Mantis xxxx
Fix ANSI port declarations
In Section 23.2.2.2
CHANGE

An alternate syntax that minimizes the duplication of data can be used to specify the ports of a module. Each

module shall be declared either entirely with the list_of_ports syntax as described in 23.2.2.1 or entirely with

the list_of_port_declarations syntax as described in this subclause.

The syntax for ANSI style list_of_port_declarations module header is given in Syntax 23-4.
…

Each port declaration provides the complete information about the port. The port’s direction, width, net or

variable type, and signedness are completely described. The port identifier shall not be redeclared, in part or

in full, inside the module body.

The same syntax for input, inout, and output declarations is used in the module header as would be used for the list of port style declaration, except the list_of_port_declarations is included in the module header rather than separately (after the ; that terminates the module header).

As an example, the module named test listed in 23.2.2.1 Example 1 could alternatively be declared as follows:
…

Generic interface ports (see 25.3.3) cannot be declared using the non-ANSI style list_of_ports syntax (see

23.2.2.1). Generic interface ports can only be declared using the ANSI style list_of_port_declarations

syntax.

module cpuMod(interface d, interface j);

...

endmodule

ANSI style port declarations can be explicitly named, allowing elements of arrays and structures,

concatenations of elements, and assignment pattern expressions of elements declared in a module, interface,

or program to be specified on the port list.

Like explicitly named ports in a module port declaration, port identifiers exist in their own name space for

each port list. When a port item is just a simple port identifier, that identifier is used as both a reference to an

interface item and a port identifier. Once a port identifier has been defined, there shall not be another port

definition with this same name.

For example:

…

The self-determined type of the port expression becomes the type for the port. The port expression shall not

be considered an assignment-like context. The port expression shall resolve to a legal expression for type of

module port (see 23.3.3). The port expression is optional because ports can be defined that do not connect to anything internal to the port.
23.2.2.3 Rules for determining port kind, data type and direction
Within this subclause, the term port kind is used to mean any of the net type keywords, or the keyword var,

which are used to explicitly declare a port of one of these kinds. If these keywords are omitted in a port

declaration, there are default rules for determining the port kind, as specified below.

Within this subclause, the term data type means both explicit and implicit data type declarations and does

not include unpacked dimensions. An explicit data type declaration uses the data_type syntax. An implicit

data type declaration uses the implicit_data_type syntax and includes only a signedness keyword and/or

packed dimensions. An implicit data type declaration implies a net unless the var keyword is used.

Unpacked dimensions shall not be inherited from the previous port declaration and must be repeated for

each port with the same dimensions.

For the first port in the port list:

— If the direction, port kind, and data type are all omitted, then the port shall be assumed to be a

member of a non-ANSI style list_of_ports, and port direction and type declarations shall be declared

after the port list.

Otherwise:

— If the direction is omitted, it shall default to inout.

— If the port kind is omitted, it shall be determined as specified below.

— If the data type is omitted, it shall default to logic.
If the port kind is omitted:

— For input and inout ports, the port shall default to a net of default net type. The default net type

can be changed using the `default_nettype compiler directive (see 22.8).

— For output ports, the default port kind depends on how the data type is specified:

— If the data type is omitted or declared with the implicit_data_type syntax, the port kind shall

default to a net of default net type.

— If the data type is declared with the explicit data_type syntax, the port kind shall default to

variable.

— A ref port is always a variable.

Examples:

// Declarations must follow the port list because the first port

// does not have a direction, kind, or type specified

module mh_nonansi(x, y);

input wire x;

output tri0 y;

...

endmodule

For subsequent ports in the port list:

— If the direction, port kind and data type are all omitted, then they shall be inherited from the previous port.

Otherwise:

— If the direction is omitted, it shall be inherited from the previous port.

— If the port kind is omitted, it shall be determined as specified above.

— If the data type is omitted, it shall default to logic.

TO

 (In 23.2.2.2)

An alternate, “ANSI style”, syntax that minimizes the duplication of data can be used to specify the ports of a module. Each module shall be declared either entirely with the non-ANSI style list_of_ports syntax as described in 23.2.2.1 or entirely with the ANSI style list_of_port_declarations syntax as described in this subclause.

The syntax for the ANSI style list_of_port_declarations module header is given in Syntax 23-4.

…

Each port declaration provides, implicitly or explicitly, the complete information about the port . , such as the port’s direction, kind (e.g., net, variable, interface), data type, unpacked dimensions, and default value (for input ports, see 23.2.2.4) or initialization value (for output variable ports). The port's direction, width, net or variable type, and signedness are completely described. The port identifier shall not be redeclared, in part or in full, inside the module body.
The same syntax for input, inout, and output declarations is used in the module header as would be used for the list of port style declaration, except that the list_of_port_declarations is included in the module header rather than separately (after the ; that terminates the module header).

