
 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 1

PRIMER

Using the Register Layer
in UVM

Author(s):

Janick Bergeron

Based on work by:

Janick Bergeron
John Choi

Brett Kobernat

Version 1.3 / Jan 13, 2011

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 2

Introduction
The UVM Register Layer is set of base classes that can be used to automate the
creation of an object-oriented abstract model of the registers and memories inside a
design. It also includes pre-defined tests to verify the correct implementation of the
registers and memories as specified. It may also be used to implement a functional
coverage model to ensure that every bit of every register has been exercised.

This primer is designed to teach how to create a register model of the registers and
memories in a design, how to integrate this model in a UVM verification environment
and how to verify the implementation of those registers and memories using the pre-
defined tests. It will also show how the register model can be used to model the
configuration and DUT driver code so it can be reusable in a system-level
environment. Finally, it shows how the register model is used to implement
additional functional tests.

This primer assumes that you are familiar with UVM. It also assumes that the
register model is written manually: this will seem initially odd as register models
were designed to be automatically generated and thus the coding style was not
designed to be congenial as a register modeling style. The language used to specify
the registers and memories is outside the scope of this primer.

The DUT used in this primer was selected for its simplicity. As a result, it does not
require the use of many elements of the register library. The DUT has enough
features to show the steps needed to create a register model to verify the design.

This document is written in the same order you would develop a register model,
integrate it in a verification environment and verify your design. As such, you should
read it in a sequential fashion. You can use the same sequence to create your own
register model and use it to verify your design.

The source code for the primer can be found in the following directory:

$UVM_HOME/examples/registers/primer

The DUT
The Design Under Test used in this primer is an AMBA™ Peripheral Bus (APB) slave
device. It is a simple single-master device with a few registers and a memory, as
described in Table 1. The data bus is 32-bit wide.

Table 1: Address Map

Address Name

0x0000 CHIP_ID

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 3

0x0020 INDEX

0x0024 DATA

0x1000-0x1FFF SESSION[256]

0x2000-0x2FFF DMA RAM

Tables 2 through 5 define the various fields found in each registers. “RW” indicates a
field that can be read and written by the firmware. “RO” indicates a field that can be
read but not written by the firmware.

Table 2: CHIP_ID Register

Field Reserved PRODUCT_ID CHIP_ID REVISION_ID

Bits 31-28 27-16 15-8 7-0

Access RO RO RO RO

Reset 0x0 0x176 0x5A 0x03

Table 3: INDEX Register

Field Reserved Index

Bits 31-8 7-0

Access RO RW

Reset 0x0000 0x0000

Table 4: DATA Register

The DATA register is an indirect register. It accesses one of the TABLE 32-bit
registers, as specified by the value in the INDEX register. For example, reading the
DATA register while the INDEX register contains the value “7”, the value of TABLE[7]
is read, and writing the DATA register while the INDEX register contains the value
“35”, the value of TABLE[35] is written.

Field Data

Bits 31-0

Access RW

Table 5: TABLE[256] Registers

The TABLE registers are not directly visible in the DUT address space. They are
accessed indirectly via the INDEX and DATA registers.

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 4

Field TABLE[INDEX]

Bits 31-0

Access RW

Table 6: SESSION[256] Register File

The SESSION register file array contained 256 instances of the SRC and DST
registers.

Address Register

0x1000 SESSION[0].SRC

0x1008 SESSION[0].DST

0x1010 SESSION[1].SRC

0x1018 SESSION[1].DST

… …

0x1FF0 SESSION[256].SRC

0x1FF8 SESSION[255].DST

Table 7: SRC and DST Registers

Field PORT IP

Bits 63-48 47-0

Access RW RW

Step 1: Register Model
IMPORTANT: this step is normally automatically performed by the code generator.

The first step is to create the abstract model of the registers in the DUT. This primer
details the register model of the CHIP_ID register. The model for the other registers
can be similarly constructed and are left as an exercise to the reader. Refer to
Section 9.5 of the UVM User’s Guide for more details.

A class, based on the uvm_reg class, models the register type. It contains an
instance of the uvm_reg_field class for each field the register contains. The name of
the register model class is technically arbitrary but it is recommended that it reflect
the name or type of the register.

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 5

The name of each field instance handle is technically arbitrary but it is recommended
that they be named according to the name of the respective field in the register
specification. Furthermore, they are specified as public and with a rand attribute
(where relevant) so their value may be later randomized and constrained.

