SystemVerilog Assertions v3.1

Language Status Update
Panel Session

Stephen Meler — Co-Chair SV-AC
Verification Tools Group - Synopsys

Assertion Design Objectives
* Verilog based assertion language

 Verilog for boolean and bit vector expressions

» Designed for ease of use with regular expressions,
Intuitive syntax

 Unified support of verification tools

 Features defined for smulation, coverage, formal
verification and debug applications

o Template/library featuresfor assertion
libraries and re-use

Design Working Group — initial draft, semantics defined

12/08/2002 www.accellera.org

Overview of Assertions in SV v3.1

|mmediate and concurrent assertions
Enhanced regular sequence expressions
Flexible variable expressions

Flexible declaration and instantiation

e Common unified sampling semantics
Template library

12/08/2002 www.accellera.org

Immediate Assertions

|mmediate evaluation during RTL simulation
assert_ mutex : check (a‘b)
do $display (“%m passed”) ;
else $display (“%m failed”);
Severity level options

 Restricted to only combinational assertion
checking

assert_strobe construct from v3.0 is deprecated

12/08/2002 www.accellera.org

Concurrent Assertions

e Concurrent assertions
o Sampled at specified Boolean clock expression
» Consistent cycle semantics across simulation, testbench and formal

e Types of concurrent assertion instantiation

 RTL module leve
> Declarative at top level

e RTL procedural
> Enabling conditions inferred from context

e Externa to RTL
> Directive to bind to module or instance

12/08/2002 www.accellera.org

Hierarchy of Concurrent
Assertions

Bool ean Expressi ons

> ___________________________________4

Property Directive R —

12/08/2002 www.accellera.org 6

Boolean Expressions - Operators

« All verilog expressions

* |dentical 4-state evaluation
e Past values of variables

« $past (var_name, no_of cycles)
e Count of onesin avariable

» $countones (vVar_name)

e Event detectors
» posedge, negedge, change (for clocks)
o $rose, $fell, $stable : detects change of boolean
expression
« ended : detects end of sequence expression

12/08/2002 www.accellera.org

Expression Definitions

« Define aboolean expression using bool, sequence using
Seq, property using property
» All types are named and can have parameters
« Boolean expression not attached to a clock

» Seguence and property attached to a clock

nool mem_req = (memr[2:1] && meme[1:0]),
event clkev = posedge clk ;
seq @clkev mem _fetch =

mem req && rd mem ; [O0:inf] mem_found,;
property cache = @clkev if (cache _hit) mem_fetch;
assert cache;

12/08/2002 www.accellera.org

Sequence Expressions

 Or, And, Intersect
(reqg; [1] read) or (req; [1] write)
o |f Then Else: conditional matching
It ($fell (frame)) rdy ; [1] data
» Repeat: repeat a sequence multiple times
seg byte 8 = (byte req; [1] byte read) * [8];
e Signal occurs within a sequence
occursdata valid within (req ; [1:8] ack ; [1:8] grant)

12/08/2002 www.accellera.org 9

Sequence Expressions

o Restriction: restrict length and values
length [10] within (req ; [1:8] ack ; [1:8] grant)
istrue stable sigwithin (req ; [1:8] ack ; [1:8] grant)
e First Match
req;[1] (first match (ack ;[1: inf] done))

12/08/2002 www.accellera.org 10

Variables in Sequences

Basic Variables

o System Verilog variables used in assertion expressions are
sampled by sampling clock
« Single variable per assertion across all attempts
Dynamic Variableswith let construct
o Used to store data on a per evaluation basis
o Sampled at event in sequence where it is declared
 EXx: Variable x isassigned value of pipe in at beginning of
pipe stage
seg e= if (valid_in)
let (int X = pipe_in)within [5] (pipe outl == (X + 1));

12/08/2002 www.accellera.org 11

Property Declaration

» Define assertion property with name and optional
parameters
property rulel = @(posedge clk) if (a) (b ; [1]c;[1] d) ;
e Reset conditions can force success (accept)
property rule2 = (accept = r eset)
@(posedge clk) if (a) (b ; [1]c; [1] d);
» Property can be defined to never occur (not)

* Property can be checked for only the first
sampling clock tick (initial)

E aceller 12/08/2002 www.accellera.org 12

Property Directives

o Assertions instantiated using property
directives

rulel ins; assert rulel,;
input_prop: assert @clk (f ; [1]9);

 Directivesto guide verification
assert: Check assertion is aways true
cover : Track coverage results during dynamic simulation

. acellera 12/08/2002 www.accellera.org 13

Binding to Design Objects

» Assertions can be declared outside of design
and bound to the design

e Binding to a specified instance
pind Instance instancel: rulel;

e Binding to a specified module
bind module module x : rule2;

. accellera 12/08/2002 www.accellera.org 14

Assertion Template Support

e Template feature
o Template definition with parameters

 Formal arguments can be any of: variables, Boolean and
sequence expressions

o Supports ordered or named list of arguments

template hold (exp, min =0, max = 15, clk);

seq @(clk) e _hold = ($past(exp) == exp) *
[min:max] ;

endtempl ate

hold hold Instance(s, 5, , posedge clkl);

12/08/2002 www.accellera.org 15

Concurrent Assertion Sampling

o Sampling defined by value of Boolean
expression

o Variables are sampled at the clock edge

o Variable values are stable values from previous
simulation cycle

assert e _perr : @(posedge clk) perr;

perr value
[sampledat O L 2 g4 z

clock edge
—"Glitch on perr is
ignhored

I S A

CIK

www.accellera.org 16

Procedural Semantics

Procedural code example:
aways @(posedge clk or negedge reset)

If(reset == 0) do_reset;
elseif (mode==1)

case(st)

REQ: if ('arb)

If (foo)
st <= REQ?2;
testl: assert ((reqg & & 'gnt)*[0:5]; gnt & & req; 'req);

Semantics define automatic translation to declarative form:

test1: assert (accept=negedge reset) @(posedge clk)
if ((mode==1) && (st == REQ) && ('arb) && (!fo0))
(req && 'gnt)*[0:5]; gnt && req; 'req);

Sampling semantic is same for all concurrent assertions

12/08/2002 www.accellera.org 17

Overview of Assertions in SV v3.1

e Easy to Use, Expressive |language
* Immediate and concurrent assertions
» Enhanced regular sequence expressions
* Per evaluation variables (let)
e Template declaration and instantiation
e Common Unified Sampling Semantics
e Cycle based sampling
* Procedural enabling condition inference
 Embedded in System Verilog
* In-line assertionsin RTL
* Integration with System Verilog verification features

12/08/2002 www.accellera.org 18