The syntax for port declarations in the ANSI style module header is similar, but not identical, to that of non-ANSI style port declarations in the module body. For example, ANSI style port declarations are separated by commas, whereas non-ANSI style port declarations are terminated by semicolons.
As an example, the module named test listed in 23.2.2.1 Example 1 could alternatively be declared as follows:

…
Generic interface ports (see 25.3.3) cannot be declared using the non-ANSI style list_of_ports syntax (see 23.2.2.1). Generic interface ports can only be declared using the ANSI style list_of_port_declarations syntax.

module cpuMod(interface d, interface j);

...

endmodule

ANSI style port declarations can be explicitly named, allowing elements of arrays and structures, concatenations of elements, and assignment pattern expressions of elements declared in a module, interface, or program to be specified on the port list.

Like explicitly named ports in a module port declaration, port identifiers exist in their own name space for each port list. When a port item is just a simple port identifier, that identifier is used as both a reference to an interface item and a port identifier. Once a port identifier has been defined, there shall not be another port definition with this same name.

For example:

…

The self-determined type of the port expression becomes the type for of the port. The port expression shall not be considered an assignment-like context. The port expression shall resolve to an expression that is legal for the type of the module port a legal expression for type of module port (see 23.3.3). The port expression is optional because ports can be defined that do not connect to anything internal to the port.

23.2.2.3 Rules for determining port kind, data type and direction

Within this subclause, the term port kind is used to mean any of the net type keywords, a user-defined nettype identifier, or the keyword var, or the keyword interface, which are used to explicitly declare a port of one of these kinds. If these keywords are omitted in a port declaration, there are default rules for determining the port kind, as specified below.

Within this subclause, the term data type means both explicit and implicit data type declarations and does not include unpacked dimensions. An explicit data type declaration uses the data_type syntax. An implicit data type declaration uses the implicit_data_type syntax and includes only a signedness keyword and/or packed dimensions. An implicit data type declaration implies a net net unless the var keyword is used.

Unpacked dimensions, default values for input ports (see 23.2.24) and initialization values for output variable ports, shall not be inherited from the previous port declaration and must be repeated for each port with the same dimensions.

The port direction can be specified as input, output, inout, or ref. A port direction shall not be specified for an interface port.
For the first port in the port list:

— If the direction, port kind, and data type are all omitted, then the port list is a non-ANSI style port list, port shall be assumed to be a member of a non-ANSI style list_of_ports, and port direction and type declarations shall be declared after the port list, in the module body.

Otherwise:

— If the direction is omitted, it shall default to inout, unless the port is determined to be an interface port.

— If the port kind is omitted, it shall be determined as specified below.

— If the data type is omitted, it shall default to logic.

If the port kind is omitted:

— For input and inout ports, the port shall default to a net of default net type. The default net type

can be changed using the `default_nettype compiler directive (see 22.8).

— For output ports, the default port kind depends on how the data type is specified:

— If the data type is omitted or declared with the implicit_data_type syntax, the port kind shall

default to a net of default net type.

— If the data type is declared with the explicit data_type syntax, the port kind shall default to

variable.

— A ref port is always a variable.

— The port is determined to be an interface port if the direction is omitted and an interface identifier is specified, as shown in Syntax 23-4. If an identifier is specified and it cannot be recognized as either a user-defined type name or as an interface name, it shall be assumed to be an interface name.
Examples:

// Declarations must follow the port list because the first port

// does not have a direction, kind, or type specified

module mh_nonansi(x, y);

input wire x;

output tri0 y;

...

endmodule

For subsequent ports in the port list:

— If the direction, port kind and data type are all omitted, then they shall be inherited from the previous port.

Otherwise:

— If the direction is omitted, it shall be inherited from the previous port.

— If the port kind is omitted, it shall be determined as specified above.

— If the data type is omitted, it shall default to logic.

CHANGE in Syntax 23-4 and in A.1.3

FROM

ansi_port_declaration ::=

 [net_port_header | interface_port_header] port_identifier { unpacked_dimension }[= constant_expression]

 | [variable_port_header] port_identifier { variable_dimension } [= constant_expression]

 | [port_direction] . port_identifier ([expression])

TO

ansi_port_declaration ::=

 [variable_port_header] port_identifier { variable_dimension } [= constant_expression]101
 | [net_port_header] port_identifier { unpacked_dimension }[= constant_expression]101
 | [interface_port_header] port_identifier { unpacked_dimension }

 [net_port_header | interface_port_header] port_identifier { unpacked_dimension }[= constant_expression]

 | [variable_port_header] port_identifier { variable_dimension } [= constant_expression]

 | [port_direction] . port_identifier ([expression])

101A constant_expression may appear only as an initializer of an output variable port or as a default value of an input net port.
