Proposed Scheduling
Semantics for SystemVerilog

Scheduling Semantics Working Group

February 2003

Requirements |
* 100 % Backward Compatibility w/ Verilog-1364

* Testbenches must be portable between

= System-level, RTL, gate-level, and gate-level with
timing levels

= Delays may need to be back-annotated

* Assertions must be capable of deterministic semantics
between simulation, formal methods, and pre- and post-
synthesis.

* Enable SystemVerilog to access all regions that PLI/VPI
can access

* Non-Verilog models and models of computation supported

= C/C++, digital HDLs, mixed signal simulation, emulators,
and acceleration

* No adverse performance impact for models not using the
extended features.

z

Proposal Does not Attempt To

e Add determinism In order to

= Eliminate design races

= Eliminate testbench races

* Modify existing Verilog semantics

= |egacy code is undisturbed

* Favor a specific methodology or style

= Place undue restrictions on coding style

Can IEEE 1364-2001 do the job?

* Problems

* Verilog zero-delay simulation races
— Lack of predictability
» Lack of consistency across design and verification tools
— Different semantics between event-driven and cycle-accurate

* Proposed solution

» Extend the scheduling semantics of the Verilog 2K1 standard

= Apply partial ordering of design, testbench and assertion-based
code using 3 new event scheduling regions

Models Synchronization Needs

* Model often needs to know that its inputs
are stable before calculating its response.

= Need to synchronize to a stable, write-able slot
(after design).

* Model often needs to sample previous
values before new values appear.

= Need to sample values just before the current
time step.

Clocked Assertions Synchronization Needs

* Need to detect the clock event that
triggers their evaluation.

= Need to synchronize to the trigger event.

* Need the steady-state values of their
state variables (inputs).

= Need to sample values just before the
current time step.

* Need to sample values after the design is in
steady state.

Overall Testbench Needs

* Test programs may need to examine:

= DUT (outputs and internal state)
* Models states (RTL, behavioral, C, ...)
= Assertion status

® |n order to

= Assert correct behavior
= Compute next stimulus
= and Present it to DUT

Additional Requirements

e Assertions should not interfere with DUT

= Avoid - DUT/assertion races - Functional errors (false
positives)

» Pass/Fail should not change DUT state

* Testbench may examine multiple clocks
= From various assertions, models, DUT, ...
= Needs deterministic sampling

* Test should not introduce additional races

= De-couple test from DUT
* A clocked assertion is evaluated only once per time step.

= Error for clock to trigger more than once per time step
* Variables are sampled at most once per time step.

* Language constructs enable access as powerful as VPI

Scheme Imposes a Partial Ordering
e Sampling (previous steady state)

e DUT execution (always, =, #0, <=, ...)
» Clock Detection (interleaved)

* Property Evaluation
» Pass/Fall statements delayed

* #0 Sampling (current steady state)

* Property Evaluation
* Testbench
* Monitors

SystemVerilog Event Regions

|
.Fr’irrive“;j'jtJ:—’LPreponed J—>[Active]4— D

- Veril
/ [Inactive]—> > g(glo(ig

]

[Observe }

SystemVerilog < l
[Reactive]-’

~
>{ Postponed]_’ Time Sio

m

p

>
T
N

Scheduling Region Language Mapping

(To be confirmed by technical committees)

Region VPI SystemVerilog Notes
Preponed cbPrePoned None We should considered adding
language access to this region
cbStartOfTime, Initial, Always, Primitive,|Assertions can read sampled
Active cbAfterDelay, Continuous Assign, values to get cycle accurate
cbNextSimTime |Assertions results.
EETE None #0 Delays
NBA ? NBA, Sampling Drives
Observe cbNBASync None
. ? Program Block,
Reactive Pass/Fail Code
Postponed cbReadOnlySync

11

Continuous Iinvariant: Assertion on
non-overlapping clocks

non-overlapping clocks active
clk2 = clk; >
clk2
cki_| || i
 — inactive
clk2 1 clkl <= clk; g
what order? 5
NBA
_»
assert ((clkl && clk2) == 0); clki
\ observe
—>
must read and
evaluate here l
postponed 5

n

010 .
010 drive here
| FF1 b FF2 c sample hereI n l

“ J * e preponed
A A
4 clock tri* er sample >
clk 99 here / AR—
active
_»
assign #0 gclk = clk;
always @(posedge gclk) b = a; // FF1 ' '+
always @(posedge clk) c =b; // FF2 nactive L]
evaluate
sequence @(posedgeclk)sa¥ ('a; a; Ia) DEE - v
sequence @(posedge clk) sc = lc C; >
@pe@: (sa =>[2] sc); // clocked assertion v
—__ observe
assert (p) pass_statemenm react S
else; \fail_statement; / here =
v
postponed 5

aecellera) .

Simulation Cycle Animation

1 F2
)5

F
>3

(T1)
\s/ \s2/ \s3/
@@@@

OF

ook ® [F4

&

Flip-Flop
(O Combinational @ Program
@ Assertion W Sampling Domain

Preponed

Active

Inactive

NBA

Observe

Reactive

Postponed

14

'

¥ d
Conclusions epene
L S
active L]
« The new scheduling semantics enables design,
testbench, and assertion-based code in one v
| an g u ag e Inactive L
« A new event scheduling algorithm has been v
proposed that enables design and verification NBA L
code to consistently work together without the
need to resort to PLI synchronization v
observe
« Backward Compatible with Verilog 1364-2001
« Consistent semantics and results across design reactivt
and verification tools, including simulation, r
synthesis, and formal verification 7
postponed L 5

15

