at the highest level of the
hierarchy within the model.

1 More DPIfunctioncallsor pipebasedunctioncalls may be declared at lower shigrarchies of the
model.

4.9.5 Requirements fora function- or pipe-based model

1 Onthe HDL side, amacrobasedmodels as defined above can contain famgtion or pipebased
call declarations or calls anywhere in their hiehy.

1 Onthe HDL side, afunction or pipebasedmodels as defined above can contain magrebased
message port or clock control macros anywhere in their hierarchy.

1 Onthe C side, nmacrebasedcallback functions can make direct calls to exported fDRdtion of
pipe-based functiomalls.

1 Onthe C side, no importddPI function callor pipebased caltan make calls to th@acrebased
service loop or to senuiessagesn any of themacrebasednput ports.

The above requirements force macaosl theimproxiesto only exist in disjoint hierarchies from DBhd pipe
basedunctions.

4.9.6 Subset of DPI for SCEMI 2

SCEMI uses a subset of DPI that is restricted in such a way as to provide a nice balance between usability,
ease of adoption and implementatioheTsubset includes:

1 Data types used with DPI functioaselimited asdetailedin section5.6.1.3
9 Certain restrictions on calling imported functions from exports and vice versa.fs2efor more
details)

4.9.7 Use of SCEMI DPI subset with Verilog and VHDL

The SCEMI standard does not support using the S@E2 DPI subset for Verilog 2001 and VHDL 1993.
Verilog and VHDL users who prefer not using SystemVerilog can use theMBGR&acro-based interface
defined in section 4. SCHI 2 also supports mixed usage of Verilog and VHDL S@E macrobased
transactors with SGI function and pipdased transactors following the use mogigidelines descried in
the Mixed Usage sectich9.

4.9.8 Support for multiple messages in @ime

DPI places no restrictions on the number of imported function calls made in the same block of code without
intervening time advancement.

One important point to make about the SRIE2 functionbased approach is that it does not preclude the
ability to support transmission of multiple messages-im@ either by calling the same function or by calling
multiple functions in the same timestep.

This interfacing feature is fundamentally niigs from SCEMI macrobased interface where macros
supporting controlled time interfacing are fed with user clocks. The only way of accomplishing this is to use
some sort of oveclocking scheme in which the message clock (still a controlled clock) maguehcy that is

some multiple of the main clock being used in the transactor.

For example, if | am using a message macro that is clocked by transactor_clock and | wish to send 3 messages
between posedges of transactor_clock, | must define essentiallgsageeclock that is at least 3 times the
frequency of transactor_clock. Short of this eulercking there is no other way to fundamentally accomplish
transmission of multiple messages between clocks.

SCEMI 2.4 41

With the SCEMI 2 functionbased approach, multiple nsaging is possible. Take the following code
example:

always @(posedge transactor_clock) begin
if(reset == 1) begin
/I Do the reset thing ...
else switch (fsm_state) begin
case OFSM_STATE_1: begin

c_functionl(datal, data2);

c_functionl(data2, data3);

c_function2(data3, data4);
end

end
end

In this case, there are two consecutive callg tonction_1() . The first takesdatal as the iput and
returnsdata? as the output. The second takie&a2 as the input and returmwta3 as the output. The third
call is actually a call to a different function (which could be to different-MLE message ports underneath).

4.10 Scope ofcalling DPI exported functions

Assume @PI contextimported function is calledndtriggers (or notifies)a thread in the calling application
that calls an exported function via the S®E 2 C side.Such a callfrom a different threads considered
outsidea DPI contex importedfunction call chainas defined by th8ystemVerilog LRM (see Reference [3])
and thus its result is undefineHlowever SCBEMI 2 allows callsfrom other threads tdbe madesubject to
meeting certain requirements for each of the following defirssdmodels.

The SystemVerilog LRM (see Reference [3fates that the behavior of DPI utility functions that manipulate

context is undefined when they are invoked by any function or task that is not part of a DPI context call chain
(seeH.9). SCEMI function-based use model allows calliiPl exported functions and DPI utility functions

from an application |inked with the C side which 1is
DPlcontexti mported function call chaino.

SCEMI supports two useases differentiated by whether the application calling DPI exported functions is
linked or is not linked with the SystemVerilog simulation keriiglch use case will describe the assumption
and the constraints.

This section only applies to DPI exportedidtions and does not apply to DPI exported tasks.
4.10.1 The calling applicationis linked with the simulation kernel:

This use case applies to standard languamesheC-side that are linked with a simulation kernel running on
theHDL-si de. The thér m mplliirelsed hwmitt t he | anguage is either
is handled by the simulation kernel as a direct extension to the simulator ruheint¢DL-side. Examples for

such | anguages are SystemC, S ghtytineegnatesbr runnioggatiely oh S p e ¢ ma
the SystemVerilog simulator

DPI exported functions can be invoked by C code called from an application linked with a simulation kernel,
and outside a DPtontextimported function call chain as long as the callimplecation is triggered (or
notified) from a DPIcontextimported function call chaimitiated by a DPI context imported functiam 0-

time taskcall defined per the SystemVerilog LRMnd executed in zero simulation time or delta simulation
time from whea the imported DPtontextfunction was invoked.

The key constrails when calling exportetunctions from anapplication linked with the simulation kerresle
a) The context of the DPI exported function must be known before its being called.

b) Only DPI exportal functions (that do not consume time) can be called. Calling DPI exported tasks will
result in undefined behavior.

SCEMI 2.4 42

c) There is no contrain which orderevents get processed on both the calling application and the HDL side
during the zero or delta simulatitime period

d) The imported DPIlcontextfunction callinitiating the DPI call chaircannot return arguments that are
dependent on the exported function calls.

e) DPI imported task calls cannot be time consuming and must return in zero simulation time or delta
simulation time from when the imported DPI task was invoked réeprdf whether that task call<é|
exported function or not.

Note that any calls to DPI exported functions during any other time not covered by the above may result in
undefined behaviorThese include calling DPI exported functions during HDL side compilation, by C code
called by PLI, VPI, VHPI callbacks or from a SystemVerilog system task. It also includes any calls from C
code executing concurrently with the SystemVerilog code ruomirggn emulator.

4.10.2 Calling application is not linked with the simulation kernel:

This use case applies to applications that are not linked with a simulation kernel running on theddDLhe

term O6not I|linked with©o i mpheiCessftwdrehsale, but thae HD& pigelisinatat i o n
aware of the linked application. Examples for such languages are C/C++ programs using Pthreads or even
theAccel | er a Sy SystemCsrefdrence implententatiom Sirmulator linked with-BICE SW side.

DPI exported functions can be invoked by C code called from an application that is not linked with a
simulation kernel if the calling application is triggered (or notified) from a DPI context imported fuoctidn
time taskcall chain before the importddnction returns.

The key constrais when calling exporte®PI functiors from anapplicationnot linked with the simulation
kernelare

1 The context of the DR#xported function must be known before its being called.

1 Only exported functions (that do notrsume time) can be called. Calling DPI exported tasks will
result in undefined behavior.

1 DPI imported task calls cannot be time consuming and must return in zero simulation time or delta
simulation time from when the imported DPI task was invoked regardfeshether that task calls a
DPI exported function or not.

In this case, the simulation is not aware of the calling application running on the SW side and therefore the
simulation kernel doesndét suspend altothe smulatorukernebn t o |
to run and furthermore to call the DPI exported function. In other words, if the DPI imported function
returned, the simulator will proceed and none of the external threads of the calling application will ever wake

up.

However asuming that the C code is running under the control of a foreign threading package, then the
imported C function can suspend itself allowing other threads of the application to run and call DPI exported
functions, and then resume before returning. In daise, the call to a DPI exported function is considered as

being made from a Context DPI imported function call chain given that SystemVerilog simulation kernel is not
aware of any context switching t hatteriftheextarkalcallimg pl ace.
application is a simulator that consumes time, and calls the simulator after waiting on time. Until the imported

C function called from by the HDL side returns, the simulator kernel on the HDL side is not aware that the
importedfunction was suspended and that an exported function is being called from another thread. Therefore,

the imported DPI function call can return arguments that are dependent on the exported function calls and
event ordering is defined, meaning that the etgubfunction returns before the DPI imported function returns.

4.10.3 DPI function calls are deterministic

In either of the configurations mentioned in secti@gn$0.1 and 4.10.2it is the case that fundeentally
determinism must be guaranteed by the implementation ofBICE on a hardware engine, just as it is
implicitly guaranteed in software simulator implementations of DPI.

SCEMI 2.4 43

This means that, for a given design, assuming there are no race conditimaisdesign, that not only must it

be guaranteed that simulation results are identical from run to run or even from compile to compile where no
design changes occur, but that those results are identical to results of running the same design on a software
simulator, in terms of the timing of when S@# compliant DPI calls are made.

In other words, all SCII compliant imported and exported DPI calls must occur in the same time slots
during the simulation of a given design whether that design is simulatd&h compliant software simulator
or a hardware simulator.

4.11 Backdoor memory and register APIs

The standard provides two APIs for backdoor memory and register access. These are separate and distinct from
the macrebased interface components, the functiased interface, and the pipased interface.

The backdoor memory API is called thdirect memory interfacg DMI). All of the API calls have
scemi_mem__ prefix and are detailed in sectiétb Direct Memory Interface. This API prvides anortintrusive

C-side interface to directly access an HBiHe memory at a single instance in simulation time. The calls allow
writing or reading an arbitrarily sized block of data to or from an arbitrary memory address respectively. The
data buffe is given as a @ide memory byte array pointer that can be passed to the API calls.

The register access API provides &ABI to access HDiside registers which can include single or mbiti
registers. Like the backdoor memory API, the register accBsprovides a nointrusive way of accessing
HDL-side registers at any single instance in simulation time. It supports set/get/force/release semantics for
register updates. Specifically the register access API leverages the existing, standardizedh\Ridiiséeris
currently part of the Accellera Universal Verification Metblmd)y (UVM) standard cited in referen¢B7] of
AppendixH. The SCEMI standard leverages this existing and well defined standard API for register access.
See sectioh.10 Register écess Interfacéor more details.

SCEMI 2.4 44

5. Formal Specification

This chapter defines the API calls and macros that make up the entir®ISCE

5.1 General
This section contains items that relate to all aspects of the specification.

5.1.1 Reservednamespaces

Prefixes beginmg with the three letter sequence s, c, e, or the four letter sequence s, c, e, _ (underscore), in
any case combination, are reserved for use by this standards group.

Prefixes beginning with the fivietter sequence s, ¢, e, m, i, or thelsiter sequeres, c, e, _ (underscore), m,
i, in any case combination, are reserved for use by-BC&nd SCEMI related specifications.

5.1.2 Headerfiles

The ANSFC and C++ APl 6s shalll be declared in a header fi
scemi.h
Note the name is all lowercase, ahdhe s ame f or both API 6s. Exampl eDandE. t he hes

Where any discrepancy exists between this specification and the included header file, the specification should bettie one tha
used.

5.1.3 Constargument types

All input arguments whose types are pointers with ‘const' qualifier should be strictly honored -aslyead
arguments. Attempts to cast away 'constness' and alter any of the data denoted or pointed to by any of these
arguments is prohibited and may lead to unpredietedsults.

5.1.4 Argument lifetimes

The lifetime of any input pointer argument passed from the-BICifrastructure into a SCBI callback

function (such as input ready callback or receive callback) shall be assumed by the application to be limited to
the duation of the callback. Once the callback returns, the application cannot assume that such pointer
arguments remain valid. So, for example it would lead to undefined behavior for an application receive
callback to cache thBceMiMessageData * pointer and rfer to it at some point in time after the callback
returns.

Conversely, the lifetime of any input pointer argument passed from an application into-lslIS&H call
shall be assumed by the SGH infrastructure to be limited to the duration of the APIl.c@nce the API call
returns, the infrastructure cannot assume that such pointer arguments remain valid.

5.1.5 SCE-MI compliance

SCEMI defines three interfaces, namely: mabe@sed, functiofbased and pipesased interfacesSCEMI
implementation providers mugualify their level of compliance if their implementation does not suppadirt
three SCEMI interfaces.

A SCEMI implementatiorthat is only compliant with SCEII {Macro-based and/or Functielmased and/or
Pipesbased}interface must be stated as "comptiavith SCEMI {Macro-based and/or Functieimased and/or
Pipesbased}interface(s)only".

5.2 Macro-basedhardware side interface macros

This section contains the macros that need to be implemented on the hardware side of the interface.

SCEMI 2.4 45

5.2.1 Dual-ready protocol

The message port macros on the hardware side use a geneliabRiDbalready protocol, which is explained
in this section. Briefly, the duakady handshake works as follows.

The transmitter assertsansmitReady on any clock cycle when it has data atehsserts when it does not.
The receiver asserReceiveReady on any cycle when it is ready for data andadeerts when it is not.

In any clock cycle in whicliransmitReady andReceiveReady ar e bot h asserted, data #
is taken by theaceiver.

Note:

1) After a ready request (TransmitReady or ReceiveReady) has been asserted, it cannot be removed until a
data transfer has taken place.
2) After TransmitReady has been asserted, the data must be held constant otherwise the result is undefined.

The waveforms irFigure 5.1 depict several duakady handshake scenarios.

ureseﬁ

wock M MUy yyyuuyyyuuryy

Trans mitRe ady |

ReceiveReady

Messagey A dT aZ1 a3 g% 7 | | -1 do l/l
receiver ready fodl 1st L
clock after res receiver ready fod7
L__d6 arrives and moves
d1 arrives and moves. L_receiver ready fod6
receiver ready and5 moves
receiver ready fod2— —| L___________d5 arrives

d2 arrvesandmoves—_______|
receiver ready and3 arrives and moves

d4 arrives receiverreadyandd4 moves

Figure 5.1 Dual-ready handshake protocol

The dualready protocol has the following two advantages.
a) Signals are levebased; therefore, they are easily samplefddsedge clocked logic.
b) If both TransmitReady and ReceiveReady stay asserted, sequences of data can still move every clock cycle;
therefore, the same performance can be realized as, for example, ebtsggleprotocol.

5.2.2 SceMiMessagelnPort macro

The SceMiMessagelnPort macro presents messages arriving from the software side of a channel to the
transactor. The macro consists of two handshake signals which play-@adsalprotocol and a data bus that
presents the message itsélfigure 5.2shows the symbol for thBceMiMessagelnPort macro, as well as
SystenVerilog and VHDL source code for the empty macro wrappers.

SCEMI 2.4 46

Verilog Macro Wrapper:

#jg%ra/iv“;[gts%rp?— ;L’tr)‘rtzhn‘le 3 module SceMiMessageInPort (
> //inputs outputs
TrangmltReady T s ReceiveReady, TransmitReady,
ReceiveReady —<«——— Nassine) ;
Message [] —_— e S R S e

parameter PortWidth = 1;
input ReceiveReady; output TransmitReady;
output [PortWidth-1:0] Message;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageInPortis
generic(PortWidth: natural);
port (
ReceiveReady: in std logic; TransmitReady: out std logic;
Message: out std logic_vector(PortWidth-1 downto 0));

end;

architecture EmptyMacro of SceMiMessageInPort is begin end;
Figure 5.2 SceMiMessagelnPort macro

5.2.2.1 Parameters and signals
PortWidth
The message width in bits is derived from the setting efghrameter.
PortName
The portés name is derived from its instance | abel
TransmitReady

A value of one (1) on this signal sampled on anyedge of theuclock indicates the channel has message
data ready for the transactor to takeRéiceiveReady is not aserted, th@ransmitReady remains asserted
until and during the first clock in whicReceiveReady finally becomes asserted. During this clock, data
moves and if no more messages have arrived from the software side, the TransmitReadgastee.

ReceiveReady

A value of one (1) on this signal indicates the transactor is ready to accept data from the software. By asserting
this signal, the hardware indicates to the software that it has a location into which it can put any data that might
arrive on the mesage input port. When a new message arrives, as indicated OyathsenitReady and
ReceiveReady both being true, that location is consumed Siegire 5.). When this happens, a notification

is sent to the software side thahew empty location is available and this triggers an inpatly callback to

occur on the software sidéh.R.2.2explains in detail when inpweady propagation notifications are done with
respect to the timing of thHeransmit Ready andReceiveReady handshakes.)

Transactors do not need to utili®eceiveReady and the inputeady callback. If this is the case, the
ReceiveReady i nput needs to be permanently asserted (i.e.
ready c#iback is registered. In this caseansmitReady merely acts as a strobe for each arriving message.

The transactor needs to be designed to take any arriving data immediately, as it is not guaranteed to be held for
subsequeniclock cycles.

Message
This vector signal constitutes the payload data of the message.
5.2.2.2 Input -ready propagation

The SCEMI provides a functionality called inpuieady propagation. This allows a transactor to communicate
(to the software) it is ready to accept new input on a partictianrel. When the transactor asserts the

SCEMI 2.4 47

ReceiveReady input, the IsReady callback on that port is called during the next call to the
::ServiceLoop()

If the software client code registers an inpesdy callback when it first binds to a message input postyp
(see5.4.3.9, the hardware side of the infrastructure shall notify the software side each time it is ready for more
input. Each time it is so notified, the port proxy on the software side makes a call to the useedemipter

ready callback. This mechanism is called inmady propagation.

Input-ready propagation shall happen:

1) On the first rising edge ofuclock after reset at whichReceiveReady is asserted, and
2) On the first rising edge afclock after a messagtransferred at whicReceiveReady is asserted,

when anisReady() callback is registered. Case 1 covers the impatly propagation for d1 iRigure 5.3
Case 2 covers the others (d2, d3, and d4).

The prototype for the inpiready callback is:
void (*IsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message input port
proxy for transmission to the message input port on the hardware side. The context argarberd painter
to any usedefined object, presumably the software model that bound the proxy.

The application needs to follow the protocol that if the transactor is not ready to receive input, the software
model shall not do a send. The software modelsoot to send if it has not received an inprady callback.
The SCEMI infrastructure does not enforce this.

Note: An application can service as many output callbacks as is desired while pending an input callback. In other words, the
software model cahave an outer loop which checks the status of an appliedéifinedOKToSend flag on each iteration and
skips the send if the flag is false.

So, suppose an application has an outer loop that repeatedlyQatisceLoop() and checks for arriving outpmessages

and inputready notifications. Each callback function sets a flag in the context that the outer loop uses to know if an output
message has arrived and needs processing, or an input port needs more input. It is possible that, befereagh cafioack

gets called, the outer loop calle&erviceLoop() 50 times and each call results in an output message callback and the
subsequent processing of that output message. Finally, on the 51'sSeméeloop() is called, the inputeady callback

is called, which sets th@KToSendflag in its context, and then the outer loop detects the new flag status and initiates a send on
that input channel.

The handshake waveformshigure 5.3are intended purely to illustrateetlsemantics of the dusdady protocol. There can be a
couple of reasons why these waveforms might not be realistic in an actual implementatgmebfillessagelnPort macro.

The waveforms shown iRigure 5.3show what typicdy occurs when inputeady callbacks are enabled. It shows four possible
scenarios where an inprgady notification occurs.

SCEMI 2.4 48

ureset I

wock LI fUryurryyyyuUuuyuuyuyuyuuwuwyy
Trans mitRe ady [[| [
ReceiveReady | |
Message, 7 oK 7 o4 ~Ads 7|

[[[[
1st Ainpdl -yreadyo for
propagates after res
iinput -reladyo for
d1 arrives and moveS—m——1 d3 propagates—

Ai nput - rde @mopagatesf—or I
d2 arrives and moves.

d3 arrives and moves——1|
Ai nput - rdé@mogagatesfor I

Figure 5.3 SceMiMessagelnPort handshake waveforms with input-ready propagation

In the depicted scenarios, an impe&dy notification is proagated to the software if:
theReceiveReady from a transactor is asserted in the first clock following a reset or
theReceiveReady from a transactor transitions fromaOtoa 1 or

the ReceiveReady from a transactor remains asserted in a clock folloveng where a transfer occurred due to

assertions on boffransmitReady andReceiveReady .

5.2.3 SceMiMessageOutPort macro

The SceMiMessageOutPort ~ macro sends messages to the software side from a transactor. Like the
SceMiMessagelnPort macro, it also uses a duaady handshake, except in this case, the transmitter is the

transactor and the receiver is the SKIE interface. A transactor can have any number
SceMiMessageOutPort macro instanceskigure 5.4shows the symbol for th&ceMi MessageOutPort

macro, as well aSysten¥Yerilog and VHDL source code for the empty macro wrappers.

SCEMI 2.4

49

Verilog Macro Wrapper:

#(<Portwidth><PortPriority>) <PortName> module SceMiMessageOutPort(

: Ilinputs outputs
TransmitReadj—— TransmitReady, ReceiveReady,
ReceiveReagy——+ Message);

Message [4—— "

parameter PortWidth = 1 ;
parameter PortPriority; // Parameter no longer used
i nput TransmitReady; output ReceiveReady;
input [PortWidth-1:0] Message ;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageOutPort is
generic(PortWidth: natural; PortPriority: natural := 10);
port(
TransmitReady: in std_logic; ReceiveReady: out std_logic;
Message: in std_logic_vector(PortWidth-1 downto 0));
end;

architecture EmptyMacro of SceMiMessageOutPort is begin end;

Figure 5.4 SceMiMessageOutPort macro

5.2.3.1 Parameters
PortWidth

The message width in bits is derived from the setting of this parameter.

PortPriority

The parameter is no Iger in use.

PortName

The portés name is derived from its instance | abel
5.2.3.2 Signals

TransmitReady

A value of one (1) on this signal indicates the transactor has message data ready for the output channel to take.
If ReceiveReady is not asserted, tHeransmitRe ady shall remain asserted until and during the first clock in

which ReceiveReady finally becomes asserted. During this clock, data moves and if the transactor has no
more messages for transmission, #adserts the TransmitReady.

ReceiveReady

A value of me (1) on this signal sampled on amyock posedge indicates the output channel is ready to
accept data from the transactor. By asserting this signal, theMB®@Brdware side indicates to the transactor

the output channel has a location where it carapytdata that is destined for the software side of the channel.

In any cycle during which both th&ransmitReady and ReceiveReady are asserted, the transactor can
assume the data moved. If, in the subsequent cyclRetmveReady remains asserted, thiseans a new

empty location is available which the transactor can load any time by assedimgnitReady again.
Meanwhile, the last message data, upon arrival to the software side, triggers a receive callback on its message
output port proxy (se.4.7.3).

