

Copyright © 2024 Accellera Systems Initiative Inc.

 1

Universal Verification Methodology 2

for Mixed-Signal 3

(UVM-MS) 4

 5

Public Review Draft 6

August 2024 7

 8

 9

2

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

Abstract: The Universal Verification Methodology for Mixed-Signal (UVM-MS) is a comprehensive and 1
unified analog/mixed-signal verification methodology based on the Universal Verification Methodology 2
(UVM, IEEE Std 1800.2) that improves analog/mixed-signal (AMS) and digital/mixed-signal (DMS) 3
verification of integrated circuits and systems. This framework enables the creation of analog/mixed-signal 4
verification components and test benches by extending digital-centric UVM classes and facilitating 5
interaction between class-based and structural environments. The objective is to standardize methods for 6
driving and monitoring mixed-signal nets within UVM. The reuse of proven verification components will in 7
turn increase the productivity of verification teams and improve overall quality. The overall UVM-MS 8
methodology is explored with supporting examples and use cases. 9
 10
Keywords: agent, AMS, analog, class, DMS, interface, messaging, mixed-signal, proxy, RNM, 11
SystemVerilog, Universal Verification Methodology, UVM, UVM-MS, verification 12

3

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

Notices 1

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the Technical 2
Committee of Accellera. Accellera develops its standards through a consensus development process, approved by its 3
members and board of directors, which brings together volunteers representing varied viewpoints and interests to 4
achieve the final product. Volunteers are members of Accellera and serve without compensation. While Accellera 5
administers the process and establishes rules to promote fairness in the consensus development process, Accellera 6
does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. 7

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or 8
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or 9
indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document. 10

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly 11
disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a 12
specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards 13
documents are supplied "AS IS." 14

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase, 15
market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint 16
expressed at the time a standard is approved and issued is subject to change due to developments in the state of the art 17
and comments received from users of the standard. Every Accellera Standard is subjected to review periodically for 18
revision and update. Users are cautioned to check to determine that they have the latest edition of any Accellera 19
Standard. 20

In publishing and making this document available, Accellera is not suggesting or rendering professional or other 21
services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other 22
person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon 23
the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. 24

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to 25
specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate 26
action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is 27
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, 28
Accellera and the members of its Technical Committees are not able to provide an instant response to interpretation 29
requests except in those cases where the matter has previously received formal consideration. 30

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership 31
affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text, 32
together with appropriate supporting comments. Comments on standards and requests for interpretations should be 33
addressed to: 34

Accellera Systems Initiative 35
8698 Elk Grove Blvd Suite 1, #114 36
Elk Grove, CA 95624 37
USA 38

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent 39
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection 40
therewith. Accellera shall not be responsible for identifying patents for which a license may be required by an Accellera standard 41
or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. 42

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to 43
indicate compliance with the materials set forth herein. 44

4

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

Authorization to photocopy portions of any individual standard for internal or personal use must be granted by 1
Accellera, provided that permission is obtained from, and any required fee is paid to Accellera. To arrange for 2
authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1, #114, Elk 3
Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy portions of any 4
individual standard for educational classroom use can also be obtained from Accellera. 5

Suggestions for improvements to the UVM-MS Methodology are welcome. They should be posted to the UVM-MS 6
Community Forum at: 7

https://forums.accellera.org 8

The current Working Group web page is: 9

http://www.accellera.org/activities/working-groups/uvm-ms 10

http://www.accellera.org/activities/working-groups/uvm-ms

5

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

Participants 1

At the time this draft was completed, the UVM-MS Working Group had the following membership: 2

Tom Fitzpatrick, Chair 3
Tim Pylant, Vice Chair 4

 5
Peter Grove 6
Bob Pau 7
Boon Chong Ang 8
Chandrashekar Chetput 9

Dave Cronauer 10
Steven Holloway 11
Abhijit Madhu Kumar 12
Joachim Geishauser 13

J. David Rosen 14
Msehli Slim 15
Mina Zaki 16
Weiming Zhu17

 18

Copyright © 2024 Accellera Systems Initiative Inc.

Contents 1

1. Overview.. 8 2
1.1 Scope ... 8 3
1.2 Purpose .. 8 4
1.3 Approach ... 8 5
1.4 Word usage .. 9 6

2. Normative references .. 10 7

3. Definitions, acronyms and abbreviations ... 10 8
3.1 Definitions ... 10 9
3.2 Other acronyms and abbreviations .. 11 10

4. UVM-MS architecture .. 11 11
4.1 Introduction ... 11 12
4.2 MS bridge .. 12 13

4.2.1 MS proxy ... 13 14
4.2.2 SV interface .. 14 15
4.2.3 Bridge core ... 15 16

4.3 UVM-MS agent ... 17 17
4.3.1 UVM-MS driver ... 17 18
4.3.2 UVM-MS monitor .. 17 19
4.3.3 UVM-MS sequence item... 18 20

4.4 UVM-MS scoreboard and coverage .. 18 21
4.5 UVM-MS testbench ... 18 22

5. Bridge configuration ... 19 23

6. Bridge core communication .. 23 24
6.1 AMS communication ... 23 25

6.1.1 Event generation from analog signals .. 24 26
6.1.2 Quantized continuously monitored analog signals.. 24 27
6.1.3 Event-driven queries of analog values ... 25 28
6.1.4 Push analog control... 25 29
6.1.5 Push analog control with handshake (push-sync) ... 26 30
6.1.6 Pull analog value .. 28 31

