
1

Proposed Scheduling
Semantics for SystemVerilog

Scheduling Semantics Working Group

February 2003

2

Requirements
• 100 % Backward Compatibility w/ Verilog-1364
• Testbenches must be portable between
§ System-level, RTL, gate-level, and gate-level with

timing levels
§ Delays may need to be back-annotated

• Assertions must be capable of deterministic semantics
between simulation, formal methods, and pre- and post-
synthesis.

• Enable SystemVerilog to access all regions that PLI/VPI
can access

• Non-Verilog models and models of computation supported
§ C/C++, digital HDLs, mixed signal simulation, emulators,

and acceleration
• No adverse performance impact for models not using the

extended features.

3

Proposal Does not Attempt To
• Add determinism in order to

§ Eliminate design races

§ Eliminate testbench races

• Modify existing Verilog semantics
§ Legacy code is undisturbed

• Favor a specific methodology or style
§ Place undue restrictions on coding style

4

Can IEEE 1364-2001 do the job?

• Problems
§ Verilog zero-delay simulation races

– Lack of predictability

§ Lack of consistency across design and verification tools
– Different semantics between event-driven and cycle-accurate

• Proposed solution
§ Extend the scheduling semantics of the Verilog 2K1 standard

§ Apply partial ordering of design, testbench and assertion-based
code using 3 new event scheduling regions

5

Models Synchronization Needs
• Model often needs to know that its inputs

are stable before calculating its response.
§ Need to synchronize to a stable, write-able slot

(after design).

• Model often needs to sample previous

values before new values appear.

§ Need to sample values just before the current
time step.

6

Clocked Assertions Synchronization Needs

• Need to detect the clock event that
triggers their evaluation.
§ Need to synchronize to the trigger event.

• Need the steady-state values of their

state variables (inputs).

§ Need to sample values just before the
current time step.

§ Need to sample values after the design is in
steady state.

7

Overall Testbench Needs

• Test programs may need to examine:
§ DUT (outputs and internal state)

§ Models states (RTL, behavioral, C, …)

§ Assertion status

• In order to
§ Assert correct behavior

§ Compute next stimulus

§ and Present it to DUT

8

Additional Requirements
• Assertions should not interfere with DUT

§ Avoid - DUT/assertion races - Functional errors (false
positives)

§ Pass/Fail should not change DUT state
• Testbench may examine multiple clocks

§ From various assertions, models, DUT, …
§ Needs deterministic sampling

• Test should not introduce additional races
§ De-couple test from DUT

• A clocked assertion is evaluated only once per time step.

§ Error for clock to trigger more than once per time step

• Variables are sampled at most once per time step.

• Language constructs enable access as powerful as VPI

9

Scheme Imposes a Partial Ordering
• Sampling (previous steady state)

• DUT execution (always, =, #0, <=, …)

§ Clock Detection (interleaved)

• Property Evaluation

§ Pass/Fail statements delayed

• #0 Sampling (current steady state)

• Property Evaluation

• Testbench

• Monitors

10

SystemVerilog Event Regions

Next
Time Slot

Previous
Time Slot

Postponed

Verilog
2001

SystemVerilog

Active

Inactive

NBA

Reactive

Observe

Preponed

11

Scheduling Region Language Mapping
(To be confirmed by technical committees)

Program Block,
Pass/Fail Code

None

NBA, Sampling Drives

#0 Delays

Initial, Always, Primitive,
Continuous Assign,
Assertions

None

SystemVerilog NotesVPIRegion

cbReadOnlySync

?

cbNBASync

?

None

cbStartOfTime,
cbAfterDelay,
cbNextSimTime

cbPrePoned

Postponed

Reactive

Observe

NBA

Inactive

Assertions can read sampled
values to get cycle accurate
results.

Active

We should considered adding
language access to this region

Preponed

12

Continuous invariant: Assertion on
non-overlapping clocks

what order?

active

inactive

NBA

postponed

observe

assert ((clk1 && clk2) == 0);

clk1

clk2

non-overlapping clocks
clk2

clk1

clk2 = clk;

clk1 <= clk;

must read and
evaluate here

13

a b

clk

cFF1 FF2

assign #0 gclk = clk;
always @(posedge gclk) b = a; // FF1
always @(posedge clk) c = b; // FF2

assert (p) pass_statement;
 else; fail_statement;

property p = (sa => [2] sc); // clocked assertion

sequence @(posedge clk) sa = (!a ; a ; !a);
sequence @(posedge clk) sc = (!c ; c ; !c);

010 010 drive heresample here

clock trigger

active

inactive

NBA

postponed

observe

preponed

sample
here

evaluate
here

reactivereact
here

14

Simulation Cycle Animation

Preponed

Inactive

NBA

Observe

Reactive

Postponed

Active

F1 F2 F3 F4

A1 A2 A3 A4

S1 S2

C1 C2 C3

T1

CK

S3

F1
D Q

F2
D Q

F4
D Q

C3

F3
D Q

C1 C2

Clk

GClk

A2

T1A3

S1

A4

S2

CK

S3 #0

A1

Flip-Flop

Combinational

Assertion

Program

Sampling Domain

15

Conclusions

• The new scheduling semantics enables design,
testbench, and assertion-based code in one
language

• A new event scheduling algorithm has been
proposed that enables design and verification
code to consistently work together without the
need to resort to PLI synchronization

• Backward Compatible with Verilog 1364-2001

• Consistent semantics and results across design
and verification tools, including simulation,
synthesis, and formal verification

active

inactive

NBA

postponed

observe

preponed

reactive