Message

This vector signal constitutes the payload data of the message originating from the transactor, to be sent to the
software side of the channel.

SCEMI 2.4 50

5.2.3.3 Messageordering

The idea of ordering message delivery to software afieas the fact that there is a global time order defined
in the hardware domain by the ordercofock edges. The delivery of messages from hardware to software
respects this ordering. In particular, the delivery of messages from hardware to softwaerad asihg the
following rules:

a) Messages from a single message out port are delivered to software in the same time order in which
they are delivered to the port.

b) Messages from different ports which complete the -deatly protocol on differeniclocks are
delivered to software in the time order in which the receive ready signals are asserted. In the case
that two message ports accomplish the -deatly protocol and have data move in the same
cclock cycle, the order of delivery of the messages to the sodtisaundefined.

5.2.4 SceMiClockPort macro

The SceMiClockPort macro supplies a controlled clock to the DUT. T®eeMiClockPort macro is
parameterized so each instance staMiClockPort fully specifies a controlled clock of a given frequency,
phase shift, anduty cycle. TheSceMiClockPort ~ macro also supplies a controlled reset whose duration is the
specified number of cycles of tleelock .

Figure 5.5shows the symbol for th8ceMiClockPort macro, as well aSystenVerilog and VHDL ®urce
code for the empty macro wrappers.

Verilog Macro Wrapper:

#(<ClockNum>,

<RatioNumerator>, module SceMiClockPort(
<RatioDenominator>, /linputs outputs
<DutyHi>, <DutyLo>, <Phase> Cclock, Creset);
<ResetCycles>) <ClockName JI s e
SceMiCiockPort parameter CIockNumzl; . ‘
= CclocK parameter RatioNumerator= 1, RatioDenominator= 1;
Cresel parameter DutyHi= 0, DutyLo= 100, Phase=0;
parameter Reset Cycles=8;
endmodule

VHDL Macro Wrapper:

entity SceMiClockPort is
generic(ClockNum: natural := 1;

RatioNumerator: natural := 1; RatioDenominator: natural := 1;
DutyHi: natural := 0; DutyLo: natural := 100;
Phase: natural := 0; ResetCycles: natural :=8);

port(Cclock: out std_logic; Creset: out std_logic);

end;

architecture EmptyMacro of SceMiClockPort is begin end;
Figure 5.5 SceMiClockPort macro
All of the clock parameters have default values. In simpler systems where only one controlled clock is needed,

exactly one instance of $ceMiClockPort can be instaimated at the top level with no parameters specified.
This results in a single controll ed %24d¢cand awphaseh a r at

shift of 0. l deal | y, t hiheuclockl dudnk éysles inwhich i enabled. mat c he s
The SCEMI infrastructure always implicitly creates a controlled clock with a 1/1 ratio, which is the highest
frequency controlled clock in the systmdsonwhétheether or

SceMiClockPort wi th a 1/ 1 ratio and a dondédt care duty cycl e

In more complex systems that require multiple clockSceMiClockPort instance needs to be created for
each required clock. The clock ratiothe instantiation parameters always specifies the frequency of the clock
as a ratio relative to the fastest controlled clock in the system (whose ratio is always 1/1).

SCEMI 2.4 51

For example, if aclock i s defined with a rati oevery4eddgesdofthenlils i s i
cclock thereisonly 1 edge ofthéglock 6. Thi s d e-byfnoeusr 6a cfldoicvki.d e

It is sometimes necessary to establish a timebase which is associated with the fastest clock (the 1/1 clock) in
the system. An implementation shdyrovide a mechanism by which this can be done.

5.2.4.1 Parameters and signals
ClockNum=1

This parameter assigns a unique number to a clock which is used to differentiate it from other
SceMiClockPort instances. It shall be an error (by the infrastructure linkérmore than one
SceMiClockPort instances share the sa@eckNum . The defaulClockNum is 1.

RatioNumerator=1, RatioDenominator=1

These parameters constitute the numerator and denomi
always desigras the number of cycles of the fastest controlled clock that occur during the number of cycles

of fithiso clock speci f i e RatioNumerdiohr® ahdRatoDanomi@atore2r . For ex
specifies a 5/2 clock, which means for every five cyclesheflt/1 clock that occur, only two cycles of this

clock occur. The default clock ratio is 1/1. For more information refer to seeRo

DutyHi=0, DutyL0o=100, Phase=0

The duty cycle is expressed with arbitrary integers wiaieh normalized to their sum, such that the sum of
DutyHi and DutyLo represent the number of units for a whole cycle of the clock. For example, when
DutyHi=75 andDutyLo=25 , the high time of the clock is 75 out of 100 units or 75% of the period. Similarly,
the low time would be 25% of the period. The phase shift is expressed in the same Bhdse#30, the

clock is shifted by 30% of its period before the first low to high transition occurs.

The default duty cycle shown in the macro wrappers wiigure 56 s a dondét care duty cy
5.2.4.3.

ResetCycles=8

This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset
transitions from itsnitial value of 1 back to 0.

ClockName

The clock portds name is derived from its instance |
Cclock

This is the controlled clock signal the SGH infrastructure supplies to the

are derived from the parameters spedifon instantiation of this macro.

Creset

This is the controlled reset signal the SMEinfrastructure supplies to the DUT.
5.2.4.2 Deriving clock ratios from frequencies

Another way to specify clock ratios is enter them directly as frequencies, all normalitteddiock with the
highest frequency. To specify ratios this way requires the following.

Make each ratio numerator equal to the highest frequency.
Use consistent units for all ratios.
Omit those units and simply state them as integers.

For example, suppesa system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To specify the
ratios, the frequencies can be directly entered as integers, using kHz as the unit (but omitting it!):

SCEMI 2.4 52

100000 / 100000 - the fastest clock
100000 / 25000
100000 / 10000

100000 / 7500
100000 / 32

Users who like to think in frequencies rather than ratios can use this simple technique.
Note: An implementor of the SGII macrebased interfacenay wish to provide a tool to assist in deriving clock ratios from
frequencies. Such ®ol could allow a user to enter clock specifications in terms of frequencies and then generate a set of
equivalent ratios. In addition, this tool could be used to post process waveforms (such as .vcd files) generated bstithre simul
so the defined cldes appear in the waveform display to be the exact same frequencies given by the user.

5243Donb6ét care duty cycle

The default duty cycle shown within the macro wrapperBigure 56i s a donoét care duty ¢
specify theyonly care abouposedges of thecclock and do not care where thegedge falls. This is known

asaposedge acti ve don6t car e dubuwHi dsygivénes a Ol ThBugle cclinbea c a s e,
given as an arbitrary number of units, such that thes@b#set can still be expressed as a percentage of the

whole period (i.e.DutyHi+DutyLo).

For example, this combination:
DutyHi=0, DutyLo=100, Phase=30
means the following:
a) I dondt care about the duty megedye e thechgkdallsi f i cal |y

b) If the total period is expressed as 100 units (0+100), the phase should be shifted by 30 of those
units. This represents a phase shift of 30%.

Another example:
DutyHi=3, DutyLo=1, Phase=2

means:
a) | care about both intervals of the dutyctsy The duty cycle is 75%/25%.
b) The phase shift is 50% of period (expressed as 3+1 units).

It is also possible to havenagedge act i ve dondt car e duyoy pacameteriggivenl n t hi s
as a 0 and thButyHi is given as a positive number Q).

For example:
DutyHi=1, DutyLo=0, Phase=0
means:
ayl donét care about the duty cycle. Specifically, I
b) The phase shift is 0.
In any clock specification, it shall be an erroPifase >= DutyHi + Duty Lo.
Note: The intent of the don't care duty cycle is to relax the requirement that each edge of a controlled clock must coincide with a
rising edge ofuclock . A controlled clock with gosedge active don't care duty cycle, i.e., wibutyHi given as 0, is1ot
required to have its falling edge coincide with a rising edgectifck . Similarly, a controlled clock with aegedge active
don't care duty cycle, i.e., witbutyLo given as 0, is not required to have its rising edge coincide with a rising eddge adk .
Hence, the don't care duty cycle enables controlled clocks to be the same frequenaiclocthe. Conversely, the maximum

possible frequency of a nafon't care duty cycle controlled clock is 1/2 the frequency ofutheck . Since the implicit 1/1
controlled clock is specified to haymsedge active don't care duty cycle, it may be as fastasck .

SCEMI 2.4 53

5.2.4.4 Controlled reset semantics
TheCreset output of theSceMiClockPort macro shall obey the following semantics:

Creset will start low (deasserted) and traition to high one or moraclock cycles later. It then remains
high (asserted) for at least the minimum duration specified byR#setCycles parameter adorning the
SceMiClockPort macro. This duration is expressed as a number of edges of ass@iatgd. Following

the reset duration, thereset then goes low (dasserted) and remains low for the remaining duration of the
simulation. Some applications require@ged resets at the beginning of a simulation.

For multiple cclocks , the reset duration shallabe a minimum length so it is guaranteed to span the
ResetCycles parameter of any clock. In other words, the minimum controlled reset duration for all clocks
shall be:

max(ResetCycles for cclockl, ResetCycles for cclock2, ...)

Some implementations caneua reset duration that is larger than the qtiastiown above to achieve proper
alignment of multipleclocks on the edges of the controlled reset, as describB®id.5

During the assertion ofCreset , Cclock edges shall & forced, regardless of the state of the
ReadyForCclock inputs to theSceMiClockControl macros. Once the reset duration completes, the
Cclock will be controlled by th&keadyForCclock inputs.

Note: The operation of controlled reset just described providhes default controlled reset behavior generated by the
SceMiClockPort macro. If more sophisticated reset handling is required, use a specially written reset transactor in lieu of the
simpler controlled resets that come from BeeMiClockPort instances. Foexample, if a software controlled reset is
required, an application needs to create a reset transactor which responds to a special software originated reset command tha
arrives on its message input port.

5.2.4.5 Multiple cclock alignment

In general, allcclocks need to align on the first risingclock edge following the trailing edge of the
creset . Thisuclock edge is referred to as the point of alignment. detiicks ~ with phases of 0, this means
rising edges of these clocks shall coincide with the point of mkgm. Forcclocks with phases > 0, those
edges occuatsome time after the point of alignment. Evetiock edge must occur onwelock edge.

Figure 5.6shows an assortment aflocks with theuclock andcreset . It also showdow thosecclocks
behave at the point of alignment.

In Figure 5.6 cclockl , cclock2 , andcclock3 have phases of 0 and, therefore, have rising edges at the point
of alignment.cclock4 has the same duty cycle adock2 , but a plase shift of 50%. Therefore, its rising
edge occurs twaclocks (1/2 cycle) after the point of alignment. Its starting value at the point of alignment is
still 0.

cclock5 has the same duty cycle edock3 , but a phase of 50%. Again, its rising edge ogdi@ cycle

after the point of alignment. But notice its starting value at the point of alignment is 0. This can be alternatively
thought of as an inverted phase. Anytime the phase is greater than the high duty cycle interval, the starting
value at the pait of alignment is a 0. In the case where the phase equals the high duty cycle, a falling edge
occurs at the point of alignment.

SCEMI 2.4 54

creset

velock [[ML LML LU L LU L L
ratio: 4/1 duty cycle: 50/50 phase: 0
cclockI™] [] [| | | |
ratio: 4/1 duty cycle: 25/75 phase: 0
cclock2 1 1 | 1 |
ratio: 4/1 duty cycle: 75/25 phase: 0
cclock3 1 [1 [1 [1 [
ratio: 4/1 duty cycle: 25/75 phase: 50
cclock4_|_| 1 1
ratio: 4/1 duty cycle: 75/25 phase: 50
cclock5_| l | l | l | L

point of alignment

Figure 5.6

5.2.5 SceMiClockControl macro

For everySceMiClockPort ~ macro instance there must be at least one countespektiClockControl
macro instance presumably encapsulated in a transactoiScEweClockControl
which a transactor

Multi-clock alignment

transactor on whichclock cycles ttat controlled clock have edges.

Figure 5.7shows the symbol for thgceMiClockControl

code for the empty macro wrappers.

SCEMI 2.4

macro as well aSystenVerilog and VHDL source

macro is the means by
cont r oMl iafrasudtir® san indicatectk a a n d

55

by

Verilog Macro Wrapper:

#<ClockNum> c1 .
SCENTCIOTRCONTo! quule SceMiClockControl(
- llinputs outputs
Uclock Uclock, Ureset;
Urese ReadyForCclock, CclockEnabled,
ReadyForCcloc //ReadyForCcIockNegEdge, CclockNegEdgeEnabled);
CclockEnabled

parameter ClockNum = 1,
ReadyForCclockNegEdgp— output Uclock, Ureset;

CelockNegEdgeEnable input ReadyForCclock; output CclockEnabled;
input ReadyForCclockNegEdge, output CclockNegEdgeEnabled;
endmodule

VHDL Macro Wrapper:

entity SceMiClockControl is
generic(ClockNum: natural :=1);
port(

Uclock, Ureset: out std_logic;
ReadyForCclock: in std_logic;

CclockEnabled: out std_logic;
ReadyForCclockNegEdge: in std_logic;

CclockNegEdgeEnabled: out std_logic;
);

end;

architecture EmptyMacro of SceMiClockControl is begin end;

Figure 5.7 SceMiClockControl macro

For eachSceMiClockPort defined h the system, typically one correspondgeMiClockControl macro

is instantiated in one or more transactors. If no clock controls are associated with a given controlled clock, it is
assumed there is an implicit clock control which is always enablingclbelt so the controlled clock simply

runs free. In addition to providing uncontrolled clocks and resets, this macro also provides handshakes that
provide explicit control of both edges of the generatgaokk

5.2.5.1 Parameters
ClockNum=1

This is the only paramet given to theSceMiClockControl macro. This parameter is used to associate a
SceMiClockControl instance with its counterpa®ceMiClockPort instance defined at the top level. The
defaultClockNum is 1.

There shall be exactly one instance &fceMiClockPor t associated with each instance of
SceMiClockControl in the system. But there can be one or more instanc&sediClockControl for
each instance ofSceMiClockPort . A SceMiClockControl instance identifies its associated
SceMiClockPort by properly specifyig a ClockNum parameter matching that of its associated
SceMiClockPort

5.2.5.2 Signals
Uclock
This is the uncontrolled clock signal generated by the-SICifrastructure.
Ureset

This is the uncontrolled reset generated by the -8tCkhfrastructure. This signal ikigh at the beginning of
simulated time and transitions to a low an arbitrary (implementag@endent) number oflocks later. It
can be used to reset the transactor.

SCEMI 2.4 56

The uncontrolled reset shall have a duration spanning that of the longest comésdie@reset output from
each SceMiClockPort ; seeb5.2.4.4 as measured inclocks . This guarantees all DUTs and transactors
properly wake up in an initialized state the firslock following expiration of the last controlle@set.

ReadyForCclock

This input to the macro indicates to the SMEinfrastructure that a transactor is willing to allow its associated
DUT clock to advance. One of the most useful applications of this feature is to perform complex algorithmic
operationon the data content of a transaction before presenting it to the DUT.

If this input to one of thesceMiClockControl instances associated with a given controlled clock s de
asserted, the neybsedge of thatcclock will be disabled. In reacting to ReadyForCclock of a slower

clock, the infrastructure must not prematurely disable active edges of other faster clocks that occur prior to the
last possiblaiclock preceding the edge to be disabled. In other words, that edge is disabled just in time so as
to allow faster clock activity to proceed until the last moment possible. Once the edge is finally disabled, all
active edges of all controlled clocks are also disabled. This is referred to as just in time clock control
semantics.

Note: It may sometimes be dexirfor a transactor to stop all clocks in the system immediately. This is referred to as emergency
brake clock control semantics. This can simply be done by instantiafiogMiClockControl associated with the fastest
clock in the system and applying nahelock control to it. See Secti@i2.4for more information.

CclockEnabled

This macro output signals the transactor, that on the pmsetdge of uclock , there is goosedge of the
controlled clock. The transactor can thus phatrthis signal to know if a DUT cloglosedge occurs. It can

also use this signal as a qualifier that says it is okay to sample DUT output data. Transactors shall only sample
DUT outputs on valid controlled clock edges. The S@Einfrastructure looks athe ReadyForCclock

inputs from all the transactors and ass&t®ckEnabled only if they are all asserted. This means any
transactor can stop all the clocks in the system by simphsdertingreadyForCclock

Foranegedge act i ve dondt eab52.4.8 sintaelitheyusecdpesina cale sbouptisedge , the
CclockEnabled shall always be 0.

ReadyForCclockNegEdge

Similarly, for negedge control, if this input to one of th8ceMiClockControl instances that are associated

with a given controlled clock is dasserted, the nexegedge of that clock will be disabled. In reacting to a
ReadyForCclockNegEdge of a slower clock, the infrastructure must not prematurely disable active edges of
other faster clocks that occur priar the last possiblaclock preceding the edge to be disabled. In other
words, that edge is disabled just in time so as to allow faster clock activity to proceed until the last moment
possible. Once the edge is finally disabled, all active edges of atbledtclocks are also disabled. This is
referred to as just in time clock control semantics.

Note: Support for explicinegedge control is needed for transactors that usentbgedge of a controlled clock as an active
edge. Transactors that do not careuthcontrollingnegedges (such as the one shown in Figukel) need to tie this signal
high.

CclockNegEdgeEnabled

This signal works likeCclockEnabled , except it indicates if theegedge of a controlled clock occurs on the
next posedge of the uclock . This can be useful for transactors that control double pumped DUTSs.
Transactors that do not care abnegedge control can ignore this signal.

For aposedge acti ve dondt G24.8 sitaitheyusecdpas nad ca@abtheposedge , the
CclockNegEdgeEnabled shall always be 0.

SCEMI 2.4 57

welock [UL UL UL UU Uug Ui
okt T[] i UL MU iy
clkfast enabled |]] —
ready for _clkfast™ |
clfast negeddq [Ul U LU UL
clkfast_negedge_enabled | | | —
ready_for_clkfast_negedge
clkslow_|_] [[|_|_
clkslow_enabled] [] (| |_|_
clkslow_negedge_e nablir M []] I
ready_for_clkslow p
ready_for_clkslow negedg€ A I

Figure 5.8

5.2.5.3 Example ofclock control semantics

Figure 5.8shows an example of clock control for two fast clook&f4st
ckslom a) thiatiuges a 50/60dduty ayakdkfast | aises ¢ | o ¢ k
donodt

donot

care
posedge act i v e

duty
donot

cycl e

clkfast e _nehedde yusesggeddeea ca n dv e

The effect of the 4 respective clock contsanalsready_for_clkfast
can be seen.

ready_for_clkslow

De-assertion of ready_for_clkfast
_negedge , and all edges aflkslow

clkfast

, andready_for_clkslow_negedge

prevents subsequenposedges
from occuring on subsequembsedges of uclock . Once re

Example of Clock Control Semantics

, clkfast

, ready_for_clkfast_negedge

of clkfast

asserted, all these edges are allowed to occur on the subsedoEnt posedges where relevant.

De-assertion ofready for_clkfast_negedge

posedges of clkfast

, and all edges otlkslow

prevents subsequemiegedges of clkfast
from occurring on subsequepdsedges of uclock . Once

re-asserted, all these edges are allowed to occur on the subsadoent posedges where relevant.

De-assertion ofready_for_clkslow

happens just in time for the next schedupededge clkslow

prevents subsequembsedges of clkslow

negedges

_negedge) that use

car e

of

_negedge ,

. But notice that this
. Prior to this, edges of faster clocks or the
negedge of the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks

are disabled as well. @e reasserted, all these edges are allowed to occur on the subsedioekt
posedges where relevant.

De-assertion ofeady for_clkslow_negedge
this happens just in time for the next scheduledalge clkslow
posedgeof the same clock are allowed to occur. Once the edge is finally disabled, all edges of other clocks are

prevents subsequemtgedges oOf clkslow

. But notice that

. Prior to this, edges of faster clocks or the

disabled as well. Once -asserted, all these edges are allowed to occur on thegselnseclock posedges

where relevant.

Note that all of the clock enabled signatékfast_enabled
are shown to transition onclock posedges. The implementation can also choose to

clkslow_negedge_enabled

SCEMI 2.4

, clkfast_negedge_enabled

, clkslow_enabled

, and

58

dut

trarsition them on negedges. The only hard requirement is that their values can be sampledtlonkheposedge at which the
associated controlled clock edge will occur

5.2.6 SCE-MI 2 support for clock definitions

The SceMiClockPort continues to be supported ife34 2 and can be used to provide clocks to SGE
function and pipéasedmnodels.

Although clock port macros continue to be supported,-SICE2 makes no requirement that clocks must be
specified using only clock ports. Alternative clock specificatiomsadlowed such as simple behavioral clock
generation blocks that are traditionally used with HDL languages. TheM8CEstandard does not preclude

use of such specifications in place of clock port macros.

Additionally, although there are no changes tacklports for definitions of clocks, it is recognized that with
the SCEMI 2 function and pipedasedapproach no clock control is needed as themisxplicit notion of
uncontrolled time in SC#I 2 models.

Use of the SceMiClockControl macro is only neddfor clock control in legacynacrebasedtransactor
models.

5.3 Macro-basedinfrastructure linkage

This section is strictly the concern of the infrastructure impleenaniiss of user, as defined 413.3 End
users and transactor implemenstcan assume étoperations described herein are automatically handled by the
infrastructure linker.

As described irsection4.5.2 infrastructure |inkage is the process
the hardware side and compilesnta a form suitable to run on the emulator. This may involve expanding the
interface macros into infrastructure components that are added to the existing structure, as well as to generate
parameter information which is used to bind the hardware side softveare side. In order to determine this
information, the infrastructure linker analyzes the netlist and searches for instances of itk B&ZBware

side macros, reads the parameter values from those instances, and generates a parameter file teadcan b
during software side initialization to properly bind message port proxies to the hardware side.

Typically, the infrastructure linker provides options in the form of switches and/or an input configuration file
which allows a user to pass along or wige implementatiorspecific options. A well crafted infrastructure
linker, however, needs to maximize eadaise by transparently providing the easer with a suitable set of
default values for implementatiespecific parameters, so that most, if nibt af these parameters need not be
overridden.

5.3.1 Parameters

The following set of parameters define the minimum set that is needed for all implementations of #4¢ SCE
standard. Specific implementations might require additional parameters.