The constructor must follow the standard uvm_object constructor style, with an
instance name. It simply passes that argument and type-specific configuration
parameters to the parent constructor.

A build() method must be implemented. Inside the method, each instance of the field
class is created using the UVM class factory. Each field is then configured by calling
its configure() method. This defines the field’s access properties, relative position in
the register, etc…

File: reg_slave.sv

class reg_slave_ID extends uvm_reg_reg;
 uvm_reg_field REVISION_ID;
 uvm_reg_field CHIP_ID;
 uvm_reg_field PRODUCT_ID;

 function new(string name);
 super.new(name, 32, UVM_NO_COVERAGE);
 endfunction

 function void build();
 REVISION_ID = uvm_reg_field::create(“REVISION_ID”,null,
 get_full_name());
 REVISION_ID.configure(…);
 CHIP_ID = uvm_reg_field::create(“CHIP_ID”,null,
 get_full_name());
 CHIP_ID.configure(…);
 PRODUCT_ID = uvm_reg_field::create(“PRODUCT_ID” ”,null,
 get_full_name());
 PRODUCT_ID.configure(…);
 endfunction

 function void configure();|
 super.configure
 endfunction
endclass : reg_slave_ID

Step 2: Memory Model
IMPORTANT: this step is normally automatically performed by the code generator.

The next step is to create the abstract model of the memories in the DUT.

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 6

A class, based on the uvm_mem class, models the memory type. The name of the
memory model class is technically arbitrary but it is recommended that it reflect the
name or type of the memory.

The constructor must follow the standard uvm_object constructor style, with an
instance name. It simply passes that argument and type-configuration parameters to
the parent constructor.

File: reg_slave.sv

class mem_slave_DMA_RAM extends uvm_reg_mem;

 function new(string name);
 super.new(name, ‘h400, 32, “RW”, UVM_NO_COVERAGE);
 endfunction

endclass: mem_slave_DMA_RAM

Step 3: DUT Model
IMPORTANT: this step is normally automatically performed by the code generator.

The next step is to create the abstract model of all the register in the DUT.

A class, based on the uvm_reg_block class, models the all the registers and
memories in the DUT. The name of the register model class is technically arbitrary
but it is recommended that it reflect the name or type of the model. The register
model abstraction class contains a property for each register and memory that refers
to an instance of the register or memory abstraction class of the appropriate type for
that register. Registers arrays are modeled using arrays of abstraction classes.

The name of each register and memory instance handle is technically arbitrary but it
is recommended that they be named according to the name of the respective
register and memory in the address map specification. Furthermore, they are
specified as public and with a rand attribute (where relevant) so their value may be
later randomized and constrained. It may also optionally contain references to field
instances. These allow fields to be accessed independently of the registers they are
located in.

The constructor must follow the standard uvm_object constructor style, with an
instance name. It simply passes that argument and type-specific configuration
parameters to the parent constructor.

File: reg_slave.sv

class reg_block_slave extends uvm_reg_block;
 reg_slave_ID ID;
 ...

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 7

 mem_slave_DMA_RAM DMA_RAM;

 function new(string name);
 super.new(name, UVM_NO_COVERAGE);
 endfunction
 ...
endclass: reg_block_slave

A build() method must be implemented. Inside the method, each instance of the
register classes is created using the UVM class factory. Each register abstraction
class is then configured by calling its configure() method then built by calling its
build() method. This instantiates the register abstraction classes and configures them
at the proper address offset, access policy, etc…

File: reg_slave.sv

class reg_block_slave extends uvm_reg_block;
 reg_slave_ID ID;
 ...
 mem_slave_DMA_RAM DMA_RAM;

 function new(string name);
 super.new(name, UVM_NO_COVERAGE);
 endfunction

 function build();
 ID = reg_slave_ID::type_id::create(“ID”);
 ID.configure(this, null);
 ID.build();
 ...
 DMA_RAM = mem_slave_DMA_RAM::type_id::create("DMA_RAM");
 DMA_RAM.configure(this);
 DMA_RAM.build();
 ...
 endfunction
endclass: reg_block_slave

Step 4: Physical Interface
IMPORTANT: this step is performed by the integrator.

A register model is not aware of the physical interface used to access the registers
and memories. It issues abstract register operations at specific addresses but these
abstract operations need to be executed on whatever physical interface is provided
by the DUT.

