REPLACE

Any data declared outside a module, interface, task, or function are global in scope (can be used anywhere

after its declaration) and have a static lifetime (exist for the whole elaboration and simulation time).

Data declared inside a module, interface or program, but outside a task, process, or function, are local in

scope and static in lifetime (exist for the lifetime of the module, interface or program). This is roughly

equivalent to C static data declared outside a function, which is local to a file.

Data declared in an automatic task, function, or block have the lifetime of the call or activation and a local

scope. This is roughly equivalent to a C automatic variable.

Data declared in a static task, function, or block default to a static lifetime and a local scope.

Data can be declared in unnamed blocks as well as in named blocks. These data are visible to the unnamed

block and any nested blocks below it. Hierarchical references cannot be used to access these data by name.

Tasks and functions can be declared as automatic, making all storage within the task or function

automatic.

Specific data within a static task or function can be explicitly declared as automatic. Data declared

as automatic have the lifetime of the call or block and are initialized on each entry to the call or block (also

see 6.7 on variable initialization). The lifetime of a fork…join, fork…join_any, or

fork…join_none

block shall encompass the execution of all processes spawned by the block. The lifetime of a scope

enclosing

any fork block includes the lifetime of the fork block.

Data can be explicitly declared as static. Data declared to be static in an automatic task, function, or

block have a static lifetime and a scope local to the block. This is like C static data declared within a

function.

WITH

Variables declared outside a module, program, interface, task, or function are local to the compilation unit and have a static lifetime (exist for the whole simulation). This is roughly equivalent to C static variables declared outside a function, which are local to a file.
Variables declared inside a module, interface or program, but outside a task, process, or function, are local in scope and have a static lifetime (exist for the lifetime of the module, interface or program). 
Tasks and functions may be declared as automatic. Variables declared in an automatic task, function, or block default to have the lifetime of the call or activation and a local scope. This is roughly equivalent to a C automatic variable. Variables can be explicitly declared as static. Such variables have a static lifetime and a local scope. This is like C static variables declared within a function.

Variables declared in a static task, function, or block default to a static lifetime and a local scope. Specific variables within a static task or function can be explicitly declared as automatic. Such variables have the lifetime of the call or block and are initialized on each entry to the call or block (also see 6.7 on variable initialization). 
The lifetime of a fork…join, fork…join_any, or fork…join_none block shall encompass the execution of all processes spawned by the block. The lifetime of a scope enclosing any fork block includes the lifetime of the fork block.

A variable declaration shall precede any statements within a procedural block and shall precede any simple reference (non-hierarchical) to that variable. Variables may be declared in unnamed blocks as well as in named blocks. These variables are visible to the unnamed block and any nested blocks below it. Hierarchical references shall not be used to access these variables by name.