Number of transators

The number of transactors shalll be derived by counti
as transactors. Any one of 3 conditions can qualify a module as a transactor:

1. The module has $ceMiClockControl macro instantiated imnagately inside it, or,
2. The module has the following parameter defined within its scope:
Verilog:

parameter SceMilsTransactor = 1;

VHDL:

generic(SceMilsTransactor: boolean := true);

or,

SCEMI 2.4 59

3. The module has at least BEEMI message port instantél immediately inside it and neither that module
nor any of its enclosing parent modules has otherwise been defined as a transactor.

Nested transactors are allowed. A message port's owning transactor is defined to be the lowest module in that
port's enabsing hierarchical scope that qualifies as a transactor based on the definition above.

Transactor name

The transactor name shall be derived from the hierarchical path name to an instance of a module that qualifies
as a transactor (as per the above dedinjti Naturally, if there are multiple instances of a given type of
transactor, they shall be uniquely distinguished by their instance path names. The syntax used to express the
path name shall be that of the bridge netlistds HDL

Number of messageénput or output channels

The infrastructure linker derives the number of message input and output ports by counting instances of the
SceMiMessagelnPort andSceMiMessageOutPort macros.

Port name

The name of each port shall be derived from the relativanost path name to that port, relative to its
containing transactor module. For example, if the full path name to a message input port macro instance is
(using SystenVerilog notation)Bridge.ul.tx1.ipl and the transactor nameBsdge.ul.tx1 , then the

port name isipl . If an output port is instantiated one level down from the input port and its full path is
Bridge.ul.tx1.m1l.0p1 , then its port name iml.opl, since it is instantiated a level down relative to the
transactor root level.

The full pathname to port can be derived by concatenating the transactor name to the port name (with a
hierarchical separator inserted between).

Message input or output port width

The width of a port in bits shall be derived from thetWidth parameter defined in the messaget macro.
This width defaults to 1, but is almost always overridden to a significantly larger value at the point of
instantiation.

Number of controlled clocks
This number shall be derived by counting all instances ast¢b®liClockPort macro.
Controlled clock name

The name of a controlled clock is derived from the instance label (not path namepaéNti€lockPort
i nstance, necessarily instantiated at the top | evel
SceMiClockPort

Controlled clock ratio

The clock ratio is determined from theatioNumerator ~ and RatioDenominator parameters of the
SceMiClockPort macro. TheRatioNumerator ~ designates the number of cycles of the 1/1 controlled clock
that occur duri ng t helocknspecifiee irRatioDenontnytar | e3ee5.@.4for mordr i s o
details about the clock ratio.

Controlled clock duty cycle and phase

The duty cycle is determined from tlmatyHi , DutyLo , and Phase parameters of tbeeMiClockPort
macra The duty cycle is expressed as a pair of arbitrary inteDetgi andDutyLo interpreted as follows:

if the sum ofDutyHi and DutyLo represents the number of units in a period of the clock, theyHi
represents the number of units of high time BagyLo represents the number of units of low time. Similarly,
Phase represents the number of units the clock is phase shifted relative to the referahmek 1/1A user can
al so specify a dddrdéformoradetails about tiye dutyydgandphases e e

Controlled reset cycles

SCEMI 2.4 60

The duration of a controlled reset expressed in termsladk cycles is determined from thesetCycles
parameter of th€lockPort macro.

Parameter file

The infrastructure linker needs to automatically generate anpder file after analyzing the usmrpplied

netlist and determining all the parameters identified.Bl The parameter file can be read by the software
side of the SCHEMI infrastructure to facilitate binding operations tlwcur after software model construction.
Because it is automatically generated, the content and syntax of the parameter file is left to specific
implemeners of the SCEMI. The content itself is not intended to be portable.

However, on the software sidthe infrastructure implemeartneeds to provide a parameter access API that
conforms to the specification #.4.4 This access block shall support access to a specifically named set of
parameters required by the SGH, as well as an optional, implementation specified set of named parameters.

All SCE-MI required parameters are readly, because their values are automatically determined by the
infrastructure linker by analyzing the usrpplied netlist. Implementatiespeciic parameters can be read
only or readwrite as the implementation requires.

5.4 Macro-basedsoftware side interface - C++ API

To gain access to the hardware side of the-8tLEhe software side shall first initialize the SGH software

side infrastructue and then bind to port proxies representing each message port defined on the hardware side.

Part of initializing the SCBMI involves instructing the SCII to load the parameter file generated by the
infrastructure linker. The SCHII software side can ughis parameter file information to establish rendezvous

with the hardware side in response to port binding
rendezvous is achieved primarily name association involving transactor names and port names.

Note: Clock names and properties identified in the parameter file are of little significance during the binding process although
this information is procedurally available to applications that might need it through the parameter file AR4.8ee

Access to the software side of the interface is facilitated by a number of C++ classes:

class SceMIiEC

class SceMi

class SceMiMessagelnPortProxy
class SceMiMessageOutPortProxy
class SceMiParameters

class SceMiMessageData

5.4.1 Primitive data types

In addition to C data types, suchiatger , unsigned , andconst char *, many of the arguments to the
methods in the API require unsigned data types of specific width. To support thesk|l S8fementations
need to provide two primitive unsignegdtegral types: one of exactly 32 bits and the other exactly 64 bits in
width. The following example implementation works on most curredtiB2ompilers.

Example:
typedef unsigned int SceMiU32; //unsigned 32 - bit integral type
typedef unsigned long long Sc eMiU64; //unsigned 64 - bit integral type

5.4.2 Miscellaneous interface issues

In addition to the basic setup, teardown, and mespagsing functionality, the SGHI provides error
handling, warning handling, and memory allocation functionality. = These verlfgdiindeclarations are
described here.

SCEMI 2.4 61

5.4.2.1 Class SceMiEC error handling

Most of the calls in the interface take 80eMiEC * ec as the last argument. Because the usage of this
argument is consistent for all methods, error handling semantics are explainaesl $edfion rather than
documenting error handling for each method in the API.

Error handling in SCBMI is flexible enough to either use a traditional style of error handling where an error
status is returned and checked with each call or a callback basmae where a registered error handler is
called when an error occurs.

enum SceMiErrorType {
SceMiOK,
SceMiError

I3

struct SceMIEC {

const char *Culprit;
const char *Message;
SceMiErrorType Type;
int Id;

5

typedef void (*SceMiErrorHandler)(void *c ontext, SceMIEC *ec);

static void

SceMi::RegisterErrorHandler(
SceMiErrorHandler errorHandler,
void *context);

This method registers an optional error handler with the-BICthat is called when an error occurs.
When any SCEMI operation encounters amror, the following procedure is used:

If the SceMiEC * pointer passed into the function was A¥ULL, the values of the&sceMIiEC structure are

filled out by the errant call with appropriate information describing the error and control is returned to the
caller. This can be thought of as a traditional approach to error handling, such as done in C applications. It is
up to the application code to check the error status after each call to the APl and take appropriate abortive
action if an error is detected.

Else if theSceMIiEC * pointer passed to the function is NULL (or nothing is passed since the default is NULL
in each API function) and an error handler was registered, that error handler is called from within the errant
API call. The error handler is passad internally allocatedsceMiEC structure filled out with the error
information. In this error handler callback approach, the-deéned code within the handler can initiate abort
operations. If it is a C++ application, a catch and throw mechanismeaefloyed. A C application can
simply call theabort() orexit() function after printing out or logging the error information.

Else if theSceMiEC * pointer passed to the function is NULL and no error handler is register&te®iEC
structure is constaled and passed to a default error handler. The default error handler attempts to print a
message to the console and to a log file and thenatmitg).

This error handling facility only supports irrecoverable errors. This means if an error is retutmaghtthe

SceMIEC object, either via a handler or a return object, there is no point in continuing with-thedsding

session. Any calls that support returning a recoverable error status need to return that status using a separate,
dedicated return arguent.

Also, the Message text filled out in the error structure is meant to fully describe the nature of the error and can
be logged or displayed to the console verbatim by the application error handling code. The Culprit text is the
name of the errant ARlnction and can optionally be added to the message that is displayed or logged.

Because every API call returns a success or fatal error status and the detailed nature of errors is fully described
within the returned error message, ®eeMiErrorType enumhas only two values pertaining to success:
(SceMiOK) or failure EceMiError). The SceMIiEC::Type returned from API functions to the caller can be

either of these two values, depending on whether the call was a success or a failure. However the

SCEMI 2.4 62

SceMiEC::Type passed into an error handler shall, by definition, always have the SabMiError ;
otherwise the error handler would not have been called. In addition, the optional Id field can be used to further
classify different major error types or tag each distarcor message with a unique integer identifier.

5.4.2.2 Class SceMilC- informational status and warning handling (info handling)

The SCEMI also provides a means of conveying warnings and informational status messages to the
application. Like error handling, fim handling is done with callback functions and a special structure that is
used to convey the warning information.

enum SceMilnfoType {
SceMilnfo,
SceMiWarning,
SceMiNonFatalError

%

struct SceMilC {

const char *Originator;
const char *Message;

SceMilnfoType Type;

int Id;

2

typedef void (*SceMilnfoHandler)(void *context, SceMilC *ic);

static void

SceMi::RegisterinfoHandler(
SceMilnfoHandler infoHandler,
void *context);

This method registers an optional info handler with the 8@ Ehat is caled when a warning or informational

status message occurs. This method must only be used for message reporting or logging purposes and must not
abort the simulation (unless there is an application error). Sed#iEC error handlers are reserved for that
purpose.

When any SCBMI operation encounters a warning or wishes to issue an informational message, the following
procedure is used:

If an info handler was registered, it is called from within the API call that wants to issue the warning. The info
handleris passed an internally allocatedeMilC structure filled out with the warning information. In this info
handler callback approach, the udefined code within the handler can convey the warning to the user in a
manner that is appropriate for that apation. For example, it can be displayed to the console, logged to a file,
or both.

Else if no info handler is registered, $ceMilC structure is constructed and passed to a default,
implementatiordefined error handler. The default error handler can attéonprint a message to the console
and/or to a log file in an implementatispecific format.

The Message text filled out in the error structure is meant to fully describe the nature of the info message and
can be logged or displayed to the console verlmat by t he applicationds warning
Originator text is the name of the API function that detected the message and can optionally be added to the
message that is displayed or logged. BheMilnfoType is an extra piece of informatiomhich indicates if

the message is a warning or just some informational status.

An additional category, calleBceMiNonFatalError , can be used to log all error conditions leading up to a
fatal error. The final fatal error message shall always be loggény s SceMIiEC structure and
SceMiErrorHandler function so an abort sequence is properly handled §sk2.). In addition, the info
message can optionally be tagged with a unique identifying integer specified in the Id field.

5.4.2.3 Memory allocation semantics

The following rules apply to SCEIl memory allocation semantics.

SCEMI 2.4 63

Anything constructed by the user is the userbs respo

Anything constructed by the API is the APl &s respons
Thus any object, s as SceMiMessageData |, that i s created by the appli
constructor, shall be deleted by the application when it is no longer in use. Some objects, such as
SceMiMessage[In/Out]PortProxy objects, are constructed by the APl and thended over to the

application as pointers. Those objects shall not be deleted by the application. Rather, they are deleted when the
entire interface is shut down during the calst@Mi::ShutDown().

Similarly, nonNULL SceMiEC structures that are passeduactions are assumed to be allocated and deleted
by the application. If a NULLSceMiEC pointer is passed to a function and an error occurs, the API allocates
the structure to pass to the error handler and, therefore, is responsible for freeing it.

5.4.3 ClassSceMi- SCE-MI software side interface

This is the singleton object that represents the software side of theME@#rastructure itself. Global
interface operations are performed using methods of this class.

5.4.3.1 Version discovery

static int
SceMi::Version(
const char *versionString);

This method allows an application to make queries about the version prior to initializing thdISK& gives

it its best chance of specifying a version to which it is compatible. A series of calls can be made tottbis fun

until a compatible version is found. With each call, the application can pass version humbers corresponding to
those it knows and the S@H#I can respond with a version handle that is compatible with the queried version.
This handle can then be passato the initialization call described §4.3.2

If the given version string is not compatible with the version of the-BICEsed as the interface, -4 is
returned. At this point, the application has the option of abowtitiya fatal error or attempting other versions
it might also know how to use.

This process is sometimes referred to as mutual discovery.
versionString

This argument is of the forni<maj or Num>. <mi nor Nutn> .a<snPcat € laMu mb e obt ai ne
applicationcode from the header file of a particular SEIEinstallation.

The following macros are defined

#define SCEMI_MAJOR_VERSION 2
#define SCEMI_MINOR_VERSION 1
#define SCEMI_PATCH_VERSION 0

#define SCEMI _VERSPROIN_O0SOTRI NG A

Note the version mapping shovabove is for example purposes only and should always be set to match the actual version of the
document that the implementatiadheredo.

5.4.3.2 Initialization
static SceMi *
SceMi::Init(
int version,

SceMiParameters *parameters,
SceMIEC *ec=NULL);

This cal is the constructor of the SCHI interface. It gives access to all the other global methods of the
interface.

The return argument is a pointer to an object of ckaeMi on which all other methods can be called.

SCEMI 2.4 64

version

This input argument is the versimumber returned by theversion() method described i6.4.3.1 An
error results if the version number is not compatible with the-BICEfrastructure being accessed.

parameters

This input argument is a pointer to the parameter block objeats(SceMi Parameters) initialized from

the parameter file generated by the infrastructure linker.55&d for a description of how this object is
obtained.

5.4.3.3 SceMi Object Pointer Access

static SceMi *
SceMi::Pointer(
SceMIiEC *ec=NULL);

This accessor returns a pointer to §veMi object constructed in a previous callQceMi::Init. The return
argument is a pointer to an object of classMi on which all other methods can be called.

If the SceMi::Init method has not yet been cdll&ceMi::Pointer will return NULL.
5.4.3.4 Shutdown

static void

SceMi::Shutdown(
SceMi *sceMi,
SceMIiEC *ec=NULL);

This is the destructor of the SEW infrastructure object which shall be called when connection to the
interface needs to be terminated. Thafl ts the means by which graceful decoupling of the hardware side and

the software side is achieved. Terminati@iog¢e()) callbacks registered by the application are also called
during the shutdown process.

5.4.3.5 Message input port proxy binding

SceMiMessageln PortProxy *
SceMi::BindMessagelnPort(
const char *transactorName,
const char *portName,
const SceMiMessagelnPortBinding *binding = NULL,
SceMIEC *ec=NULL);

This call searches the list of input ports learned from the parameter file, which is gerdustegl
infrastructure linkage, for one whose names matchréineactorName andportName arguments. If one is
found, an object of clasSceMiMessagelnPortProxy is constructed to serve as the proxy interface to that

port and the pointer to the constructdaject is returned to the caller to serve all future accesses to that port. It
shall be an error if no match is found.

The implementation shall copy the contents of the object pointed to by the binding argument, to an internal
implementation specific locatn.

Note The application is free to dmlocate and/or modify the binding object at any time after calling message input port proxy
binding. Since the binding object is copied, the binding itself will not change as a result of this.

transactorName, portName

These arguments uniquely identify a specific message input port in a specific transactor on the hardware side to
which the caller wishes to bind. These names need to be the path names (desé&i®dierpressed in the
ha dware side bridgeds netlist HDL | anguage syntax.

binding

The binding argument is a pointer to an object, defined as follows:

SCEMI 2.4 65

struct SceMiMessagelnPortBinding {
void *Context;
void (*IsReady)(void *context);
void (*Close)(void *context);

2
whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. NeitherSckds nor class
SceMiMessagelnPortProxy interpret this pointer, other than to store it and pass it when calling dither
IsReady() orClose() callbacks.

IsReady()

This is the function pointer for the callback used whenever an-ieadty notification has been received from
the hardware side. This call signals that it is okay to send a new message to the inputhi®npolfter is
given as a NULL, the SCHIlI assumes this port does not need to deploy inpadly notification on this
particular channel. Se&e2.2.2for a detailed description of the inprgady callback.

Close()

This is a temination callback function pointer. It is called during destruction of the-BICH his pointer can
also be optionally specified as NULL.

If the binding argument is given as a NULL, the SEEassumes that each of the ContesiReady(), and
Close() data nembers all have NULL values.

Note This call
inProxy = scemi - >BindMessagelnPort("Transactor","Port");
is equivalent to this code

SceMiMessagelnPortBinding inBinding;

inBinding.Context = NULL;
inBinding.IsReady = NULL;
inBinding.Close = NULL;

inProxy =sc emi- >BindMessagelnPort("Transactor", "Port",&inBinding);

5.4.3.6 Message output port proxy binding

SceMiMessageOutPortProxy *
SceMi::BindMessageOutPort(
const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMIEC *ec=NU LL);

This call searches the list of output ports learned from the parameter file, which was generated during
infrastructure linkage, for one whose names matchréneactorName andportName argument. If one is

found, an object of classceMiMessageOutPor tProxy is constructed to serve as the proxy interface to that

port and the handle to the constructed object is returned to the caller to serve all future accesses to that port. It
shall be an error if no match is found.

The implementation shall copy thentents of the object pointed to by the binding argument to an internal,
implementation specific location.

Note The application is free to emllocate and/or modify the binding object at any time after calling message output port proxy
binding. Since theihding object is copied, the binding itself will not change as a result of this.

SCEMI 2.4 66

transactorName, portName

These arguments uniquely identify a specific message output port in a specific transactor on the hardware side
to which the caller wishes to bind. Te&enames must be the path names (describB®if) expressed in the
hardware side bridgedés netlist HDL | anguage syntax.

binding
The binding argument is a pointer to an object, defined as follows:

struct SceMiMessageOutPortBin ding {
void *Context;
void (*Receive)(
void *context,
const SceMiMessageData *data);
void (*Close)(void *context);

whose data members are used for the following:
Context

The application is free to use this pointer for gmyrposes it wishes. Neither classeMi nor class
SceMiMessageOutPortProxy interpret this pointer other than to store it and pass it when calling either the
IsReady() orcClose() callbacks.

Receive()

This is the function pointer for the receive callbackdisvhenever an output message arrives on the port. If
this function pointer is set to NULL, it indicates that any messages from the output port should be ignored. See
5.4.7.1for more information about how receive callbacksgess output messages.

Close()

This is a termination callback function pointer. It is called during destruction of theMBCEhis pointer can
also be optionally specified as NULL.

5.4.3.7 Service loop

typedef int (*SceMiServiceLoopHandler)(void *context, bool pe nding);

int

SceMi::ServiceLoop(
SceMiServiceLoopHandler g=NULL,
void *context=NULL,
SceMIEC *ec=NULL);

This is the main workhorse method that yields CPU processing time to th&ASQi both singlethreaded

and multithreaded environments, callsttds method allow the SGHII to service all its port proxies, check

for arriving messages or messages which are pending to be sent, and dispatch amadypat receive
callbacks that might be needed. The underlying transport mechanism that supppdg firexies needs to
respond in a relatively timely manner to messages queued on the input or output port proxies. Since these
messages cannot be handled until a catiServiceLoop() is made, applications need to call this function
frequently.

The retirn argument is the number of service requests that arrived from the HDL side and were processed
since the last call toServiceLoop()

The::ServicelLoop() first checks for any pending input messages to be sent and sends them.

a0

If g is NULL, :ServiceL oop() checks for pending service requests and dispatches them, returning
immediately afterwards. Ify() is nonNULL, ::ServiceLoop() enters a loop of checking for pending
service requests, dispatching them, and calii)gfor each service request. A sewirequest is defined to be
one of the following:

SCEMI 2.4 67

An arriving message in a Sa#l message output port that will result in a receive callback being called.
An input ready notification that will result in an input ready callback being called.

When g() retura 0, control returns from the loop. When g() is called, it is passed a pending flag of 1 or 0
indicating whether or not there is at least one service request pending.

context
The context argument tc&ServiceLoop is passed as the context argumerg(th
The following pseudo code illustrates implementation of:tBerviceLoop() according to the semantics

described above:

int SceMi::ServiceLoop(
SceMiServiceLoopHandler g, void* context, SceMIEC* ec)
{
bool exit_service_loop = false;
int service_request_c ount = 0;
while(input messages pending) Send them to HDL side.
while(exit_service_loop == false) {
if(input ready notifications pending){
Dispatch input ready callback;
service_request_count++;
if(g '= NULL && g(context, 1) ==0)
exit_service_loop = true;

else if(output messages pending){
Dispatch message to appropriate receive callback.
service_request_count++;
if (g '= NULL && !g(context, 1))
exit_service_loop = true;

}
Il'if(g is not specified) We kick out of the loop.
I/l else we stay in as long as g returns non - zero.

else if (g == NULL || g(context, 0) == 0)
exit_service_loop = true;

}

return service_request_count;

}

5.4.3.7.1 Example of using the g() function to return on each call to ::ServiceLoop()
There are several different ways to usegbte function.

Some applications do force a return from tlgerviceLoop() call after processing each message. The
:ServiceLoop() call always guarantees a separate call is made to the g() function for each message
processed. In fact, it is possible to forgerviceLoop() to return back to the application once per message

by having theg() function return a 0.

So even if alg() does is return 0, as follows,
int g(void */*context*/, bool /*pending*/){ return O; }
the application forces a return frar8erviceLoop() for each processed message.

Note In this case, theServiceLoop() does not block because it also returns even if no message was foupefcing
==0). Basically::ServiceLoop() returns no mattewhat in this case with zero or one message.

5.4.3.7.2 Example of using theg() function to block ::ServiceLoop() until exactly one message
occurs
An application can use thg) function to put:ServiceLoop() into a blocking mode rather than its default
polling made. Theg() function can be written to caus&erviceLoop() to block until it gets one message,
then return on the message it received. This is done by making use of the pending argumenf)to the
function. This argument simply indicates if there is s&sage to be processed or not, for example:

SCEMI 2.4 68

int g(void */*context*/, bool pending){
return pending ==true 70:1}

This blocks until a message occurs, then returns on processing the first message.

5.4.3.7.3 Example of using the g(function to block ::ServiceLog() until at least one message occurs

Alternatively, suppose the application wanterviceLoop() to block until at least one message occurs,
then return only after all the currently pending messages have been processed.