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 8

An adapter class must be provided to translate between the abstract register
operation issued by the register model and the physical transaction executed by the
bus sequencer. The adapter must be extended from the uvm_reg_adapter class and
implement the reg2bus() conversion method.

File: ../common/apb/apb_rw.sv

...
class reg2apb_adapter extends uvm_reg_adapter;

 `uvm_object_utils(reg2apb_adapter)

 function new(string name = "reg2apb_adapter");
 super.new(name);
 endfunction

 virtual function uvm_sequence_item
 reg2bus(const ref uvm_reg_bus_op rw);

 apb_rw apb = apb_rw::type_id::create("apb_rw");

 apb.kind =
 (rw.kind == UVM_READ) ? apb_rw::READ : apb_rw::WRITE;
 apb.addr = rw.addr;
 apb.data = rw.data;

 return apb;
 endfunction

endclass

Step 5: Top-Level Module
IMPORTANT: this step is performed by the integrator.

The DUT must be instantiated in a top-level module and connected to protocol-
specific interfaces corresponding to the agent that drives and monitors the DUT’s
signals. The DUT and the relevant interfaces are instantiated in a top-level module.

File: tb_top.sv

module tb_top;
 bit clk = 0;
 ...
 apb_if apb0(clk);

 slave dut(apb0, ...);
 ...
endmodule: tb_top

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 9

This top-level module also contains the clock generators and reset signal.

File: tb_top.sv

module tb_top;
 bit clk = 0;
 bit rst = 0;

 apb_if apb0(clk);
 slave dut(apb0, rst);

 always #10 clk = ~clk;
endmodule: tb_top

Step 6: Verification Environment
IMPORTANT: this step is performed by the integrator.

The register model is instantiated in the environment’s build() method using the UVM
class factory. To enable vertical reuse, the register model is only instantiated if it has
not already been specified from a higher-level environment.

File: tb_env.sv

class tb_env extends uvm_component;

 `uvm_component_utils(tb_env)

 reg_block_slave model;
 apb_agent apb;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();
 if (model == null) begin
 model = reg_block_slave::type_id::create("model",this);
 model.build();
 model.lock_model();
 end
 apb = apb_agent::type_id::create("apb", this);
 endfunction
 ...
endclass.

The next step is to associate the bus sequencer with the corresponding address map
in the register model. This sequencer will provide access to the DUT’s physical
interfaces. The bus sequencer is associated, along with the required adapter class,

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 10

with its corresponding address map in the register model in the connect() method of
the verification environment. This association is only performed if the register model
is not embedded in a higher-level register model.

File: tb_env.sv

class tb_env extends uvm_component;

 `uvm_component_utils(tb_env)

 reg_block_slave model;
 apb_agent apb;

 function new(string name, uvm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();
 if (model == null) begin
 model = reg_block_slave::type_id::create("model",this);
 model.build();
 model.lock_model();
 end
 apb = apb_agent::type_id::create("apb", this);
 endfunction

 virtual function void connect();
 if (regmodel.get_parent() == null) begin
 reg2apb_adapter reg2apb = new;
 model.default_map.set_sequencer(apb.sqr, reg2apb);
 model.default_map.set_auto_predict(1);
 end
 endfunction

endclass.

Note how the implicit response prediction is enabled using the set_auto_predict()
method. This causes the register model to predict the content of the registers based
on the read and write operations it performs. It is the simplest prediction mode albeit
not as reusable. The explicit prediction mode requires the additional integration of a
monitor, which is currently outside the scope of this primer. Using a monitor updates
the register model based on all observed read and write operations, not just those
performed through the register model.

Step 7: The Test Runner
IMPORTANT: this step is performed by the integrator.

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 11

A program or module is required to instantiate the top-level environment, bind the
virtual interfaces to the agents and run the actual test.

File: test.sv:

program test;

import uvm_pkg::*;
import apb_pkg::*;

`include "reg_model.sv"
`include "tb_env.sv"
`include "testlib.sv"
...
initial
begin
 static tb_env env = new("env");

 uvm_config_db#(apb_vif)::set(env, "apb", "vif",
 $root.tb_top.apb0);
 run_test();
end
endprogram

The DUT needs to be reset before tests can proceed. A DUT reset sequence is
defined in the test runner module or program. This allows the reset sequence to
access and drive the appropriate signals in the top-level module.