To do this, the application canfie ahaveProcessedAtLeastlMessage flag as follows:

int haveProcessedAtLeastlMessage = 0;

Call ::ServiceLoop() giving theg() function and this flag's address as the context:

haveProcessedAtLeastlMessage = 0;
sceMi - >ServiceLoop(g, &haveProcessedAtLea stlMessage);

Now define they() function as follows:

int g(void *context, bool pending){
int *haveProcessedAtLeast1Message = (int *)context;
if(pending == 0)

/I'If no more messages, kick out of loop if at least

/I one previous message has been processed, otherwise
/I block until the first message arrives.

return *haveProcessedAtLeastlMessage ? 0 : 1;

else {
*haveProcessedAtLeastl1Message = 1;
return 1;
}
}
In conclusion, depending on precisely what type of operatib::ServiceLoop() is desired, they()

function can be tailored accordingly.

5.4.4 Class SceMiParameters parameter access

This class provides a generic API which can be used by application code to access the interface parameter set
described in5.3.1 It is basically initialized with the contents of the parameter file generated during
infrastructure linkage. It provides accessors that facilitate the reading and possibly overriding of parameters
and their values.

All SCE-MI required parameters are readly, because their values are automatically determined by the
infrastructure linker analyzing the ussupplied netlist. Implementatiespecific parameters can be reauy

or read write as required by the implementation. All paeters in aSceMiParameters object shall be
overridden before that object is passed to $heMi::Init() call to construct the interface (sée4.3.2
Overriding parameters afterwards has no effect.

5.4.4.1 Parameter set

While the forméa of the parameter file is implementatigpecific, the set of parameters required by the -SCE

API and the methods used to access them shall conform to the specifications described in this section. For
purposes of access, the parameter set shall be ordasize database of attributed objects, where each object
instance is decorated with a set of attributes expressed as name/value pairs. There can be zero or more
instances of each object kind. The API shall provide a simple accessor to return the nuoiljectefof a

given kind, and read and write accessors (described in Bdbl® allow reading or overriding attribute values

of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface the
SCE- Ml infrastructure to the application. For example, there is a distinct object instance for each message port
and a distinct object instance representing each defined clock in the system. Attributes of each of the objects

SCEMI 2.4 69

then represent, collectivelyhe parameters that uniquely characterize the dimensions and constitution of the
interface components needed for a particular application.

So, for example, a system that requires one input port, two output ports, and two distinct clocks is represented
with five objects, parametized such that each port object has name and width attributes, each clock object has

ratio and duty cycle attributes, etc. These objects and their attributes precisely and fully describe the interfacing
requirements between that ajpption and the SCGH¥I infrastructure.

Table 5.1 gives the minimal, predefined set of objects and attributes required by tHdl.S&#ditional
objects and attributes can be added by implementations. For example, there can be a single, implementation
specfic object representing the entire SGH infrastructure facility itself. The attributes of this singleton
object can be the set of implementatgpecific parameters an implememof the SCEMI needs to allow the

user to specify.

For more details on aibute meanings, seée3.1

Object kind Attribute name Attribute value|Meaning
type
MessagelnPort TransactorName String Name of the transactor enclosing the message input p
PortName String Name of the message input port.
PortWidth Integer \Width of the message input port in bits.
MessageOutPort [TransactorName String Name of the transactor enclosing the message output
PortName String Name of the message output port.
PortWidth Integer \Width of the message outppibrt in bits.
Clock ClockName String Name of the clock.
RatioNumerator Integer Numer ator (Afasto clock
RatioDenominator Integer Denominator (Athisod cloc
DutyHi Integer High cycle percentage of dutyde.
DutyLo Integer Low cycle percentage of duty cycle.
Phase Integer Phase shift as percentage of duty cycle.
ResetCycles Integer Number of controlled clock cycles of reset.
ClockBinding TransactorName String Name of the transactor that contribaite the control of th
clock.
ClockName String Name of the clock that this transactor helps control.

Table 5.1:Minimum set of predefined objects and attributes, continued

For simplicity, values can be signed integer or string values. More compktypas can be derived by the

application code from string values. Each attribute definition of each object kind implies a specific value type.

5.4.4.2 Parameter set semantics

Although the accessors provided by eeMiParameters

class directly provide the infortion given

in

Tablel, other implied parameters can be easily derived by the application. Following are some of the implied
parameters and how they are determined:

ClockBinding objects indicate the total number of transactdock control macro combinans. The number
of distinct contributors to the control of a given clock, as well as the number of distinct transactors in the
system, can be ascertained via the ClockBinding objects

The number of transactors in the system is determined by counting thebne r

encountered in the ClockBinding objects.

SCEMI 2.4

of di st

nct

70

Tr an

The number of controlled clocks is determined by reading the number of Clock objects (using the
::NumberOfObjects() accessor described below).

The number of input and output poris determined by reading the number of MessagelnPort and
MessageOutPort objects, respectively.

In addition, the following semantics characterize the parameter set.

a) Transactor names are absolute hierarchiistal patt
HDL language syntax.

b) Port names are relative hierarchical path names (relative to the enclosing transactor) and shall
conform to the bridgedés netlist HDL | anguage sy

c) Clock names are identifiers, not p atlisthHDIh a me s , é
language identifier naming syntax.

5.4.4.3 Constructor

SceMiParameters::SceMiParameters(
const char *paramskFile,
SceMIEC *ec=NULL);

The constructor constructs an object containing all the default values of parameters and then overrides them
with any ®ttings it finds in the specified parameter file. All parameters, whether specified by the user or not
shall have default values. Once constructed, parameters can be further overridden procedurally.

paramsFile

This is the name of the file generated by ithieastructure linker which contains all the parameters derived
from the user6s hardware side netlist. This name <can
local directory.

5.4.4.4 Destructor

SceMiParameters::~SceMiParameters()
This is the destictor for the parameters object.

5.4.4.5 Accessors

unsigned int
SceMiParameters::NumberOfObjects(
const char *objectKind,
SceMIEC *ec=NULL) const;

This accessor returns the number of instances of objects of the spelgfigdind name.
int
SceMiParameters::A ttributelntegerValue(
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMIEC *ec=NULL) const;
const char *
SceMiParameters::AttributeStringValue(
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiE C *ec=NULL) const;

The implementation guarantees the pointer is valid @hitdown() is called for reagnly attributes. For
non readonly attributes, the implementation guarantees the pointer is valid 8htitdown() or
OverrideAttributeStringValue() of the attribute whichever comes first.

Note If the application needs the string value for an extended period of time, it may copy the string value to a privately managed
memory area.

SCEMI 2.4 71

These two accessors read and return an integer or string attribuge val

void
SceMiParameters::OverrideAttributelntegerValue(
const char *objectKind,
unsigned int index,
const char *attributeName,
int value,
SceMIEC *ec=NULL);

void
SceMiParameters::OverrideAttributeStringValue(
const char *objectKind,
unsigned int index,

const char *attributeName,
const char *value,
SceMIiEC *ec=NULL);

These two accessors override an integer or string attribute value. It shall be an error to attempt to override any
of the object attributes shown in Tallleany implementatiospecific attributes designated as ready or any
attribute that is not already in the parameter database.

The following argument descriptions generally apply to all the accessors shown above.
objectKind

Name of the kind of object for which an attributdueais being accessed. It shall be an error to pass an
unrecognizeabjectkind name to any of the accessors.

index

Index of the instance of the object for which an attribute value is being accessed. It shall be an error if the
index >= the number returndxy the::NumberOfObjects() accessor.

attributeName

Name of the attribute whose value is being read or overwritten. It shall be an erratifitheeName does
not identify one of the attributes allowed for the giwvbiectKind

value

Returned or passed value of the attribute being read or overridden respectively. Two overloaded variants of
each accessor are provided: one for string values and one for integer values.

5.4.5 Class SceMiMessageDatamessage data object

The classSceMiMessageData represents thevector of message data that can be transferred from a
SceMiMessagelnPortProxy on the software side to its associagzgMiMessagelnPort on the hardware

side or from &ceMiMessageOutPort on the hardware side to its associgsedMiMessageOutPortProxy

on the software side. The message data payload is represented asleniijthdarray of SceMiU32 data words

large enough to contain the bit vector being transferred to or from the hardware side message port. For
example, if the message port had a width obifg, Figure 5.9shows how those bits are organized in the data
array contained inside tl8zeMiMessageData object.

SCEMI 2.4 72

SceMiMessage[In/Out]Port.Message][] bits:

31 SceMiMessageData word 0
6 3 SceMiMessageData word 1
71 SceMiMessageData wogl
Figure 5.9 Organizing 72 bits in a data array

5.4.5.1 Constructor

SceMiMessageData::SceMiMessageData(
const SceMiMessagelnPortProxy &messagelnPortProxy,
SceMIiEC *ec=NULL);

This constructs a message data object whose size matches the width of the specified input port. The
constructed message data object can only be used for sends on that port (oo&idghgcal size) or an error
will result.

Destructor
SceMiMessageData::~SceMiMessageData()

This destructs the object and frees the data array.

5.4.5.2 Accessors

unsigned int

SceMiMessageData::WidthInBits() const;

This returns the width of the message in terms of number of bits.
unsigned int

SceMiMessageData::WidthInWords() const;

This returns the size of the data array in terms of numbgeediu32 words.

void
SceMiMessageData::Set(unsigned int i, SceMiU32 word, SceMIiEC *ec = NULL);

This sets word element i tiie array to word.
void
SceMiMessageData::SetBit(unsigned int i, int bit, SceMIEC *ec = NULL);

This sets bit element i of the message vector to O if bit == 0, otherwise to 1. It is an errer if
::WidthInBits()
void
SceMiMessageData::SetBitRange(
unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC *ec = NULL);

This sets range bit el ements whose LSB&6s start at bi

an error ifi+range >= ::WidthInBits 0.
SceMiU32
SceMiMessageData:: Get(unsigned int i, SceMIiEC *ec = NULL) const;
This returns the word at slot i in the array. It is an error if i >=
::WidthinWords()
int

SceMiMessageData::GetBit(unsigned int i, SceMiEC *ec = NULL) const;

This returns the value of bit element i in thessage vector. It is an error #= ::WidthinBits().

SceMiu32
SceMiMessageData::GetBitRange(unsigned int i, unsigned int range, Sce-MIiEC *ec

SCEMI 2.4 73

= NULL) const;

This returns the value of r & ofghe mdéssage vecloreidren rerrosif wh o s e
i+range >= ::WidthInBits().

SceMiU64
SceMiMessageData::CycleStamp() const;

The SCEMI supports a feature called cycle stamping. Each output message sent to the software side is
stamped with the number of cycles of the 1/1 controlled clowtesihe end ofreset at the time the message

is accepted by the infrastructure. The cycle stamp shall be 0 evbdet is asserted and 1 at the point of
alignment. This is showdiagrammaticallyin Figure 5.10 The cycle stam provides a convenient way for
applications to keep track of elapsed cycles in their respective transactors as the simulation proceeds. The
returned value is an absolute,-Bi# unsigned quantity. For more information on the point of alignment, refer
to5.2.4.5

cresel |

1llcclock|||||||||| ||||||||||||||||||||||||||||

cycle stam 0 112131415161 /718191101112)13f14]

point of alignment

Figure 5.10 Cycle Stamps

Note It is suggested that messages should not be sent during the reset period. If they are sent they will all have a ©fcle stamp
zero irrespective of the actual clock cycle that they occur on.

5.4.6 Class SeMiMessagelnPortProxy

The classSceMiMessagelnPortProxy presents to the application a proxy interface to a transactor message
input port.

5.4.6.1 Sending input messages

void

SceMiMessagelnPortProxy::Send(
const SceMiMessageData &data,
SceMIEC *ec=NULL);

This method sends a message to the message input channel. This message appears on the hardware side as a bit
vector presented to the transactor via SteMiMessagelnPort macro (seeb.2.2, instancebound to this
proxy.

data

This isa message data object containing the message to be sent. This object may be arbitrarily modified after
Send() and used for an arbitrary number of sends to the same and other message ports.

SCEMI 2.4 74

5.4.6.2 Replacing port binding

void ReplaceBinding(
const SceMiMessageln PortBinding* binding = NULL,
SceMIEC* ec=NULL);

This method replaces theSceMiMessagelnPortBinding object originally furnished to the
SceMi::BindMessagelnPortProxy() call that created this port proxy object (S&d.3.5. This can be
useful for replacing contexts or inprgady callback functions some time after the input message port proxy
has been established.

The implementation shall copy the contents of the object pointed to by the binding argument to an internal,
implemertation specific location.

Note The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since
the binding object is copied, the binding itself will not change as a result of this.

binding

Thisis new callback and context information associated with this message input port proxy.

If the binding argument is given as a NULL, the SEassumes that each of the ContésReady(), and
Close() data members have NULL values.

Note TheReplaceBinding() call below

SceMiMessagelnPortProxy *inProxy;

...
inProxy - >ReplaceBinding();

is equivalent to this code

SceMiMessagelnPortProxy *inProxy;
...
SceMiMessagelnPortBinding inBinding;

inBinding.Context = NULL;

inBindin g.IsReady = NULL,;
inBinding.Close = NULL;

inProxy - >ReplaceBinding(&inBinding);

5.4.6.3 Accessors

const char *
SceMiMessagelnPortProxy::TransactorName() const;

This method returns the name of the transactor connected to the port. This is the absahdieidaiepath
name to the transactor instance expressed in the net

const char *
SceMiMessagelnPortProxy::PortName() const;

This method returns the port name. This is the path name t8ctMiMessagelnPort macro instance
relatvet o t he containing transactor netlistés HDL | angua

unsigned
SceMiMessagelnPortProxy::PortWidth() const;

This method returns the port width. This is the value ofRbewidth parameter that was passed to the
associatedceMiMessagelnPort instanceon the hardware side.

SCEMI 2.4 75

5.4.6.4 Destructor

There is no public destructor for this class. Destruction of all message input ports shall automatically occur
when theSceMi::ShutDown() function is called.

5.4.7 Class SceMiMessageOutPortProxy

The classMessageOutPortProxy presents to the application a proxy interface to the transactor message
output port.

5.4.7.1 Receiving output messages

There are no methods on this object specifically for reading messages that arrive on the output port proxy.
Instead, that operation is handledthg receive callbacks. Receive callbacks are registered with an output port
proxy when it is first bound to the channel (5e£.3.§. The prototype for the receive callback is:

void (*Receive)(void *context, const SceMiMessa geData *data);

When called, the receive callback is passed a pointer to aStlelgéMessageData object (seé.4.5, which
contains the content of the received message, and the context pointer. The context pointer isatymoaky
to the object representing the software model interfacing to the port proxy.

Use this callback to process the data quickly and return as soon as possible. The reference to the
SceMiMessageData is of limited lifetime and ceases to exist once ¢hBback returns and goes out of scope.
Typically in a SystemC context, the callback does some minor manipulation to the context object, then
immediately returns and lets a suspended thread resume and do the main processing of the received transaction.

No SceMiEC * error status object is passed to the call, because if an error occurs within the
SceMi::ServiceLoop() function (from which the receive callback is normally called), the callback is never

called and standard error handling procedures k2.9 are followed by the service loop function itself. If

an error occurs inside the receive callback, by implication it is an application error, not avilS@6r, and

thus is the applicat i on dsstting a&flgio thescontekt lobjettpefoteaetumiagh d | e (
from the callback).

It shall be an error if the classeMiMessageData object passed to the receive callback is passed as the class
SceMiMessageData argument of theSceMiMessagelnPortProxy::Send() method. Modifying the class
SceMiMessageData object by casting away const leads to undefined behavior. This is in addition to any
compiler/runtime problems that may be generated by doing this.

5.4.7.2 Replacing port binding

void ReplaceBinding(
const SceMiMessageOu tPortBinding* binding,
SceMIEC* ec=NULL);

This method replaces theSceMiMessageOutPortBinding object originally furnished to the
SceMi::BindMessageOutPortProxy() call that created this port proxy object (¥%4.3.9§. This ca be

useful for replacing contexts or receive callback functions some time after the output message port proxy has
been established. Setting the receive callback to a NULL value indicates that any message from the output can
be ignored.

The implementatiorshall copy the contents of the object pointed to by the binding argument to an internal,
implementation specific location.

Note The application is free to deallocate and/or modify the binding object at any time after calling replace port binding. Since
the binding object is copied, the binding itself will not change as a result of this.

binding

This is new callback and context information associated with this message output port proxy.

SCEMI 2.4 76

5.4.7.3 Accessors

const char *
SceMiMessageOutPortProxy::TransactorName() const

This method returns the name of the transactor connected to the port. This is the absolute hierarchical path
name to the transactor instance expressed in the net

const char *
SceMiMessageOutPortProxy::PortName() const;

This mehod returns the port name. This is the path name t&th®liMessageOutPort macro instance
relative to the containing transactor expressed in t

unsigned
SceMiMessageOutPortProxy::PortWidth() const;

This method returns theopt width. This is the value of theortwidth parameter that was passed to the
associatedceMiMessageOutPort instance on the hardware side.

5.4.7.4 Destructor

There is no public destructor for this class. Destruction of all message output ports shall autgroaticall
when theSceMi::ShutDown() function is called.

5.5 Macro-basedsoftware side interface- C API

The SCHMI software side also provides an ANSI standard C API. All of the following subsections parallel
those described in the C++ API. The C API canibplemented as functions that wrap calls to methods
described in the C++ API. The prototypes of those functions are shown in this section. For full documentation
on a function, see its corresponding subsectid4n

5.5.1 Primitive data types

The C API has its own header file with the following minimum content:

SCEMI 2.4 77

typedef unsigned SceMiU32;

typedef unsigned long long SceMiU64;

typedef void SceMi;

typedef void SceMiParameters;

typedef void SceMiMessageData;

typedef void SceMiMessagelnPo rtProxy;
typedef void SceMiMessageOQutPortProxy;

typedef int (*ServiceLoopHandler)(void *context, int pending);

typedef enum {
SceMiOK,
SceMiError,

} SceMiErrorType;

typedef struct {
const char *Culprit;
const char *Message;
SceMiErrorType Type;
i ntld;

} SceMIEC;

typedef void (*SceMiErrorHandler)(void *context, SceMIEC *ec);

typedef enum {
SceMilnfo,
SceMiWarning

} SceMilnfoType;

typedef struct {
const char *Culprit;
const char *Message;
SceMilnfoType Type;
int Id;

} SceMilC;

typedef void (*SceMilnfoHandler)(void *context, SceMilC *ic);

typedef struct {
void *Context;
void (*IsReady)(void *context);
void (*Close)(void *context);
} SceMiMessagelnPortBinding;
typedef struct {
void *Context;
void (*Receive)(
void *context,
const SceMiMessageData *data);
void (*Close)(void *context);
} SceMiMessageOutPortBinding;

An application shall include either the C API header or the C++ API header, but not both.

Note Because ANSI C does not support default argument values, the last &ébtiEargument to each function must be
explicitly passed when called, even if only to pass a NULL.

5.5.2 Miscellaneous interface support issues

The C miscellaneous functions have semantics like the corresponding C++ methodswihowmn4).

SCEMI 2.4 78

SceMIiEC - errorh andling

void

SceMiRegisterErrorHandler(
SceMiErrorHandler errorHandler,
void *context);

5.5.2.1 SceMilC - informational status and warning handling (info handling)

void

SceMiRegisterinfoHandler(
SceMilnfoHandler infoHandler,
void *context);

5.5.3 SceMi- SCE-MI software side interface
See als®.4.3

SCEMI 2.4

79

5.5.3.1 Version discovery

int

SceMiVersion(const char *versionString);

1.1.4.18 Initialization

SceMi *

SceMilnit(
int version,
const SceMiParameters *parameterObjectHandle,
SceMiEC *ec);

5.5.3.2 SceMi Object Pointer Access

SceMi *
SceMiPointer(
SceMIEC *ec);

5.5.3.3 Shutdown

void

SceMiShutdown(
SceMi *sceMiHandle,
SceMIEC *ec);

5.5.3.4 Message input port proxy binding

SceMiMessagelnPortProxy *
SceMiBindMessagelnPort(
SceMi *sceMiHandle,
const char *transact orName,
const char *portName,
const SceMiMessagelnPortBinding *binding,
SceMIEC *ec);

5.5.3.5 Message output port proxy binding

SceMiMessageOutPortProxy *
SceMiBindMessageOutPort(
SceMi *sceMiHandle,
const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMiEC *ec);

5.5.3.6 Service loop
int
SceMiServiceLoop(
SceMi *sceMiHandle,
SceMiServiceLoopHandler g,

void *context,
SceMiEC *ec);

5.5.4 SceMiParameters- parameter access
See als®.4.4
5.5.4.1 Constructor

SceMiParameters *

SceMiParametersNew(
const char *paramskFile,
SceMiEC *ec);

This function returns the handle to a parameters object.

SCEMI 2.4

5.5.4.2 Destructor

void
SceMiParametersDelete(
SceMiParameters *parametersHandle);

5.5.4.3 Accessors

unsigned int

SceMiParameters NumberOfObjects(
const SceMiParameters *parametersHandle,
const char *objectKind,
SceMIEC *ec);

int
SceMiParametersAttributelntegerValue(
const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeNam e,
SceMiIEC *ec);

const char *
SceMiParametersAttributeStringValue(
const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec);

void
SceMiParametersOverrideAttributelntegerValue(

SceMiParameters *parametersHandle,

const char *objectKind,

unsigned int index,

const char *attributeName,

int value,

SceMiEC *ec);

void
SceMiParametersOverrideAttributeStringValue(

SceMiParameters *parametersHandle,

const char *objectKind,

unsigne d int index,

const char *attributeName,

const char *value,

SceMiIEC *ec);

5.5.5 SceMiMessageData message data object
See als®.4.5
5.5.5.1 Constructor

SceMiMessageData *

SceMiMessageDataNew(
const SceMiMessagelnPortProxy *messagelnPo rtProxyHandle,
SceMiEC *ec);

This function returns the handle to a message data object suitable for sending messages on the specified input
port proxy.