File: test.sv:

program test;

import uvm_pkg::*;
import apb_pkg::*;

`include "reg_model.sv"
`include "tb_env.sv"
`include "testlib.sv"

class dut_reset_seq extends uvm_sequence;

 function new(string name = "dut_reset_seq");
 super.new(name);
 endfunction

 `uvm_object_utils(dut_reset_seq)

 virtual task body();
 tb_top.rst = 1;
 repeat (5) @(negedge tb_top.clk);
 tb_top.rst = 0;
 endtask

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 12

endclass

initial
begin
 static tb_env env = new("env");

 uvm_config_db#(apb_vif)::set(env, "apb", "vif",
$root.tb_top.apb0);
 run_test();
end
endprogram

Step 8: The Pre-Defined Sequences
IMPORTANT: this step is performed by the integrator.

A test that runs a pre-defined sequence specified on the command line is a simple
way of managing the execution of the predefined register test sequences. After
execution the DUT reset sequence and resetting the register model, a sequence
whose type name is specified on the command-line using the +UVM_REG_SEQ
command line option is created and executed.

File: cmdline_test:

class cmdline_test extends uvm_test;
 ...
 virtual task run();
 tb_env env;
 $cast(env, uvm_top.find("env"));

 begin
 uvm_sequence_base rst_seq;
 rst_seq = dut_reset_seq::type_id::create("rst_seq", this);
 rst_seq.start(null);
 end
 env.model.reset();

 begin
 uvm_cmdline_processor opts =
 uvm_cmdline_processor::get_inst();

 uvm_reg_sequence seq;
 string seq_name;

 opts.get_arg_value("+UVM_REG_SEQ=", seq_name);

 if (!$cast(seq, factory.create_object_by_name(seq_name,
 get_full_name(),
 "seq"))
 || seq == null) begin

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 13

 `uvm_fatal("TEST/CMD/BADSEQ", {"Sequence ", seq_name,
 " is not a known sequence"})
 end
 seq.model = env.model;
 seq.start(null);
 end
 global_stop_request();
 endtask : run
endclass : cmdline_test

You are now ready to execute any of the pre-defined tests! It is best to start with the
simplest test: applying hardware reset then reading all of the registers to verify their
reset values. Many of the problems with the DUT, the RAL model, or the integration
of the two will be identified by this simple test.

Command:

% <sim> +UVM_TESTNAME=cmdline_test \
 +UVM_REG_SEQ=uvm_reg_hw_reset_test

Step 9: User-Defined Sequences
IMPORTANT: this step is performed by the verification engineer(s).

Congratulations! You are now ready to execute your actual tests! The test sequence
can access the registers and memories in the design by using the read() and write()
methods in the register model. To be vertically reusable, a test sequence should
extended from the uvm_reg_sequence class and obtain its register model from the
model class property.

File: user_test.sv

class user_test_seq extends uvm_sequence;

 function new(string name="user_test_seq");
 super.new(name);
 endfunction : new

 rand bit [31:0] addr;
 rand logic [31:0] data;

 `uvm_sequence_utils(user_test_seq , reg_block_slave_sequencer);

 virtual task body();
 reg_block_slave model;
 $cast(model, this.model);

 // Randomize the content of 10 random indexed registers

 Copyright © 2010-2011 Synopsys Inc.

Using the UVM Register Library 14

 repeat (10) begin
 bit [7:0] idx = $urandom;
 uvm_reg_data_t data = $urandom;
 uvm_status_e status;

 model.TABLES[idx].write(status, data, .parent(this));
 end

 // Find which indexed registers are non-zero
 foreach (model.TABLES[i]) begin
 uvm_reg_data_t data;
 uvm_status_e status;

 model.TABLES[i].read(status, data);
 if (data != 0)
 $write("TABLES[%0d] is 0x%h...\n", i, data);
 end
 endtask : body
endclass : user_test_seq

After adding the file to the testlib.sv file, the user-defined sequence can now be
executed using the command-line test interface.

Command:

% <sim> +UVM_TESTNAME=cmdline_test \
 +UVM_REG_SEQ=user_test_seq

Step 10: Learn More
This primer does not demonstrate all of the capabilities of the UVM register library.
Please consult Chatper 9 of the UVM User’s Guide and the “Register Layer” section of
the UVM Reference Manual.

They can respectively be found at:

$UVM_HOME/uvm_ug.pdf

$UVM_HOME/uvm_ref.pdf or $UVM_HOME/docs/html