SCEMI 2.4 81

5.5.5.2 Destructor

void
SceMiMessageDataDelete(
SceMiMessageData *messageDataHandle);

5.5.5.3 Accessors

unsigned int
SceMiMessageDataWidthInBits(
const SceMiMessageData *messageDataHandle);

unsigned int
SceMiMessageDataWidthInWords(
const SceMiMessageData *messageDataHandle);

void

SceMiMessageDataSet(
SceMiMessageData *messageDataHandle,
unsigned int i,
SceMiU 32 word,
SceMiIEC *ec);

void
SceMiMessageDataSetBit(
SceMiMessageData *messageDataHandle,
unsigned int i,
int bit,
SceMIEC *ec);

void
SceMiMessageDataSetBitRange(
SceMiMessageData *messageDataHandle,
unsigned int i,
unsigned int r ange,
SceMiU32 bits,
SceMiEC *ec);

SceMiu32

SceMiMessageDataGet(
const SceMiMessageData *messageDataHandle,
unsigned int i
SceMiEC *ec);

int
SceMiMessageDataGetBit(
const SceMiMessageData *messageDataHandle,

unsigned int i,
SceMIEC *ec);

SceMiU32

SceMiMessageDataGetBitRange(
const SceMiMessageData *messageDataHandle,
unsigned int i,
unsigned int range,
SceMiEC *ec);

SceMiUu64
SceMiMessageDataCycleStamp(
const SceMiMessageData *messageDataHandle);

5.5.6 SceMiMessagelnPotProxy - message input port proxy
See als®.4.6

SCEMI 2.4

5.5.6.1 Sending input messages

void

SceMiMessagelnPortProxySend(
SceMiMessagelnPortProxy *messagelnPortProxyHandle,
const SceMiMessageData *messageDataHandle,
SceMIEC *ec);

5.5.6.2 Replacing port binding

void SceMiMessagelnPortProxyReplaceBinding(
SceMiMessagelnPortProxy *messagelnPortProxyHandle,
const SceMiMessagelnPortBinding* binding,
SceMIEC* ec);

5.5.6.3 Accessors

const char *
SceMiMessagelnPortProxyTransactorName(
const SceMiMessagelnPor tProxy *messagelnPortProxyHandle);

const char *
SceMiMessagelnPortProxyPortName(
const SceMiMessagelnPortProxy *messagelnPortProxyHandle);

unsigned
SceMiMessagelnPortProxyPortWidth(
const SceMiMessagelnPortProxy *messagelnPortProxyHandle);

5.5.7 SceMiMessgeOutPortProxy - message output port proxy
See als®.4.7.

5.5.7.1 Replacing port binding

void SceMiMessageOutPortProxyReplaceBinding(
SceMiMessageOutPortProxy *messageOutPortProxyHandle,
const SceMiMessageOutPortBinding* binding,
SceMIEC* ec);

5.5.7.2 Accessors

const char *
SceMiMessageOutPortProxyTransactorName(
const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

const char *
SceMiMessageOutPortProxyPortName(
const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

unsig ned
SceMiMessageOutPortProxyPortWidth(
const SceMiMessagelnPortProxy *messageOutPortProxyHandle);

5.6 Function-basedinterface

5.6.1 The DPI C-layer
This sectiondefinesthe C side of DPI.
5.6.1.1 Compliant subset of the SystemVerilog DPI C Layer

The SCEMI 2 standarddefinesa subset of a DPtompliant SystemVerilogC Layerand a subset of DRlata
types supportetly the SCEMI 2 standard That subset conforsrto the DPI CLayer as described ite "DPI
C layer" annexf the SystemVerilog LRM (see Reference [3])

SCEMI 2.4 83

5.6.1.2 Binding is automatic- based on static names

SCEMI 2 functionbasedinterfacesupports imding betweenwherethe DPIfunctions are defined and from
where they are called based on static C symbol nabhesuser needs tefine a function on one side and call
it from the othesside A SCEMI 2 implementatiorwill ensurethatwrappers with matching symbol names are
provided where appropriate.

All C DPI symbol names conform to AN&I naming conventions and linkage. This provides a C symbol
linkage mechanism thié adaptable tthe HVL environmentused on the software side.

5.6.1.3 Supported types, static mapping

The SystemVerilog LRMEEE Std. 18002012 annex titled "DPI C layerdefines the mapping between the
basic SystemVerilog data types and the correspondingésty

DPI supports a variety of flexible data types ranging from simple scalar types such as integers to bit vectors to
complex structures and dynamic arraysdthe mapping between C data types and SystemVerilog DPI types.

Table5.3 liststhe subset of thse mappingbetween SystemVerilog andsbpported for SCBMI 2.

DPI formal argument types | Corresponding types mapped to C

Scalar basic types: Scalar basic types:
byte char
byte unsigned unsigned char
shortint short int
shortint unsigned unsigned short int
int int
int unsigned unsigned int
longint long long
longintunsigned unsigned long long
scalar values of type bit unsigned char (with specifically defing
values)

packed onaimensioml arrays| canonical arrayef svBitVecVal

of type bit and logic and svLogicVecVal

Constant string type: Constant string type:
string const char *
packed struct types C structs

packed multidimensional arrayy Canonical amys of svBitVecVal and
of type bit and logic svLogicVecVal

Table 5.3: Subset of DPI mapping supported in SCEMI 2 function-basedinterface

Note: Integer types, although supported, come with the caveat described above that for C their widths are not castt ifoistone b
SystenVerilog they are. As a result, the user will have to be aware of this when using these types in terms of knowing when
padding is implied and when masking is required. That said, scalar data types that can be passed by value are exttemely usefu
and are syported in SCEMI 2. It shall of course be assumed that the fixed sizes of these types on the HDL side will be
maintained and will always synthesize to the same number of bits.

SCEMI 2.4 84

5.6.1.3.1 4-State logic types
SCEMI 2 supports conveying both 2 state and 4 state Itgies from the HDL side to the C side and vice
versa. SCEMI 2 implementations can handle 4 state logic types as follows:

1 No coerciori the HDL side natively supports 4 state types

1 No coercioni from HDL to C as the HDL will convey either 2 state typed @tate types depending
on whether the HDL side supports 2 stated or 4 state types.

1 Coercioni from C to HDL if the HDL side only supports 2 state types. In this case X will be coerced
to 1 and Z will be coerced to O.

Note: Implementations can provide difatial coercion options including warnings when coercion takes place.

Note: The above allows models using 4 state logic types to run onMBCE compliant implementatiorwithout code
modification. Support of 4 states types using coercion, while alloistgte types to run on 2 state HDL engines (such as 2 sates
emulators) does not imply that models using 4 states types will provide results consistent with 4 state HDL engined (such as
state simulators) or even correct results. It is up to the modsetttu decide whether to keep the modes unchanged or remodel
the types to 2 state types.

5.6.1.3.2 Constant string literal types
The SystemVerilog standard supports arguments ofibyje string for bothexport "DPFC" andimport
"DPI-C" functions.Such arguments ap to typeconst char * on the C side.

For the SCEMI standard DPI subset, passing of strings shall be allowed foip o r +C ofi DXPul nonlyt. t o n' s
shall also be required that any string values passedtomre strings, string literals, statically speeifi
parameters of type string that can be passed down from higher levels of theidéHierarchy.

Exampl e: Passing aCo®trfiumgtti @nan i mport ADPI

C-side implementation df mp o r +C ofuriztivh:

extern "C" void identifyMyself(const char *my Id){

MyContext *me =

(MyContext *)svGetUserData(svGetScope(), (void *)(&identifyMyself));

me >setMyld(myld);

}
HDL-side declaration and calling ofmp o r +C ofuriztioh:
import "DPI - C" function void identifyMyself(inp ut string myld);
Ebnst string localld = AMyldo; [// Could also be a string param
identifyMyself(localld); /l Could also be direct literal
/I or string parameter.
5.6.1.3.3 Packedstruct types

The SCEMI 2 DPI subset also suppomacked strucargument types.

According tolEEE Std. 1800 (Reference [3} SystemVerilog, a packedstruct type is a convenient way to
arrange an aggregate set of bit fields but it has the same basic layout and arlifiregtitvalency as a-d
packed array.

To quote thdEEE Std.1800 from theStructures section of theAggregate data typeschapter:

AA packed structure is a mechanism for subdividing
accessed as membef3onsequently, a packed structure consists of bit fields, which are packed together in
memory without gaps. o

SCEMI 2.4 85

AA packed structure can be used as a whole with arit
is the most significant and subseg Nt member s foll ow in decreasing signi

Additionally, in theDPI C layer annex of thdEEE Std.1800, it is stated that packsettucts are supported
as valid DPI argument types and they are, for all practical purposes, treatddr@nsionapadked arraysand
thus the Gside canonical representation applies for packedts as well.

To quotelEEE Std.1800, from theDPI C layer annex:

Al n addition to decl arpackegbit DRhdlodico marmgs) it isaalsg possibla tos o f
declare brmal arguments of packestruct and union types. DPI handles these types as if they were
declared with equivalent ordimensionapacked arraysyntax o

This means that on the C side all packedct arguments are mapped to eitls@Bitvecval arrays or
svLogicVecVal arrays just as packed arrays are.

Additionally, it should be noted that, accordingE&E Std.1800, if any field of a packestruct is a 4state
data type, the C canonical representation will also bstatésvLogicvecval array.

Whereas ifall fields of a packedtruct are 2state data types then the C canonical representation can be the
more optimakvBitvVecval array.

Exampl e: Passing a pa€kbheflusctuon:to an export ADPI

HDL-side implementation of export "DFEI" function:

type def struct packed {
byte unsigned idNum;
int unsigned value;

} TransactionType;

TransactionType localTransaction;

export "DPI - C" function passTransaction;
function void passTransaction(input TransactionType transactionin);
localTransaction = transactionin;
$display("idNum=%0d value=x%0x",
localTransaction.myld,
localTransaction.value);
endfunction

C-side declaration and calling of export "B@T function:

struct Transactio nType {
unsigned char idNum;
unsigned value;

h

extern "C" void passTransaction(const svBitVecVal *transactionin);

TransactionType myTransaction = { 1, Oxbeefcafe };
svBitVecVal myTransactionVec|[2];

svPutPa rtselBit(myTransactionVec, myTransaction.idNum, 32, 8);
svPutPartselBit(myTransactionVec, myTransaction.value, 0, 32);

svSetScope(hdIScope);
passTransaction(myTransactionVec);

SCEMI 2.4 86

Note that because of the abesited rules inSysemVerilog dictating mapping of packed structs to DPI
canonical array representation, the above C example can be conveniently simplified to,

struct TransactionType { // Note reversal of fields from above.
unsigned value;
unsigned char id Num;

h

extern "C" void passTransaction(const svBitVecVal *transactionin);

TransactionType myTransaction = { Oxbeefcafe, 1 };

svSetScope(hdIScope);
passTransaction((const svBitVecval *)(&myTransaction));

But only provided that the field mappings in the C definitiorTainsactionType are reversed from those in
HDL. The reason, again, is that in SystemVerilog the first member specified is the most significant and
subsequent members follow in decreasing signifieaas mentioned 2nd quoted paragraph above. Yet in the C
language's binary layout, the first member is the least significduis. [Ack of correspondence isuaique
feature of the SystemVerilog language specification for packadct semantics- to suppaet direct
arithmetic manipulation of aggregate packed structs.

Exampl e: Passing a packCaod fsutnrcucdtonf:rom an i mport ADPI

C-side implementation of import "DFZ" function:

struct TransactionType {
unsigned char idNum;
unsigned va lue;

}

extern "C" void receiveTransaction(svBitVecVal *transactionOut)}{
TransactionType *me =
(TransactionType *)svGetUserData(
svGetScope(), (void *)(&receiveTransaction));

svPutPartselBit(transact ionOut, me - >idNum, 32, 8);
svPutPartselBit(transactionOut, me - >value, 0, 32);

}
HDL-side declaration and calling of import "BEI' function:

typedef struct packed {
byte unsigned idNum;
int unsigned value;

} Transaction Type;

import "DPI - C" function void receiveTransaction(
output TransactionType transactionOut);

TransactionType localTransaction;

receiveTransaction(localTransaction);

5.6.1.4 Multidimensional bit andlogic array argument types

The SCEMI 2 DPI subset supportswltidimensionalbit andlogic array argument types for import and
export DP4C functions.

Note: As a pretext to understanding the examples of multidimensional bit argument types for DPI functions, a review of IEEE
Std 1800 (Reference [B3]SystemVerilogfor handling multidimensional arrayspsovided

SCEMI 2.4 87

According to IEEE Std. 1800, multidimensional arrays in SystemVerilog are linearized equivalents of one dimensional arrays in
C. To quote the LRM from thBata typessection of the annex on ti&P| C layer.

fiPacked arrays can have an arbitrary number of dimensions although they are eventually always equivalent to a one
dimensional packed array and treated as such. If the packed part of an array in the type of laafgumeent in
SystemVerilog is specified as multidi mensional, the Syst

Additionally,

fiLinearizing a SystemVerilog array with multiple packed dimensions consists of treating an array with dimension sizes
(i, j, k) as if t had a single dimension with size (i * j * k) and had been stored as-diovemsional array. The one
dimensional array has the same layout as the corresponding multidimensional array storeehirarpwo r or der . 0

And the following rules are stated for nmapg between SystemVerilog ranges and C ranges:

AFor all types of for mal argument other than open arrays
SystemVerilog import or export declaration. Normalized ranges are used for accessingguokrdas in C code. C

ranges for multiple packed dimensions are linearized and normalized. The mapping between SystemVerilog ranges and

C ranges is defined as follows:

a) If a packed part of an array has more than one dimension, it is linearized asexpbygithe equivalence
of packed types (see H.7.5 and 6.22.2).

b) A packed array of range [L:R] is normalized as [ab&):0]; its MSB has a normalized index absR)).
and its LSB has a normalized index 0.

c) The natural order of elements for each dimensn the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog index
min(L,R) has the C index 0 and the element with SystemVerilog index max(L,R) has thixeaBd(ieRR).

The above range mapping from SystemVerilog to C applies to calls made in both directions, i.e., SystemVerilog calls to
C and C calls to SystemVerilog.

For example, if logic [2:3][1:3][2:0] b [1:10] [31:0] is used in SystemVerilog, it needd®odefined in C as if it were
decl ared in SystemVerilog in the following normalized fo

To summarize , the normalized ranges of multidimensional SystemVerilog arrbigs afr logic ~ will map to a single linear
range of caanical DPIsvBitVecVal s orsvLogicVecVal s respectively.

Exampl e: Passing a multidiComefssnemnalonarray to an expo

HDL-side implementation of export "DRI" function:

SCEMI 2.4 88

bit [15:0] localArray [0:9];

export "DPI - C" function passArray;
function void passArray(input bit [2:3][1:2][3:0] arrayIn [1:10]);
localArray = arrayln;

assert(
localArray[0] = 0 &&
localArray[1] = 1 &&
localArray[2] = 2 &&
localArray[3] = 3 &&
localArray[4] = 4 &&
localArray[5] = 5 &&
localArray[6] = 6 &&
localArray[7] = 7 &&
localArray[8] = 8 &&
localArray[9] = 9);
endfunction

C-side declaration and calling of export "B@T function:

extern "C" void passArray(const svBitVecVal *arrayin);

svBitVecVal myArray[5];

for(i=0; i<10; i++)
svPutPartselBit(myArray, i, i*16, 16);

svSetScope(hdIScope);
passArray(myArray);

ExamplePassing a multidi mensi e&€mwalf uaarctaynfrom an i mport

C-side implementation of import "DRZ" function:
extern "C" void receiveArray(svBitVecVal *arrayOut }{
for(i=0; i<10; i++)
svPutPartselBit(arrayOut, i, i*16, 16);
}

HDL-side declaration and calling of import "DEI' function:

SCEMI 2.4 89

import "DPl - C" function void receiveArray(
output bit [2:3][1:2][3:0] arrayOut [1:10]);

bit [15:0] localArray [0:9];

receiveArray(localArray);

asse rt(

localArray[0] = 0 &&
localArray[1] = 1 &&
localArray[2] = 2 &&
localArray[3] = 3 &&
localArray[4] = 4 &&
localArray[5] = 5 &&
localArray[6] = 6 &&
localArray[7] = 7 &&
localArray[8 1=8&&
localArray[9] = 9);

5.6.2 The DPI SysemVerilog layer
This sectiondefinesthe SystemVerilog side of DPI.
5.6.2.1 Functions and tasks

The SystemVerilog DPI supports bofilnctions and tasksAn imported or exportedPI function always
executesn O-time. An exportear imported DPI taskby contrastcan execute in-fime orcan consume time.

SCEMI functionbased interface supports exported or imported DPI functions and supports exported and
imported DPI tasks. Unless explicitigentioned in th SCEMI spec, references to exported and imported DPI
functions will also relate to exported and imported DPI tasks. Any subsets and restrictions defined for exported
or imported DPI functions also apply to exported or imported DPI tasks.

SCEMI only supprts calling exported tasks from a context DPI imported task call chain. It does not allow
calling it from outside a context DPI imported function or task call ciddnDPI imported task calls, and, by
implication, call tasks for functions in an importiegk call chain, cabe time consuming. As such, they must
execute in zero simulation time or delta simulation time from when the imported DPI task was irMoked.
useof imported and exported DPI task which is not allowed by the SystemVerilog LRisI aonsidered
unpredictable or undefined, is rmtpported by SC#MI.

Note: Section4.10extends the scope of calling DPI exported functions to applications linked with the C side considered by the
SystemVerilogcoRMeRbuDPRPl demported function call chaind. This
and does not apply to DPI exported tasks

5.6.2.2 Support for multiple messages in @ime

DPI places no restrictions on the number of imported function calls matie gate block of code without
intervening time advancemermplementations mustupport the ability taransmitmultiple messages in-0
time either by calling the same function or by calling multiple functions in the samstéme

5.6.2.3 Rules for DPI function call nesting

SCEMI 2 compliant implementation must support two levels of nesting meaning that the HDL side can call an
imported functionor G-time taskthat can call an exported function. Once the exported function returns, it can
yield control back to th imported functioror G-time task Supporting more than two levels of nesting is
allowed by SystemVerilog DPI but considered undefined in ML meaning it can result in undefined
behavior.

Note: SCEMI does not impose any restrictions on SMEimplementations supporting additional levels of nesting. An example
for additional levels of nesting is when the exported function (called from an imported function) calls another impdited func
that calls another exported function establishing a call chatrigi levels deep

SCEMI 2.4 90

5.6.2.4 DPI utility function ssupported by SCEMI 2

DPI defines a small set of functions to help programmers work with DPI context tasks and functions. The term
scope is used in the task or function names for consistency with other Sydtgniéeminology. The terms
scope and context are equivalent for DPI tasks and functions.

There are functions that allow the user to retrieve and manipulate the current operational scope. There are
also functions to associate an opaque user data pointér avi HDL scope. This pointer can then later be
retrieved when an imported DPI function is called from that scope.

SCEMI 2 supports two types of DPI Utility functions, those thratolve manipulation of scop@o be called
scoperelated DPI utility Functions) and additional helper functions that can be used for bit vector
manipulation, version query, etc.

ThescoperelatedDPI utility functions are:

svScope svGetScope(void)

svScope svSetScope(const svScope scope)

void svPutUserData(const svScope scop e, void *userKey, void *userData)
void *svGetUserData(const svScope scope, void *userKey)

const char *svGetNameFromScope(const svScope scope)

svScope svGetScopeFromName(const char *scopeName)

int svGetCallerInfo(char **fileName, int *lineNumber)

The helperDPI utility functions are:

const char *svDpiVersion(void)

svBit svGetBitselBit(const svBitVecVal *s, int i)

void svPutBitselBit(svBitVecVal *d, int i, svBit s)

void svGetPartselBit(svBitVecVal *d, const svBitVecVal *s, int i, int w)
void svPutPartselBit(svBitVecVal *d, const svBitVecVal s, int i, int w)

Note: There is a restriction on when scope related functions can be called. They cannot be called at any time initre simulat
prior to completion of design elaboration as it is posditéé not all scopes are defined before this pdietper utility functions
can be called at any time.

5.6.3 SV-Connecti Using DPIwith SystemVerilog HVL

This section presents the formal requirements of the function bas€&b®ivect interface with SystemVerg
HVL testbenches.

5.6.3.1 Rules for DPI functions on the SystemVerilogHVL -side

Each DPI imported function declared on the HEtle requires a DPI exported function implementation on the
SystemVerilog HVLside. Similarly, each DPI imported function declaredtbe SystemVerilog HViside
requires a DPI exported function implementation on the Hidle. The combination of the imported function
and the exported function which together are two parts of a single data path is referqeaitedafsinctions

The rulesfor SystemVerilog testbench DPI calls are meant to guarantee-t@-one correspondence between

the two paired functions so that when one is parsed, the other can be inferred. This means that the return type,
name, and function arguments of both of thequhfunctions can be ascertained from examining just one of
them. This is critical for allowing autgeneration of the C layer.

56.3.1.1 Naming convention
The default naming convention is for every Hglde DPI function name is to have a prefix placed in front of
the name of its paired HD&ide function name. The text of the prefix string can be specified by the user,

however, absent such a speevfoi.cation, the defaul't
For example, assuming a user specified prefix afv c, _the functionxyz_ master_configure() on the
HDL-side is paired witlsvc_xyz_master_configure() on the HVL:side.

Or, assuming the default prefix fc , the functionXyzMasterConfigure() on the HDL:-side is paired with
svcXyzMasterConfigure() on the HVL:side.

SCEMI 2.4 91

Vendor implemerdtions must provide a mechanism to override the default prefix shown above so that the user
may specify an alternate prefix for the H\ide function when doing auteneration of the C layer.
Whatever prefix is chosen must be consistently used for altiums that are intended to be paired in any
given automatically generated C layer (see se&i6r8.2.1Example of inboundHVL to HDL) function paiy

5.6.3.1.2 Return type
The return types of the H\(kide anl HDL-side paired functions shall match.

5.6.3.1.3 Function arguments
The function arguments of the HWide and HDLside paired functions are the same, and in the same order,
except that the HViside function must have one additional argunieSystemVerilog typehandle T as its
first argument.

5.6.3.14 Functions only
SV-Connect is defined for functions onlyhe equivalent of timeonsuming tasks can be accomplished with
function calls in the inbound (HVL to HDL) direction to initiate a time consuming operation onDheslde
followed later by function calls in the outbound (HDL to HVL) direction to announce completion of that time
consuming operation.

This rule is consistent with existing S DPI usage as well. To be SEMI compliant, SVVConnect HDL:
side DPI callsisould observe all HDiside rules as stated in secti.6.2The DPI SysmVerilog layer.

5.6.3.2 SV-Connect examples

5.6.3.2.1 Example of inbound HVL to HDL) function pair

HDL- side: export -TOPKFunction xyanfiguest er _
function bit xyz_master_configure;
input int unsigned val;
config_reg = val;
if (bus_active) return 1;
else return O;
endfunction

HVL- side: i mport -TOPIcontext function bit svc_xyz_master _co
input chan dle scope,
input int unsigned val);

5.6.3.2.2 Example of outbound HDL to HVL) function pair

HDL- side: i mport -TOBPIlcontext function bit xyz_master _interr
input int unsigned icode);

HVL- side: export -TOPFunction svc_Xxyz_master _interrupt;
function void svc_xyz_master_interrupt;
input chandle scope;
input int unsigned icode;
XYZMaster_Proxy me = XYZMaster_Proxy::userData[scope];
me.interrupt(icode);
endfunction

5.6.3.3 SystemVerilog HVL-side DPI package rules

All SystemVeilog HVL-side DPI imported function declarations and exported DPI function implementations
shall be inside packages.

Each package that contains DPI functions that pair with 48lde DPI functions shall declare a special
imported DPI function used to setgkage scope within the C layer using the following construction of its
name:

SCEMI 2.4 92

i mport -TOPIcontext funct i SetBcopeo i<phckage mame>();

Again, note use of defaulivc prefix which can be overridden with usgpecified prefix as mentioned in
section5.6.3.11 Naming convention

This svcSetScope_<package name>() imported DPI function is void and has no arguments. It must be

called before any outbound (HEdidetoHM.-si de) call s to any of that packac
made. The C layer must provide the implementation of this imported function. It gets and stores within the C

layer the calling scope of thevcSetScope_<package name>() imported DPI functiorwhich is the scope

of the package. Whenever an outbound call to the pa
scope shall be used to set the scope of the exported function call.

5.6.3.4 Binding and scopehandling

The HVL-side testbench includes thedtination scope of exported DPI functions on the Hidle that it calls
as the first argument of its paired imported functions. Scopes in SystemVerilog are storedcaartyiee
which is the DPI equivalent of thev@id * type. In C, scopes returned aingut to DPI utility functions such
assvGetScope() are of typesvScope (part of SystemVerilog LRM for DPI interface) which isyaedef

of void *

To assist in mapping DPI scopes to path names and vice ver&oi@\éct utilizes direct calling of the
standard SystemVerilog DPI C utility functions as imported DPI functions,

svScope svGetScopeFromName(const char *name);
const char *svGetNameFromScope(svScope scope);

NOTE: Because these two functions are automatically provided by any SystemVerilog cosiplidator that supports the DPI
standard and they have ANSI C (a.keax t e r n) sy6bol linkage, they can be directly declared in-EBYL code as
import i D R C ofunctions. This can be quite useful for determining scope handiemitalization time thatcan be
subsequently and repeategigssed to the user defined API functions

A packagesvdpi.sv shall be provided by the EDA tool which declamsSetScopeFromName() and
svGetNameFromScope() a s i mpoCa fibwPdti ons. So, HVL -Gormeck ages i
transactors can import this package as follows:

import svdpi ¥

5.7 Time access

5.7.1.1 Time access from the C side

To access current simulation time on the C side two calls 8gstenVerilog standard VPI interface APl can
be used to get current time and glbbrecision. In any SGHII 2 implementation that already supports VPI,
no additional work is needed on the part of the implementation to support time access:-NMi 3@knhction
and pipe feature setthetwo calls must be implemented least as descrédxl below at a minimupto provide
time access capability.

Thevpi_get_time() call can be used to obtain current time expressed in simulation units:

void vpi_get_time(vpiHandle obj, s_vpi_time *time_p);

Specifically for SCEMI 2 compliance thevpi_get ti me() call does not need to be implemented in its
entirety. The only minimum requirement is tlvat _get_time() accepts alULL value for theobj argument
and a valid pointer to as vpi_time structurefor thetime_p argument.

The vpi_get() call can be usetb obtain the global precision units in which current time is expressed:

SCEMI 2.4 93

int vpi_get(int prop, vpiHandle obj);

Specifically for SCEMI 2 compliance thevpi_get()

The only minimum requirement is thapi_get()

argument and a value NfJLL for theobj argument.

call does not need to be implemented in its entirety.
accepts a value ofvpiTimePrecision

for the prop

Given the ability to obtain current time in simulation units and the precision of those simulation units, one can
easily derive current time exgssed in any units desired.

Herei s

an exampl e

of

a

s ma l

ireference

that supports the two VPI calls in the manner described above:

static
static

static uint64_t precisionConverterForNs[] = {

h
/]

uint64_t timescaleFactorForNs;

bool useMul tiplyForNs;

1000000000LL,// O 1 s

100000000LL, // -1 100 ms
10000000LL, // -2 10ms
1000000LL, // -3 1ms
100000LL, // -4 100 us
10000LL, // -5 10us
1000LL, // -6 1lus
100LL, // -7 100 ns

10LL, // -8 10ns

1LL, // -9 1ns

10LL, // -10 100 ps
100LL, // -11 10 ps
1000LL, // -12 1ps
10000LL, // -13 100fs
100000LL, // -14 10fs
1000000LL // -15 1fs

/ Cal

void i

}

| this at init time.

nitialize(){
timescaleFactorForNs =

precisionConverterForNs[
useMultiplyForNs = vpi_get(vpiTimePrecision,NULL) >=

1

/I Call this whenever you want time in NS

uint64_t timelnNs() const {
static s_vpi_time vtime = { vpiSimTime, 0, 0, 0.0 };

vpi_get_time(NULL, &vtime);

uint64_t vtime64 = (((uint64_t)vtime.high)

useMultiplyForNs == true ?

vtime64 * timescaleFactorForNs :
vtime64 / timescaleFactorForNs ;

- vpi_get(vpiTimePrecision,NULL)];
-9 ? true : false;

<< 32) | vtime.low;

code

l'ibrary”

In an emulation environment it will be up to timaplementer'snfrastructure to keep the C side's internal

notion of ime properly updated with the emulator's notion.

SCEMI 2.4

94

For streaming threads, the current time access would only be guaranteed at "synchronization points" defined by
flushes of DPI pipes.

Note: Support for this is required by both the function icddirfaceandthe pipesbasednterface

5.8 Pipesbasedinterface: transaction pipes
5.8.1 SCE-MI 2 pipescompliance

Implementation providerstating compliance with SCHI pipesbasedinterfacemust provide at least one

implementation of &idePipesblocking €£manticscompi ant wi th ATransactien Pipes
Aware I nterfaced0 specb84cation as defined in section

SCEMI 2 C-side Pipes blocking semantics are intended to be implemented using a thread aware application to
be detemined by the EDA vendor or the end user. This implies thatd€ Pipes blocking calls may be
implemented by an EDA vendor using their threaded application of choice, or by an end user using their
threaded application of choice. SGH 2 defines the intdace and the semantics of SGE 2 C-side
Transaction Pipes API: blocking, ThreAgvare interface in sectiob.8.4

SCEMI 2 requires that EDA vendors implementings@e Pipes blocking interface will allow end users
implemening their Gside Pipes blocking interface to use theisi@e Pipes blocking implementation together
with the EDA vendor &&ide Pipes noblocking interface.

The above specification does not define which threaded applications EDA vendors should use for
implementing SCEMI 2 C-side Pipes blocking interface. This decision is left to the EDA vendor.

The above specification requires the EDA vendor to allow end users to use the EDA vendor provided Pipes C
side nonrblocking interface for implementing their thoeaware blocking interface.

The above specification allows using both ersér Cside Pipes blocking interface and EDA vendesi@e
Pipes norblocking interfaces together if end users choose to do so.

The mechanism by which EDA vendor allows end usechtmse between their own implementation of Pipes
C-side blocking interface and EDA vendor providegi@e Pipes blocking interface is left to the EDA vendor.

5.8.2 Transaction pipes

Transaction pipes are implemented using an &Rl the Gside, the transactiopipes API consists of ANSI C
functions. On the HDL side the API consists of functions and tasks defined in a SystemMézitiage

There is also an API to access pipes from SystemVerilog HVL testbenches. It has semantics very similar to the
C-side APlhowever, it is a SystemVerilog class based API which is described in more detail ins8c2i@n

C++ HVL testbenches can be used also. C++ class based API is described irbs@@idn
5.8.2.1 C-Sidetransaction pipes API
The Cside transaction pipes API consists entirely of the following set of function declarations:

Configuration, query functions:

SCEMI 2.4 95

void *scemi_pipe_c_handle(I return: pipe handle
const char *endpoint_path); // input: path to HDL endpoint instance

svBit scemi_pipe_set_eom_auto_flush(
void *pipe_handle, // input: pipe handle
svBit enabled); // input: 1=enable autoflush; 0= disable autoflush

typedef void (*scemi_pipe_notify_callback)(
void *context); Il inpu t: C model context

typedef void *scemi_pipe_notify_callback_handle;
/I Handle type denoting registered notify callback.

scemi_pipe_notify_callback_handle scemi_pipe_set_notify_callback(
void *pipe_handle, // input: pipe handle
scemi_pipe _notify_callback notify_callback,
/I input: notify callback function

void *notify_context , /l input: notify context
int callback_threshold); /I input: threshold for notify callback function
void scemi_pipe_clear_notif y_callback(
scemi_ pipe_ notify_ callback_ handle notify_ callback_ handle);

/I input: notify callback handle

void *scemi_pipe_get_notify_context([Ireturn: notify context object pointer
scemi_pipe_notify callback_ handle notify_ callback_ handle);
Il input: notify handle

void scemi_pipe_put_user_data(
void *pipe_handle, // input: pipe handle

void *user_key, I/l input: user key
void *user_data); [/l input: user data
void *scemi_pipe_ get_user_data(
void *pipe_handle, // input: pipe handle
void *user_key); Il input: user key

int scemi_pipe_get_bytes_per_element(// return: bytes per element
void *pipe_handle); /I input: pipe handle

SvBit scemi_pip e_get_direction(//return: 1 for input pipe, 0 for output pipe
void *pipe_handle); /I input: pipe handle

int scemi_pipe_get_depth(/I return: current depth (in elements) of the pipe
void *pipe_handle); // input: pipe handle

Input pipe inerface:

SCEMI 2.4

void scemi_pipe_c_send(
void *pipe_handle, /I input: pipe handle

int num_elements, /I input: #elements to be written
const svBitVecVal *data, // input: data
sv Bit eom); [/l input: end - of - message marker flag

void scemi_pipe_c_send_hytes(
void *pipe_handle, /I input: pipe handle

int num_elements, I/l input: #elements to be written

const char *data, /[input: data

svBit eom); [/l input: end - of - message marker flag
void scemi_pipe_c_flush(

void *pipe_handle) ; /I input: pipe handle
int scemi_pipe_c_try_send(Il return: # requested elements

1l that are actually sent

void *pipe_handle, /I input: pipe handle

i nt byte_offset, /I input: byte offset into data, below

int num_elements, /l input: #elements to be sent

const svBitVecVal *data, // input: data

svBit eom); /l'input: end - of - message marker flag
int scemi_pipe_c_try_s end_bytes(// return: #requested elements

I that are actually sent

void *pipe_handle, /l input: pipe handle

int byte_offset, /I input: byte offset into data, below

int num_elements , I/l input: #elements to be sent

const char *data, // input: data

SvBit eom); // input: end - of - message marker flag
int scemi_pipe_c_try flush(// return: indication of flush success

void *pipe_handle); /[input: pipe handle
int scemi_pipe_c_can_send(/I return: #elements that can be sent

void *pipe_handle): [/l input: pipe handle

Output pipe interface:

SCEMI 2.4

void scemi_pipe_c_receive(
void *pipe_handle, /I input: pipe handle
int num_elements, /I input: #elements to be read
int *num_elements_valid, // output: #elements that are valid
svBitVecVal *data, // output: data

sv Bit *eom); // output: end - of - message marker flag
void scemi_pipe_c_receiv e_bytes(

void *pipe_handle, /I input: pipe handle

int num_elements, /I input: #elements to be read

int *num_elements_valid, // output: #elements that are valid

char *data, // output: data

svhit *eom); /l output: end - of - message marker flag

int scemi_pipe_c_try_receive(// return: #requested elements

1 that are actually received
void *pipe_handle, /I input: pipe handle
int byte_offset, 1 input: byte offset into data, below
int num_elements, /I input: #elements to be read
svBitVecVal *data, // output: data
svBit *eom); // output: end - of - message marker flag
int scemi_pipe_c_try_receive_bytes(// return: #requested elements
1 that are actually received
void *pipe_handle, /I input: pipe handle
int byte_offset, /I input: byte offset into data, below
int num_elements, /I input: #elements to be read
char *data, // output: data
svBit *eom); /l output: end - of - message marker flag

svBit scemi_pipe_c_in_flush_state(// return: whether pipe is in Flush state
void *pipe_h andle); /[input: pipe handle

int scemi_pipe_c_can_receive(// return: #elements that can be received
void *pipe_handle); // input: pipe handle

5.8.2.2 HDL -side API
The HDL-side API is fully defined by the following two SystemVerilog intedfateclarations.

Input pipe interface:

SCEMI 2.4

interface scemi_input_pipe();

parameter BYTES_PER_ELEMENT = 1;
parameter PAYLOAD_MAX_ELEMENTS1;
parameter BUFFER_MAX_ELEMENTS = < implementation specified>;
parameter VISIBILITY_MODE = 0; /l must be set to either 1 or 2
I set to 1 for immediate visibility
I/ set to 2 for deferred visibility
parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;
/I Can have a value =1 or
/I BUFFER_MAX_ELEMENTS

localparam PAYLOAD_MAX_BITS
= PAYLOAD_MAX_ ELEMENTS * BYTES _PER_ELEMENT * 8;

task receive(
input int num_elements, /I input: #elements to be read

output int num_elements_valid, / / output: #elements that are valid
output bit [PAYLOAD_MAX_BITS1:0] data, // output: data
output bit eom , // output: end - of - message marker flag

input int sync_control = IS_CLOCKED_INTF);
/I input: Sync control kind:

/I0 - block asynchronously
/'l - syncon clock posedge
/[2 - syncon clock negedge

<imp lementation goes here>
endtask

function int try_receive(// return: #requested elements
1 that are actually received
input int byte_offset, // input: byte_offset into data, below
input in t num_elements, // input: #elements to be read
output bit [PAYLOAD_MAX_BITS1:0] data, // output: data

output bit eom); // output: end - of - message marker flag
<implementation goes here>
endfunction
function in t can_receive(); // return: #elements that can be received
<implementation goes here>
endfunction

modport receive_if(import receive, try_receive, can_receive);

endinterface

Output pipe interface:

SCEMI 2.4

99

interface scemi_output_pipe();
parameter BYTES_PER_ELEMENT =1,
parameter PAYLOAD_MAX_ELEMENTS1;
parameter BUFFER_MAX_ELEMENTS = < implementation specified>;
parameter VISIBILITY_MODE = 0; /l must be set to either 1 or 2
I set to 1 for immediate visibility
I/l set to 2 for deferred visibility
parameter NOTIFICATION_THRESHOLD = BUFFER_MAX_ELEMENTS;
/I Can have a value =1 or
/I BUFFER_MAX_ELEMENTS

localparam PAYLOAD_MAX_BITS= PAYLOAD _MAX_ELEENTS * BYTES_PER_ELEMENT * 8;

task send(
input int num_elements, I/l input: #elements to be written
input bit [PAYLOAD_MAX_BITS1:0] data, // input: data
input bit eom , /l input: end - of - message marker flag
input int sync_control = IS_CLOCKED_INTF);
/I input: Sync control kind:

/I0 - block asynchronously
/'l - syncon clock posedge
/[2 - syncon clock negedge
<implementation goes here>
endtask
task flush (

input int sync_control = IS_CLOCKED_INTF);
/[input: Sync control kind:

//0 - block asynchronously
/I'1 - syncon clock posedge
/l2 - syncon clock negedge

<implementation goes here>
endtask

funct ion int try_send(// return: #requested elements
i that are actually sent
input int byte_offset, // input: byte_offset into data, below
input int num_elements, // input: #elements to be sent
inpu t bit [PAYLOAD_MAX_BITS1:0] data, // input: data

input bit eom); /l input: end - of - message marker flag

<implementation goes here>

endfunction

function int try_flush(); /l return: 1 if pipe is successfully flushed

/1 i.e. an empty pipe

<implementation goes here>

endfunction

function int can_send(); // return: #elements that can be sent
<implementation goes here>

endfunction

modport send_if(import send, flush, try_send, can_s end);

endinterface

5.8.2.3 SystemVerilog HVL-side transaction pipes API

The SystemVerilog HViside transaction pipes API follows thesitle API very closely except that all the
API functions are encapsulated as methods of a SystemVerilog class which is fisetf dea package.

The entire SystemVerilog HVkide APl package is listed below. The functions and tasks in the class
definitions are declared astern . Their contents are defined by the implementer of the standard API.

SCEMI 2.4 100

There is a common base clasemi_pipe which contains all functions common to both input and output
pipes. For send interfaceslass scemi_dynamic_input_pipe extendsclass scemi_pipe with send
related functions to transport dynamic byte arrays @ads scemi_static_input_pipe further extends
class scemi_dynamic_input_pipe with sendrelated functions to transport packed bit vectors. For receive
interfaces, class scemi_dynamic_output_pipe extends class scemi_pipe with receiverelated
functions to transport dynamic byte arrays afeks scemi_static_output_pipe further extend<lass
scemi_dynamic_output_pipe with receiverelated functions to transport packed bit vectors.

The SCEMI SystemVerilog HVL-side API package given below should be contained in a file called
scemi_pipes_pkg.sv

SCEMI 2.4 101

1

//Eackage scemi_pipes_pkg \

I

/I This package contains the SystemVerilog HVL - side API class definition
/[for SCE - MI 2 pipes.

I -

package scemi_pipes_pkg; // {

“ifndef SCEMI_PAYLOAD_MAX_BYTES
‘define SCEMI_PAYLOAD_MAX_BYTES 512
“endif

1
/I class scemi_pipe_notify_callback \
1

/I This is a small helper class to assist in the handling of notify callbacks

/I whenever the HVL side of the pipe is notified as per the semantics of

/I the pipe state diagrams.

1

/I SV notify callbacks work very similarly to C API notify callbacks.

1

/I The base class version of this notify callback function does nothing.

/l However, because it is virtual, it can be overridden by any application

/I callback handler class derived from this class scemi_pipe_n otify_callback.
1

/I A callback object then can be registered with the pipe API using

// the scemi_pipe::set_notify_callback() shown in the class scemi_pipe

/I API below.

1

clas s scemi_pipe_notify_callback; // {
virtual function void notify();
/I Do nothing.
endfunction

endclass // }

1

/I class scemi_pipe \
1

/I Common API functions.

1

class scemi_pipe; // {

I
/I Constructor

I

/I This is the co nstructor for the pipes API class. It is passed the

/I pathname to the HDL - side endpoint of the pipe instance to which it
// should bind.

I

extern function new(
input string hdl_path); / input: Path to HDL - side pipe instance.

I
/I ::get_direction()

/I ::get_depth()

/I ::bytes_per_element()

SCEMI 2.4 102

I
/I These functions return the direction, depth, and bytes

/'t espectively of this pipe instance. These parameters are statically
/I determined by parameterizations of the HDL side interface of the pipe.
I

extern function bit get_direction();
/I return: 1 for input pipe, 0 for output pipe

extern function int get_depth();
Il return: current depth (in elements) of the pipe

extern function int get_bytes_per_element(); // return: bytes

I e

/I ::set_eom_auto_flush()

1

/I This function configures the pipe to either enable or disable
/l eom auto - flush mode.

1

extern function bit set_eom_auto_flush(
/l'ret urn: Current eom auto - flush configuration
input bit enable); // input: 1 to enable / 0 to disable

I
/I ::in_flush_state()
I

extern function bit i n_flush_state();
/I return: O if pipe is not in flush state,
I 1 if pipe is in flush state.

I
/I ::set_notify_callback()

/I ::clear_notify_callback()

1

/I Register(der egister) a notify callback object.
1

extern function void
set_notify_callback(
scemi_pipe_notify_callback notify_callback,
Il input: notify callba
int callback_threshold =0);
I/l input: threshold for notify callback

extern function void
clear_notify_callback(scemi_pipe_notify_callback notify_callback);

endclass // }

1

/I class scemi_dynamic_input_pipe \

1

- per - element

- per - element

ck object

/I Input pipe API functions. This variation of input pipe takes dynamic byte
/[array payload arguments to the ::send() and ::try_send() functions.

class scemi_dynamic_input_pipe extends scemi_pipe; // {

SCEMI 2.4

extern function new(

input string hdl_path); // input: Path to HDL - side pipe instance.

103

T S

I ::send_bytes()

I

/I This is the basic blocking send function for a transaction input pipe.
/I The passed in data is sent to the pipe. If necessary the calling thread
/I is suspended until there is room in the pipe.

I

/I The data payload is represented as a dynamic array of bytes.

I

/l The eom argument is a flag which is used for the user specified
/l'end - of - message (eom) indication. It can be used for example to mark the

I/l end of a frame containin g a sequence of transactions.
1
extern task send_bytes(
input int num_elements, /I input: #elements to be written
const ref byte unsigned data[], // input: data payload
inpu t bit eom); /I input: end - of - message marker flag
1
/I :flush()
1
/I Flush pipe data. This function will cause the calling thread to suspend
/I until the last element sent to t he pipe is confirmed to have been
/ received on the HDL side.
1

extern task flush();

1
/I ::try_send_bytes()

1

/I This is the basic non - bloc king send function for a transaction
I/l input pipe.

I

/I The data payload is represented as a dynamic array of bytes.

1
/I The number of elements actually sent is returned. It is possible
/ that there is not enough room in the p ipe for the entire set of

/l requested elements to be sent. In this case the number of elements

I/ returned will be less than the number requested to be sent, and

// the application may wish continue to retry the send at future points

/l'in time until all the desired elements are sent. It is possible for

/I it to do so without changing the input payload reference by simply

/l bumping the byte_offset argument in each new call attempt by the amount
/I successfully sent in the previ ous call.

1

extern function int try_send_bytes(// return: number of elements
1 actually sent
input int byte_offset, /I input: byte offset within data array
input int num_elements, I/l input: #elements to be sent
const ref byte unsigned data[], // input: data payload
input bit eom); /l input: end - of - message marker flag

I —mmmmmeeeeee-
I/ ::try_flush()
I

/I This is the basic non - blocking flush function for a transaction

/I input pipe. A flush is successful if the last element sent to the

/I pipe is confirmed to have been received on the HDL side.
I

SCEMI 2.4 104

extern function bit try_flush();
/I return: O if flush is not successful, 1 if flush is successful

I
/I :can_send()

I

/I This f unction returns the maximum number of elements that would

I currently fit in the pipe. This number could be passed immediately to a

/I call to any blocking send function and it would be guaranteed to return

/l immediately without requiring a block. Similarly if it is passed

/I immediately to a call to any non - blocking send function it would be
/l guaranteed to return the same number of elements requested indicating

/I a successful send of that full number of elements.

I

extern function int can_send();
/I return: #elements that would fit in the pipe

endclass // }

1

/Il class scemi_dynamic_output_pipe \

1

/I Output pipe API functions. This variation of output pipe takes dynamic byte
/I array payload arguments to the ::receive() and :try_receive() functions.

1

class scemi_dy namic_output_pipe extends scemi_pipe; // {

SCEMI 2.4

extern function new(

input string hdl_path); // input: Path to HDL - side pipe instance.
1
/I ::receive_bytes()
1
/I This is the basic blocki ng receive function for a transaction
I/l output pipe.
I
/I The data payload is represented as a dynamic array of bytes.
I
/l The eom argument for this call is an output argument. It is set to the
/I same setting of the flag passed on the ::send() call by the producer

/I endpoint of the pipe as described in the standard. Thus it can be used
// by the caller to query whether the current read is one for which an eom
/I was specified when the data was sent on the producer e ndpoint.
I

extern task receive_bytes(
input int num_elements, /I input: #elements to be read
output int num_elements_valid, // output: #elements that are valid
ref byte unsi gned data[], // output: data payload
output bit eom); /l output: end - of - message marker flag

I
/I ::try_receive_bytes()

1

/I This is the basic non - blocking receive functi on for a transaction
I/l output pipe.

I

/I The data payload is represented as a dynamic array of bytes.

I

/I The number of elements actually received is returned. It is possible

105

// there are not enough elements in the pipe to satis fy the request.
/I In this case the number of elements returned will be less than the

/I number requested to be received, and the application may wish continue

/I to retry the receive at future points in time until all the desired

/l elemen ts are received. It is possible for it to do so without changing

/Il the output payload reference by simply bumping the byte_offset argument

// in each new call attempt by the amount successfully received in the

/I previous call.

I

extern function int try_receive_bytes(
Il return: # of elements actually received
input int byte_offset, // input: byte offset within data array

input int num_eleme nts, // input: #elements to be received

ref byte unsigned data(], // output: data payload

output bit eom); /l output: end - of - message marker flag
1
/I ::can_receive()
1

/I This function returns the maximum number of elements are currently

/l visible in the pipe. This number could be passed immediately to a

/I call to any blocking receive() function and it would be guaranteed to

/I return immediately without re quiring a block. Similarly if it is passed

/I immediately to a call to any non - blocking receive function it would be
/I guaranteed to return the same number of elements requested indicating

/I a successful receive of that full number of element S.

1

extern function int can_receive(); // return: #elements visible in the pipe
endclass // }

I
I class scemi_static_input_pipe \
I

/I Input pipe API functions. This variation of input pipe takes static bit
I/l vector payload arguments to the ::send() and ::try_send() functions.
1

class scemi_stati c_input_pipe #(int STATIC_PAYLOAD_MAX_BYTES =
"SCEMI_PAYLOAD_MAX_BYTES) extends scemi_dynamic_input_pipe; // {

extern function new(
input string hdl_path); // input: Path to HDL - side pipe instance.

/I mmmmmmm s s
/I ::send_bits()
I

/I This is the basic blocking send function for a transaction input pipe.

/I The passed in data is sent to the pipe. If necessary the calling thread

Il is suspended until there is room in the pipe.

I

/I The data payload is represented as a statically sized bit vector.

I

/I The eom argument is a flag which is used for the user specified

/l'end - of - message (eom) indication. It can be used for example to mark the
/l end of a frame containing a sequence of transactions.

1

extern task send_bits(
input int num_elements, /I input: #elements to be written
input bit [STATIC_PAYLOAD_MAX_BYTES*8 - 1:0] data,

SCEMI 2.4 106

sent

// input: data payload

input bit eom); /l'input: end - of - message marker flag
1
I/ ::try_send_hits()
1
/I This is the basic non - blocking send f unction for a transaction
/I input pipe.
I
/I The data payload is represented as a statically sized bit vector.
I
/I The number of elements actually sent is returned. It is possible
// that there is not enough room in the pipe fo r the entire set of

/I requested elements to be sent. In this case the number of elements

Il returned will be less than the number requested to be sent, and

/I the application may wish continue to retry the send at future points

/l in time until all the desired elements are sent. It is possible for

/I it to do so without changing the input payload reference by simply

/I bumping the byte_offset argument in each new call attempt by the amount
/I successfully sent in the previous ca

1

extern function int try_send_bits(
/I return: number of elements actually

input int byte_offset, /I input: byte offset within data array
input int num_elements, /I input: #elements to be sent
input bit [STATIC_PAYLOAD_MAX_BYTES*8 - 1:0] data,
// input: data payload
input bit eom); /l input: end - of - message marker flag

endclass // }

1

/I class scemi_static_output_pipe \

1

/I Output pipe API functions. This variation of output pipe takes static bit

/I vector payload arguments to the :receive() and ::try_receive() functions.
I

class scemi_static _output_pipe #(int STATIC_PAYLOAD_MAX_BYTES =

SCEMI 2.4

"SCEMI_PAYLOAD_MAX_BYTES)
extends scemi_dynamic_output _pipe; Il {

extern function new(

input string hdl_path); // input: Path to HDL - side pipe instance.
I
/I ::receive_bits()
I
/I This is the basic blocking receive functions for a trans action
I/l output pipe.
1
/I The data payload is represented as a statically sized bit vector.
1
/l The eom argument for this call is an output argument. It is set to the
/I same setting of the flag passed on the ::send() call by t he producer

/I endpoint of the pipe as described in the standard. Thus it can be used
I/l by the caller to query whether the current read is one for which an eom
/I was specified when the data was sent on the producer endpoint.

I

extern task receive_bits(
input int num_elements, /I input: #elements to be read

107

output int num_elements_valid, // output: #elements that are valid
output bit [STATIC_PAYLOAD_MAX_BYTES*8 - 1:0] data,
// output: data payload
output bit eom); /l output: end - of - message marker flag

I
Il ::try_receive_bits()

I

Il These are the b asic non - blocking receive functions for a transaction

/l output pipe.

I

/I The data payload is represented as a statically sized bit vector.

I

/I The number of elements actually received is returned. It is possible

I/l there are no t enough elements in the pipe to satisfy the request.

/l'In this case the number of elements returned will be less than the

/I number requested to be received, and the application may wish continue

/I to retry the receive at future points in ti me until all the desired
/I elements are received. It is possible for it to do so without changing

/I the output payload reference by simply bumping the byte_offset argument

/l in each new call attempt by the amount successfully received in the

/I previous call.

I

extern function int try_receive_bits(
I return: # of elements actually received
input int byte_offset, // input: byte offset within d ata array
input int num_elements, // input: #elements to be received
output bit [STATIC_PAYLOAD_MAX_BYTES*8 - 1:0] data,
// output: data payload
output bit eom); /l output: end - of - message marker flag

endclass // }

endpackage : scemi_pipes_pkg // }

Note the following points:

f

SCEMI 2.4

Notably missing are the SystemVerilog H\éide API equivalents of the following calls found in the
C API:

scemi_pipe_c_handle()

o This is not needed because ituieglent purpose, which is to bind the H\gide to the
HDL-side endpoint of the pipe, is handled by thew() constructor in the API class. As
with the C API function,scemi_pipe_c_handle() , the::new() constructor takes the
pathname to the HDkide pipeinterface endpoint to establish the binding.

scemi_pipe_set_notify_context()
scemi_pipe_get_notify_context()
scemi_pipe_set_user_data()
scemi_pipe_get_user_data()

o0 These are not needed because they were originally intended to accommagdbjpeaof
threading system that might be needed for a C testbench modeling environment in order to
adapt thehread neutralAPI to thethread awareblocking API. Thatis notnecessary for the
SystemVerilog HVLside API since SystemVerilog has its own iragdithreading system.

0 There is a need for notify callback mechanism to allow for a use model where the HVL side
endpoint can feed or unload the pipe completely inside the notify callback without the
requirement for any thread synchronizatidine C/Syster@ API will already support this
capability with the above calls. However, for the SV API, tkidandled with a notify
callback object function calletlass scemi_pipe_notify_callback described below.

108

1 The remaining calls have identical semantics to th&PCtherefore no further explanation is needed
above what is seen in the sections describing the C API.

1 For input and output pipes there are two variations of each: dynamic and static. The main difference is

that classescemi_dynamic_input_pipe andscemi_ dynamic_output_pipe take dynamic byte
array data payload arguments, whereas class&emi_static_input_pipe and
scemi_static_output_pipe take static bit vector data payload arguments.

An end user wishing to use the either of the static variations gfiples will also be able to use the
send and receive functions with dynamic byte payloads since the static pipe variants derive from the
dynamic variants. End users wishing to only use the dynamic pipes can use those classes directly.

1 For classescemi_dyna mic_input_pipe and scemi_dynamic_output_pipe all data payload
arguments in the ::send_bytes() , .receive_bytes() , try_send_bytes() , and
itry_receive_bytes() methods are references (ref's) to open arrayssijned byte . This

gives the maximum flexibity in terms of generalizing the API to leave payload sizes unspecified, yet
use ref's to facilitate the most efficient data payload transfers that minimize the need for #ttemory
memory copying.

1 For classesscemi_static_input_pipe and scemi_static_output_p ipe all data payload
arguments in the :send_bits() , oreceive_bits() , sitry_send_bits() , and
:itry_receive_bits() methods are fixed size packed bit vectors. This provides an alternative use

model that may need to work with packed bit vectors ratheruthaigned byte arrays. This use model
does have the restriction that the payload sizes cannot exce&dAmMe&C_PAYLOAD_MAX_BYTES
parameter specified in the class definition.

9 For classesscemi_dynamic_input_pipe and scemi_dynamic_output_pipe because data
payload arguments in thesend_bytes() , .receive_bytes() , utry_send_bytes() , and
ity _receive_bytes() methods are references (ref's) to open arrays of unsigned byte it is

necessary to clearly define a position mapping between a byte at a given indtheit¥L-side
array and its corresponding slice position in the Hidde data payload bit vector. Assuming an HVL
side byte index this mapping is specified as follows:

HVL-sidedatali] maps to HDLsidedata[i*8+7 : i*8]

If data shaping is deployed thedering above will still be followed but will be mapped out over multiple
pipe calls in either direction.

The classscemi_pipe_notify_callback has a virtual function that does nothing. However, it can be
overridden if an application wants to be notifiednatification points indicated on the pipe state diagram.
Implementations of this function then can be used to service the pipe and allow for asidd\itallback
based use model that does remjuire thread synchronization.

To take advantage of this capi#lpj the application can register callback objects by calling the pipe's
::set_notify_callback() function and register notify callback objects by calling the pipe's
::clear_notify_callback() function. This is consistent with the usage in the C API. Sefingd.8.2.1

for more details.

5.8.2.4 C++ HVL -side transaction pipes API

The C++ HVL:side transaction pipes API follows thesitle API very closely except that all the API functions
are encapsulated as methods of a C++ class.

The enire C++ HVL-side API package is listed below. The functions are empty. Their contents are defined
by theimplementeiof the standard API.

SCEMI 2.4 109

#i

/*

nclude oOsvdpi . ho

* class scemi_pipe

*

*

*/

This class defines members and methods that are used both in input
and output pipe.

class scemi_pipe {

h
/*

I
/I Constructor
I

scemi_pipe (

const char *hdl_path); // input: Path to HDL endpoint instance

1
/I Destructor
1

~scemi_pipe();

1
/I Common API function s
1

svBit get_direction(); // return: 1 for input pipe, O for output pipe
int get_depth(); // return: current depth (in elements) of the pipe
int get_bytes_per_eleme nt(); // return: bytes per element

scemi_pipe_notify_callback_handle set_notify_callback (
I return: notify callback handle
scemi_pipe_notify_callback notify_callback,
/l input: notify callback function
void *notify_context, // input notify_context
int callback_threshold = 0);
/I input: threshold for notify callback function

void clear_notify_callback
scemi_pipe_notify_callback_handle notify_callback_handle);
/l input: notify callback handle

void *get_notify_context(
scemi_pipe_notify_callback_handle notify_callback_handle);
/l input: notify callback handle

int put_user_data([l return: 0O if successful, 1 if not
void *user_key, /l input: user key
void *user_data); // input: user data

void *get_user_data(/l return: user data
void *user_key); /I input: user key

svBit set_eom_auto_flush(

/ return: current eom auto - flush configuration

svBit enable); 1 input: 1=enable autoflush
Il O=disable autoflush

* class scemi_input_pipe

SCEMI 2.4

pipe

110

*

*

This class defines methods that are used explicitly in input pipe

class scemi_input_pipe: public scemi_pipe {

h
/*

1
/I Constructor
1

scemi_input_pipe(
const char *hdl_path); // input: Path to HDL endpoint instance

Il e e
/I Destructor
I

~scemi_input_pipe();

I
/I API functions for input pipe
e e e
void send(

int num_elements, /I input: #elements to be written

const svBitVecVal *data, // input: data

svBit eom); /I input: end - of - message marker flag
void flu sh();
int try_send(Il return: #requested elements that are

1 actually sent

int byte_offset, /I input: byte offset into data, below

int num_element s, /[input: #elements to be sent

const svBitVecVal *data, // input: data

SvBit eom); /[input: end - of - message marker flag
int try_flush(); /l return: indication of flush success
int can_send(); I/ return: #elements that can be sent

* class scemi_output_pipe

*

*/

This class defines methods that are used explictly in output pipe.

class scemi_output_pipe: public scemi_pipe {

SCEMI 2.4

i
/I Constructor
i

scemi_output_pipe(
const char *hdl_path); // input: Path to HDL endpoint instance

R e
/I Destructor
1l

~scemi_output_pipe();

I
/I API functions for output pipe
I -

111

void receive(

int num_elements, /I input: #elements to be read
int *num_elements_valid, // output: #elements that are valid
svBitVecVal *data, // output: data
svBit eom); // output: end - of - message marker flag
int try_receive(I/l return: #requrested elements
I that are actually received
int byte_offset, I/l input: byte offset into data, below
int num_elements, /I input: #elements to be read
svBitVecVal *data, // output: data
svBit *eom); // output: end - of - message marker flag
svBit pipe_in_flush_ state(); // return: whether pipe is in Flush
state
int can_receive(); /I return: #elements that can be
received
2

5.8.3 Pipe handles
On the HDL side, a pipe interface endpoint is defined using the SystemMatéo@ceconstruct.

Oncethe HDL side has instantiated a pipe interface, all pipe operations in the HDL code are done by calling
functions and tasks defined within that interface.

The path to this endpoint interface instance uniquely identifies a specific pipe endpoint in aferddthly to
which the Gside can bind. Using this path, the C application can derive a handle that is used in all operations
involving the Gside endpoint of the pipe by calling the following function:

void *scemi_pipe_c_handle(I return: pipe handl e
const char *endpoint_path); // input: path to HDL endpoint instance

Note: The pipe handle can be derived once at initialization time and reused many times without having to set scop@aedch time
requiring the internal implementation to do a loolhgsed on the scope and the pipe ID to retrieve the internal data structure
associated with a pipe on each and every pipe operation.

Once a pipe handle is derived, it can be used as the handle argument for all the function calls described in the
following sections to perform operations to theiGe endpoint of the designated pipe.

The arguments consist of:

1 endpoint_path T the hierarchical path to the interface instance representing the opposite HDL
endpoint of the pipe

5.8.4 Transaction pipes API: blocking, thread-aware interface
5.8.4.1 Transaction input pipesi blocking operations

5.8.4.1.1 Blocking input pipe accesgunctions
The bold text in thénput pipeSystemVerilogterface declaratiobelowshows théblocking receivdunction:

SCEMI 2.4 112

interface scemi_input_pipe();

task receive(
input int num_elements, /I input: #elements to be read
output int num_elements_valid, // output: #elements that are valid
output bit [PAYLOAD_MAX_BITS - 1:0] data, // output: data
output bit eom , // output: end - of - message marker flag
input int sync_control = IS_CLOCKED_INTF);
/I input: Sync control kind:

/I0 - block asynchronously
/I'l - syncon clock posedge
/I2 - syncon clock negedge

<implementer supplied implementation goes here>
endtask

endinterface

The infrastructure will supply the implementation of thesk- essentially it is &uilt-in function and its
declaration can be placed in an implementation provided file that defines the interface which can be compiled
as a separate unit along with all of the user's other modules, packages and interfaces.

The aguments consist of:

1 num_elements - number of elements to be read on this receive operatian vary from call to call
which again, facilitates data shaping

1 num_elements_valid - number of read elements that are valid the case of data shapiog

flushing this can be less than the requested number of bytes reaadhtlad/or flushcomes at some

residual number of elements that does not fill out an entire request (see 5exdahj.

data - auser suppliedarget bitvectorto which the requestetim_elements will be deposited

eom- a flag that can serve as an esfdmessage marker on a variably sized message transmitted as a

sequence of transactions

1 Thedata andeomarguments always have an output direction whenvieggefrom a pipe.

f
f

On the C side endpoint of amput pipe two blocking sendunctiors that differ only in the data type used to
represent the pipe payload gpeovided by the infrastructuréThe blocking send function that accepts an
svBitVecval arrayis declared as follows:

void scemi_pipe_c_send(
void *pipe_handle, /l input: pipe handle

int num_elements, /I input: #elements to be written
const svBitVecVal *data, // input: data
sv Bit eom); /l'input: end - of - message marker flag

The blocking send function that accepts a byte array is declared as follows:

void scemi_pipe_c_send_bytes(
void *pipe_handle, /I input: pipe handle

int num_elements, /I input: #elements to be written
const char *data, /[input: data
svbit eom); // input: end - of - message marker flag

Note the following properties:

1 pipe_handle -i the handle identifying the specific pipe as derived from the unique path to the HDL
endpoint of the pipe (sesection 5.8.3.

1 num_elements -i number of elements to @nton this send operatioican vary from call to call
which again, facilitates data shaping

SCEMI 2.4 113

1 data -i inthe case of scemi_pipe_c_seral(Jser suppliedit vectorfrom which the requested
num_elements will be obtained and sent to the pjpe the case of scemi_pipe_c_send_bytes() a user
supplied byte array from which the requested num_elements will be obtained and sent to the pipe

1 eom-i aflag that can serve as an esfemessge marker on a variably sized message transmitted as a
sequence of transactions
Bit ordering of the payload conveyed by the data argument is defined as follows. In the case of
scemi_pipe_c_send() bit ordering is fixed by the SystemVerilog definitionseBitvecval . In
the case ofcemi_pipe_c_send_bytes() the bits are ordered such that the byte with the lowest
index in the byte array, i.edata[0] , map to the least significant bits of the bit vector on the
SystenVerilog side. In general, bits 7 down to Ddata[n] map to bits8n + 7 down to8n of the bit
vector on theSystenverilog side.

Thedata andeomarguments always have an input direction when sending to a pipe.

Theeomflag is a user defined flag. Whatever value is passed to the send endpoénpipiethvill be

received at the receive endpoint. This is useful for creatinggéntbssage markers in variable length
messages or indicating flush points to the other end. In certain cases it can also be used to force flushes
on a pipe (see descriptionaditoflush in sectios.8.4.3.3.

= =

On the Gside endpoint of arinput pipe the flush function provided by the infrastructure is declared as
follows:

void scemi_pipe_c_flush(
void *pipe_handle) // input: pipe handle

Notethe following properties:

1 pipe_handle -the handle identifying the specific pipe as derived from the unique path to the HDL
endpoint of the pipe (sesection5.8.3.

5.8.4.2 Transaction output pipesi blocking operations

5.8.4.2.1 Blocking output pipe accesgunctions
The bold text in th@utput pipeSystemVerilogmterface declaratiobelowshows thesend and fluslfunctions
which make up the API for the blocking operations of the HDL endpdiabh output pipe:

interface scemi_output_pipe();

task send(
input int num_elements, // input: #elements to be written
input bit [PAYLOAD_MAX_BITS - 1:0] data, // input: data
input bit eom); /l input: end - of - message marker flag
< implementer supplied implementation goes here>
endtask

task flush;
< implementer supplied implementation goes here>
endtask

endinterface

The infrastructure will supply the implementation of these taskssentially they arbuilt-in functions and
their declarations can be placed in an implementation provided file that defines the interface which can be
compiled as a separate unit along with all of the user's other modules, packages and interfaces.

The arguments for theend() task consits of:

1 num_elements - number of elements to enton thissendoperation- can vary from call to call
which again, facilitates data shaping

SCEMI 2.4 114

f
f

data - auser suppliedbit vector fromwhich the requestedim_elements will be obtained and sent

to the pipe

eom- a flag that can serve as an esfemessage marker on a variably sized message transmitted as a
sequence of transactions

Thedata andeomarguments always have an input direction when sending to a pipe.

On the C side endpoint of autput pipe two blocking receivefunctions that differ only in the data type used
to represent the pipe payload grevided by the infrastructur@d he blocking receive function that accepts an
svBitVecval arrayis declared as follows:

void scemi_pipe_c_receive(

void *pipe _handle, /I input: pipe handle

int num_elements, /I input: #elements to be read

int *num_elements_valid, // output: #elements that are valid
svBitVecVal *data, // output: data

sv Bit *eom);

The blocking receive functiothat accepts a byte array is declared as follows:

void scemi_pipe_c_receive_bytes(

void *pipe_handle, /I input: pipe h andle

int num_elements, /I input: #elements to be read

int *num_elements_valid, // output: #elements that ar e valid
char *data, I/ output: data

svbit *eom);

Note the following properties:

f
f

pipe_handle - the handle identifying the specific pipe as derived from the unique path to the HDL
endpoint of the pipe (see secti@nB.3.

num_elements - number of elements to lveadon thisreceiveoperation- can vary from call to call
which again, facilitates data shaping

num_elements_valid - number of read elements that are valid the case of data shaping this can
be less than the regsted number of bytes read if t@an and/or flushcomes at some residual number
of elements that does not fill out an entire request (see séciich3.4.

data 1 in the case ofcemi_pipe_c_receive() auser suppliedargetbit vectorto which the
requestecum_elements will be depositedin the case ofcemi_pipe_c_receive_bytes() a

user supplied target byte array to which the requested num_elements will be deposited. It is the
responsibility of the user to ensure the menallycated for data is large enough to accept the
requested data.

eom- a flag that can serve as an esfdanessage marker on a variably sized message transmitted as a
sequence of transactions

Bit ordering of the payload conveyed by the data argumentiisedieds follows. In the case of
scemi_pipe_c_receive() bit ordering is fixed by the SystemVerilog definitionseBitVecVal

In the case ofcemi_pipe_c_receive_bytes() the bits are ordered such that the byte with the
lowest index in the byte array, i.€ata[0] , map to the least significant bits of the bit vector on the
SystenVerilog side. In general, bits 7 down to Odafa[n] map to bits8n + 7 down to8n of the bit
vector on theSystenVerilog side.

Thenum_elements_valid , data andeomarguments alwaysave an output direction when
receiving from a pipe.

5.8.4.3 Flush semantics

The SCEMI transaction pipes API supports two types of flushing operations for pipes:

f
f

SCEMI 2.4

explicit flushing
implicit flushing

115

5.8.4.3.1 Explicit flushing of pipes
When anexplicit flushoccurs on a ie, it allows the producer of transactions previously sent on that pipe to
suspend execution until all -tmansit messages have been consumed by the consumer. The
scemi_pipe_c_flush() call (see sectio®.8.5.5.2 is used to flush transaction input pipesieflush()
task (see sectidh.8.4.3.) is used to flush transaction output pipes.

5.8.4.3.2 Implicit flushing of pipes
Transaction pipes also support implicit flushing. If a pipe is enabled for implicit flushing, flugiies
automatically occur oend-of-messagé¢eom). This mode is calledutoflush.

If a pipe hasautoflushmode enabledwhen a blocking send is performed on that pipéh the endof-
messagéeom) flag set, the effect is as if an explicit blocking flushsveambined with that send. The blocking
send will not return until the consumer has fully received all messages in the pipe up to and inclusbng the
tagged message being passed to it.

Producers of transactions to pipes can still call the explicit pigh functions at any time even on pipes that
have autoflush mode enabled.

5.8.4.3.3 Enabling autoflush
The following call lets an application indicate tlattoflushmode is enabled or disabled for a pipe designated
by a given handle. This configuration call is algg initiated only from the C side for both input and output

pipes.
For any given pipe on which this mode is enablesteai_pipe_c/hdl_send() call with aneomvalue of 1
will have the same effect as ikaemi_pipe_c/hdl_flush() call was made followinghiat data send call.

svBit scemi_pipe_set_eom_auto_flush(
void *pipe_handle, // input: pipe handle
svBit enabled); // input: enable/disable

Note the following properties:

1 pipe_handle - the handle identifying the specific pipe as derived from theuengath to the HDL
endpoint of the pipe (see secti@nB.3.

1 enabled - flag that indicates enable (1) or disable (0) this mode.

1 The call returns the previous mode setting

1 The pipe will remain in its current mode until any sedpsent call to this function that changes the
mode.

1 By default, pipes are not in autoflush mode.

1 Ifacallis made tacemi_pipe_set_eom_auto_flush() to enable autoflush mode when the pipe

is not empty, the new setting will go into effect only on the pée operation and will not cause a
flush of any existing elements in transit through the pipe. For example, if a pipe with a capacity of 10
contains 5 elements andgeemi_pipe_set eom_auto_flush() call then enables autoflush mode,
no flush is performeeven if 1 or more of those 5 elements bas set. However, if a call is
subsequently made to send 1 more element withdindit set, all 6 elements are then flushed.

1 The return value is the previous setting of eom autoflush mode (1 if enabled, 0 if not)

If autoflush mode is enabled and a call is made to one of théblooking pipe send functions {§ide
scemi_pipe_c_try_send() or HDL-sidetry_send()) with the eom bit enabled, it will have the same
effect on the internal state of the pipe as if the esponding noiblocking flush function (&ide
scemi_pipe_c_try_flush() or HDL-sidetry_flush() respectively), was called immediately after the
send call.

5.8.4.3.4 Using flushingwith data shaping
When a flush (either implicit or explicit) occurs on a pipe usediéda shaping, special considerations must be
made if a producer endpoint of a pipe does data send operation with a small@ements than that
requested by the subsequent data receive operation at the consumer endpoint of that pipe. If the pgak is flush
on that send operation, in order to satisfy the flush the consumer will see a return efements_valid
that is smaller than its requestadm_elements . This is because, in order to satisfy the producer's flush

SCEMI 2.4 116

condition, the consumer's blocking re@ecall must have satisfactorily returned from its read operation even if
that read operation was asking for a larger number of elements than had been sent as of the time of the flush.

A similar issue applies when specifying a-pnatureeom as explainedn section4.8.8.1 Using thenozzle
example from that section, if a consumer requests €l€Ments but the producer only sends @éements
before flushing (either implicitly usingom or explicitly), the request to read 1@@mentswill return with a
num_elements_valid of only 75 thus leaving the pipe empty as required by the flush agwifor

5.8.4.4 Blocking pipes ceexistance model

SCEMI requires thatmplementeprovided CGside ppes blocking interfacshall not prevent user prigled G
side ppes blocking interfacéom co-existingwith the implementer Gide ppes norblocking interface.

Note: SCEMI C-side Pipes blocking semantics are intended to be implemented using a thread aware application to be
determined by either the ptementer or the end user. This implies thatid® Pipes blocking calls may be implemented in a tool
using their threaded application of choice, and by an end user using their threaded application of chdited&Es the
interface and the semantiosSCEMI C-side Transaction Pipes API: blocking, Thredare interface in sectiob.8.4

SCEMI requires that a tool implementing-€ide Pipes blocking interface will allow end users implementing
their Gside Pipes blockininterface to use their-8ide Pipes blocking implementation together with the tool
implementer Gside Pipes nolocking interface.

Note: The above specification does not define which threaded applicatiphegrientershould use for implementing SE¥!
C-side Pipes blocking interface. This decision is left to the implemenhier.above specification requires the implementer to
allow end users to use the implementer provided Pipe&lé€C norblocking interface for implementing their threadare
blocking interface.The above specificatiomlso allows using both endiser SCEMI C-side Pipes blocking interface and
implementerC-side Pipes noiblocking interfaces together if end users choose to do so.

The mechanism by whidmplementersllows end users to chee between their own implementation of Pipes
C-side blocking interface arichplementeiprovided Gside Pipes blocking interface is left to ihgplementer

5.8.5 Basictransaction pipes API: non-blocking, thread-neutral interface

Everything described so far hpertained to the blocking pipes. Additionally it is desirable to support a non
blocking pipes interface that can be usethieadneutralimplementations.

The nonblocking pipe interface calls have the following semantics.

I Threadneutral- no threadawaeness required in the implementation
1 Is sufficiently compatible withthA c c el | er a Sy SSysem&GLM imeirfacé naodel thaeitd s
can be directly used to implemehtc c e |l | er a Sy st e msILM compliantaterfasces 6 s Sy st
1 Support user coiguration and query of buffer depth
1 Provide primitive norblocking operations which can be used to build higher level interfaces that have

blocking operations implemented in selected threading systems
5.8.5.1 Pipe semantics

5.85.1.1 Visibility modes
Transaction pipes supp two modes of operations:

91 deferred visibility
1 immediate visibility

In deferred visibilitymode, there is a defined lag between when elements are written to a pipe by the producer
and when they are actually visible and available for consumption by ttsummer. In this mode, while the
producer has execution control, it may place one or more elements in the pipe via send operations, but the
consumer cannot see any of the elements until it has been notified that the pipe is either filled or flushed.
Convergly, once a pipe is filled or flushed, the producer cannot place any new elements in the pipe until it has
been notified that all the previously added elements were consumed by the consumer via receive operations.

In immediate visibilitymode, any elemestwritten by the producer are immediately visible and are available
for consumption whenever the consumer gains execution control even if notification has not occurred. In this

SCEMI 2.4 117

mode, while the producer has execution control, it may place one or more &leémehe pipe via send
operations. Even without the producer filling or flushing the pipe, the consumer can consume any of the
elements in the pipe when it has execution control. Conversely, when execution control is switched from the
consumer back to thgroducer, the producer may add new elements to the pipe even when previously added
elements in the pipe have not been completely consumed by the consumer visopeeitiens.

To place a pipe in immediate visibility mode, the fowtBIBILITY_MODE parameter of the pipe interface

must be set to the value 1. To place a pipe in deferred visibility model|StBLITY _MODE parameter of the

pipe interface must be set to the value 2. By default, this parameter is set to 0, denoting an illegal pipe
interfae with unspecified mode of operation.

5.8.5.1.2 Notifications
As described in Sectidn8.2.1 thescemi_pipe_set_notify_callback() function is used to register user
defined notify callback functions for pipes. There are two types ofrgnagpable callback functions, user
defined"notify ok to sent function for an input pipe, and aiser defined notify ok toreceive"function for
an output pipe. The "notify operations" shown above correspond to calling these programmable finantions
within the infrastructure to notify the applicationsitle that it has beconserviceable A producer becomes
serviceable when it can place elements in the pipe via send operations; while a consumer becomes serviceable
when it can consume elements from iiyge via receive operations.

For the deferred visibility mode, even if a consumer gains execution control, it will not have access to any
elements in the pipe until it has been notified that the producer has filled or flushed the pipe. Similarly, even if
a producer gains execution control, it will not have access to any empty space in the pipe until it has been
notified that the consumer has emptied the pipe. Notification callback conditions must be met before exclusive
access to pipe elements (or emptyacg is allowed to switch between producer and consumer. For the
immediate visibility mode, whenever a consumer gains execution control, it is always free to access any
elements in the pipe and is not required to wait for notification. Similarly, wheaguwerducer gains execution
control, it is always free to access any empty space in the pipe and is not required to wait for notification.

If any of the notify operations occur on thesfdle of a pipe (i.e. notify of an input pipe's producer side or
notify of an output pipe's consumer side), the registered notify callback functions of that pipe (if any) would be
called immediately. In this case "immediately" means that the semantics of the notify callback has identical
semantics to an HDL process callingianported pure DPI function.

More specifically "immediately” means that thetify callback must occur at the same instant in simulation
time as the notlockingtry_send() ortry_receive() call that triggers it. However, there are two differing
semantics gaerning when a pipetsotify callback is called depending on whether it isuanlockedpipe or a
clockedpipe (see sectiob.8.5.4.1for a detailed description of the difference between a clocked pipe and an
unclocked pipe).

1 For clocked pipes:the term "immediately" above means that the notify callback on thigleC
must be calledwithin the same call chaias the HDLside try_send() , try_receive() or
try_flush() call that triggered it. The tereall chain in this case, has thame meaning as the
call chain of an import DPI callrooted on HDLSystenVerilog code and spanning intocde. It
is possible that the notify callback on theside may itself update the pipe using a -bdocking
pipe call in response to the notify. Hove#, the HDLside try_send() , try_receive() or
try_flush() call will not see the updated state before it returns. This insures thatriteer of
elements senteturned by thary_send() call is consistent with the number that would have
been indicated witltan_send() , and that thenumber of elements receivedturned by the
try_receive() call is consistent with the number that would have been indicated with
can_receive() . This also maintains consistency with the semantics of the state diagram in
figure Figure 5.11of section5.8.5.4.1

1 For unclocked pipes:the term "immediately" above means that the notify callback on tki€eC
is not called within the same call chaias the HDLside try send() , try_ receive() or
try_flush() call that triggered it. Rather it is called from a separate process triggered from a
local SystemVerilog event in the HEdide pipe interface implementation. And this local event

SCEMI 2.4 118

5.8.5.1.3

SCEMI 2.4

itself is triggered just prior to the return thg_ send() , try_receive() , or try_flush()
call.

General concepts andsemantic definitions for pipes

Buffer Capacity (BUFFER_MAX_ ELEMENTS): Buffer capacity is defined as the maximum
number of elements that can exist in the buffer before a blocking send wik bloa non
blocking send will fail Buffer capacity is the same as the staBiJFFER_MAX_ELEMENTS
parameter defined in the SystemVerilog pipe interface definition. default value of
BUFFER_MAX_ELEMENTSimplementatiordefined but can be overridden the userlf specified

it must be greater than PAYLOAD_MAX_ELEMENTS or an error will occur.

Notification Threshold: The notification threshold defines the minimum number of elements that
must be added to an empty pipe before a consumer is notified ovedrftom a full pipe before a
producer is notified. The notification threshold can be specified via the static parameter,
NOTIFICATION_THRESHOLD It can be set to either 1 ®UFFER_MAX_ELEMENT®\I other

values will result in an error.The default notitation threshold for a pipe is
BUFFER_MAX_ELEMENT3SNhen the notification threshold is set BWFFER_MAX_ELEMENTS
notifications due to send and receive operations that occur when the pipe becomes full or empty,
i.e. after adding BUFFER_MAX_ELEMENTSlemens to an empty pipe or removing
BUFFER_MAX_ELEMENT&ements from a full pipe. When the notification threshold is set to 1,
notifications due to send and receive operations occur immediately, i.e. after adding at least one
element to an empty pipe or renmoy at least one element from a full pipe. Notifications due to
flush operations are not affected by the notification threshold setting. The state diagram in the next
section will describe the precise semantics of when notifications occur with respersiootd
settings.

Producer, consumer: The state diagram shown in the next section is generalized to refer to the
producer sideand theconsumer sidevithout referring specifically to input pipes or output pipes.

In this way, the same diagram can gendisicand symmetrically describe either pipe direction.
This implies the following:

o Foran input pipe, the producer side is thai@e and the consumer side is the Hfitle
o For anoutput pipe, the producer side is the HBile and the consumer side is thsi@e

Serviceable: A pipe endpoint becomes serviceable if the pipe enters a state where that endpoint
can successfully move elements to or from the pipe. Of course, execution control must first be
acquired before elements can be added by a producer ovedrop a consumer from the pipe.

For a pipe in deferred visibility mode:

o The praucer side is serviceable only for the states within the left bounded box in the
state diagram:
Empty/BufferingEmpty/Pending Receive

0 Theconsumer side is serviceable only fhe states within the right bounded box in the
state diagram:
Full/Buffering, Full/Pending Send~lush

For a pipe in immediate visibility mode:

o The praucer side is serviceable whenever there is room to add at least one more element
to the pipe, excepthen the pipe is in thElushstate.

0 Theconsumer side is serviceable whenever there is at least one element in the pipe. The
pipe can be in any state in the state diagram.

Input actions / output consequencesEachpipe transition is caused by an input aatand may
involve an output consequence.

Here are the possible input actions:

119

SCEMI 2.4

0 prod.try_send()[adds] T producer adds one or more elements to the pipe but does

not fill it.

0 prod.try_send()[fills] T producer adds elements and fills the pipe but does not
fail.

0 prod.try_send()[fails] T producer attempts to add more elements than can be

placed in the pipe (i.e. exceeds buffer capacity) and thus fills the pipe before the request
can be satisfied.

0 prod.try_flush() i producer attempts to flush the pipe.

O cons.try _re ceive()[removes] T consumer removes one or more elements from the
pipe but does not empty it.

0 cons.try_receive()[empties] I consumer removes elements and empties the pipe
but does not fail.

0 cons.try_receive()[fails] T consumer attempts to remove more eletsghan
can be provided by the pipe and thus empties the pipe before the request can be satisfied.

The only possible output consequences of a pipe state transition are notify operations which can
only occur in the specific pipe transitions that go frone aide being notified to the other side
being notified (i.e. transitions crossing the bounded box boundaries in the state diagrams):

0 /notify prod i the consumer side notifies the producer side.
0 /notify cons i the producer side notifies the consumer side.

In the state diagram, an additional modifier indicates how an input action's behavior depends on
the notification threshold. If a send operation is performed, the number of elementdlthatin

the pipeafterthe send operation is compared to the ttoksHf a receive operation is performed,

the number of empty element space thiéitbe in the pipeafterthe receive operation is compared

to the threshold.

A >=" modifier denotes the state transition that will occur if the indicated action occurgshehen
number of elements or empty space in the pipe after a send or receive operation is greater than or
equal to the notification threshold.

A '<" modifier denotes the state transition that will occur if the indicated action occurs when the
number of elemds or empty space in the pipe after a send or receive operation is less than the
notification threshold.

For the prod.try_send()[adds] action described above, an annotation with a threshold
modifier has the following modified meanings:

0 prod.try_send()[adds >=] 1 producer adds one or more elements to the pipe but
does not fill it,and the nurber of elements that will be in the pipe after the send
operation is greatethanor equal tothe threshold

0 prod.try_send()[adds<] T producer adds one or more elemdntthe pipe but does
not fill it, and the nurner of elements that will be in the pipe after the send operation is
less tharthe threshold

For thecons.try_receive()[remove] action described above, an annotation with a threshold
modifier has the folloing modified meanings:

0 cons.try_receive()[removes>=] I consumer removes one or more elements from
the pipe but does not empty #&nd the nurber of empty space that will be in the pipe
after the receive operation is greatdan or equal to the threshold

0 cons.try_receive()[removes<] T consumer removes one or more elements from
the pipe but does not empty @nd the nuroer of empty space that will be in the pipe
after the receive operation is less the threshold

120

SCEMI 2.4

If a pipe transition is annotated thia mode of operation, such as immediate visibility mode or
deferred visibility mode, that transition applies only for that specified mode. If an action is shown
on a transition with no threshold modifier, that transition applies regardless of theatiotific
threshold setting.

Note: Notifications to the Gide will result in callback functions being called only when a-non
NULL callback function pointer is currently registered.

Blocking vs. nonblocking operations: All pipe operations in the state diagrame shown in
terms of norblocking operations. However, semantics of blocking operations can be inferred from
this since it is possible to describe blocking operations in terms ablocking operations For
example, the same condition that causes abhmrking operation to fail will cause a blocking
operation to block. A blocking operation can be thought of as a loop of-hlocking operation

and a wait on an implied event until the condition for unblocking is satisfied. Update of the event
is implied to occur on the notify operation. Examples oki@e reference implementations of
blocking operations built from nelnlocking API calls are shown #ection5.8.5.3

Push/pull operation: Thisis used to describe behavior ofiag@pwhen a producer is trying push

data through a pipe or a consumer is tryingptdl data through a pipe. Push/pull operation has
slightly different behaviors depending on the current number of elements in a pipe compared to its
notification thresholdetting

If a producer send operation is successfuld it fills the pipe (i.e. the action of
prod.try_send()[fills]), this will not trigger a notify to the consumer side unless there is a
pending receive in effect (i.e. the pipe is in #mapty/pending eceivestatg. In this case the
pending receive is attempting to "pull" data from the pipe and therefore wants to be notified as
soon as the pipe becomes full.

Similarly, if a consumer receive operation is successful and it empties the pipe (i.e. theohctio
cons.try_receive()[empties]), this will not trigger a notify to the producer side unless
there is a pending send in effect (i.e. the pipe is infutlpending sendstate). In this case the
pending send is attempt i ergfordvwants'tpbe sotfiéd ad sobnaas t o
the pipe becomes empty.

Note the following additional property of push/pull operation:

For deferred mode only, if a pipe is in tampty/bufferingstate and the consumer requests data,

this will cause a transition tthe empty/pending receivetate since the request fails and there is
now a pending receive. This is true regardless of the number of elements that may have been
added to the pipe up to this point while it was inghgpty/bufferingstate.

However, theres a slight difference in operation between the following two scenarios while the
pipe is in theempty/bufferingstate just prior to the point at which the consumer receive operation
occurs:

1. Pipe is in theempty/bufferingstate and the pipe is not full
2. Pipeis in theempty/bufferingstate and the pipe is full

In scenario #1, the transition to teenpty/pending receiveate still occurs and, as shown in the
diagram, no notification occurs. From this point if the producer then precisely fills the pipe (i.e.
does not fail) a notification will occur to the consumer and the pipe will transition to the
full/buffering state.

In scenario #2, the transition to teenpty/pending receiv&ate still occurs and, as shown in the
diagram, no notification occurs. However this case the notification will occur only when the
producer does yet another send, causing a fail. In this case the pipe would transition to the
full/pendingsend state.

So, as can be seen from above description, slightly different notification behslliarccur
depending on which of the above two scenarios is in effect at the time the consumer makes its
receive request.

121

t

Coherency of pipe states is expected to be maintained by the implementation identically on both sides of the
pipe. That is, the proder side's view of the pipe state must be identical to the consumer side's view at all
times. Notify operations only occur on transitions to different states and never to the same state. Therefore
maintaining this coherency across the two sides is praetizhefficient. It also guarantees minimal notifies
across the &ide/HDL-side boundary and prevents an "oscillation" of repeated "try" operations such as a
polling operation, causing excessive notifies across the link in cases whpipethemains intte same state.

5.8.5.1.4 Pipe states
Figure 5.11below specifies the precise operation of a transaction pipe. The formal definitions of the states and
the actions and consequences associated withateetsansactions are described in the text that follows.

Figure 5.11 Pipe State Diagram

A Note: In this diagram, states from which input actions occur vitha i | sdtaflons indicate that special semantics need to
be considered depending on whether the pipedgierred visibility mode or immediate visibility mode.

1 For deferred visibility mode, from these states, onfifais] is possible for the indicated action type. If
prod.try_send() operation is attempted from tflesh state, full/buffering stater full/pending
send statdadds]or [fills] actions are not applicable (they will always fail). Similarly, if
cons.try_receive() operation is attempted from tleenpty/pendingnd empty/pendintgceive
state [removes]or [empties]actions are not applicable.

1 Forimmediate visibility mode, iprod.try_send() operation is attempted from tflash state
[adds]or [fills] actions are not applicable (they will always fail). However, frometigty/buffering
stateandempty/pending receive stafeemovesland[emptied actions are possible if the pipe is not
empty. Similarly from thdull/buffering stateandfull/pending sendtate [adds]and(fills] actions are
possible if the pipe is not full.

The following are descriptions of the pipe states:

SCEMI 2.4 122