6.2 DMS communication ... 28 32
6.2.1 Event generation from analog signals .. 28 33
6.2.2 Quantized continuously monitored analog signals.. 28 34
6.2.3 Event-driven queries of analog values ... 29 35
6.2.4 Push analog control... 29 36
6.2.5 Push analog control with handshake (push-sync) ... 30 37
6.2.6 Pull analog value .. 30 38

7. Messaging .. 30 39
7.1 General .. 30 40
7.2 UVM messaging from the bridge core .. 31 41

7.2.1 UVM messaging from an AMS bridge core ... 32 42
7.2.2 UVM messaging from a DMS bridge core ... 32 43

8. Testbench ... 32 44

9. Verilog-AMS circuit initialization ... 33 45

7

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

9.1 General .. 33 1
9.2 UVM phases .. 33 2

10. Known limitations .. 34 3
10.1 Inout ports on the SystemVerilog interface ... 34 4
10.2 Unpacked array ports on DUT .. 34 5

 (normative) UVM-MS package and include files .. 35 6
A.1 uvm_ms_pkg.sv .. 35 7
A.2 uvm_ms.svh .. 35 8
A.3 uvm_ms.vamsh ... 36 9

 (informative) Example: migrating UVM to UVM-MS .. 38 10
B.1 Overview .. 38 11
B.2 Creating the bridge module .. 40 12
B.3 Extending the driver and monitor classes ... 41 13
B.4 Extending the sequence item class ... 44 14
B.5 Extending the scoreboard class .. 46 15
B.6 Changes to testbench class ... 46 16
B.7 Changes to top-level module .. 49 17

 (informative) Bibliography ... 51 18
 19
 20

8

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

1. Overview 1

1.1 Scope 2

The Universal Verification Methodology for Mixed-Signal (UVM-MS) is a comprehensive and unified analog/mixed-3
signal verification methodology based on the Universal Verification Methodology (UVM, IEEE Std 1800.2™) that 4
improves analog/mixed-signal (AMS) and digital/mixed-signal (DMS) verification of integrated circuits and systems. 5
This framework enables the creation of mixed-signal verification components and test benches by extending digital-6
centric UVM classes and facilitating interaction between class-based and structural environments. The objective is to 7
standardize methods for driving and monitoring mixed-signal nets within UVM. The reuse of proven verification 8
components will in turn increase the productivity of verification teams and improve overall quality. 9

The overall UVM-MS methodology is explored with supporting examples and use cases. 10

1.2 Purpose 11

Recent trends in integrated circuit and system design have seen an increase in the level of interaction between digital 12
logic and analog circuitry. As the level of interaction has increased, the overall level of complexity of SoCs (Systems 13
on Chips) has also increased rapidly. Functional digital verification has evolved over time to meet the demands of 14
increased complexity, enjoying the benefits of automated flows, metric-driven verification, and other well-defined 15
and understood methodologies. Analog functional verification methodologies have not developed at the same pace. 16
Bridging the gap between the analog and digital methodologies is critical to ensuring robust verification of mixed-17
signal integrated circuits. Verifying mixed-signal designs is challenging and requires a solution capable of dealing 18
with the increased complexity and ever-reducing time-to-market requirements. 19

UVM-MS extends the use of UVM components and extensions thereof into the physical layer, enabling mixed-signal 20
verification. The methodology presents a solution for the following requirements: 21

• Define analog behavior based on a set of parameters defined in a uvm_sequence_item and generate that analog 22
signal using a mixed-signal bridge module; 23

• Measure the properties of the analog signal, return them to a UVM monitor, package those properties into a 24
sequence item, and potentially collect coverage and/or check correctness; 25

• Set controls for pre-run configurations via constraints. 26

1.3 Approach 27

Mixed-signal simulations contain signals in both analog and digital domains. These signals may need to be driven or 28
monitored by UVM components. However, UVM components can only directly interact with these signals digitally. 29
While the conversion to analog signals could be handled using Verilog-AMS connect modules, for example, the analog 30
signals can more naturally, consistently, and accurately be modeled in the analog domain. At the same time, mixed-31
signal simulations may be performed with different signal representations, so it is desirable to have a uniform interface 32
between the signal (regardless of domain) and the UVM component with which it interacts. In order to provide this 33
uniform interface, a UVM-MS testbench needs to include a bridge between a UVM-accessible API and the actual 34
SystemVerilog, Verilog-AMS, or SPICE connection to the signals. 35

UVM-MS is an extension to UVM, so that users can build on their existing UVM infrastructure as much as possible 36
when they need to incorporate mixed-signal designs into their system. A typical UVM testbench consists of a set of 37
classes, each derived from the uvm_component base type, that are instantiated and connected to allow stimulus and 38
response checking between the testbench and the DUT (Device Under Test). Each DUT interface is connected via a 39

9

Copyright © Accellera Systems Initiative Inc.
August 9, 2024

SystemVerilog virtual interface to a uvm_agent, which includes the following protocol-specific components to 1
interact with the DUT: 2

• The uvm_sequencer arbitrates between uvm_sequences and sends a uvm_sequence_item to the uvm_driver. 3

• The uvm_driver gets the uvm_sequence_item from the uvm_sequencer, and uses the information contained 4
therein to communicate with the DUT via the virtual interface. The uvm_driver may also receive responses 5
from the DUT and pass them back via the sequencer to the originating uvm_sequence. 6

• The uvm_monitor recognizes behaviors on the virtual interface and encapsulates these into 7
uvm_sequence_items to communicate them to other components in the environment, possibly including 8
coverage collectors and/or scoreboards. 9

UVM-MS takes advantage of the existing UVM architecture and extends it to allow interactions between the UVM 10
agent and the mixed-signal DUT. As outlined below, UVM-MS defines a separate MS Bridge module that connects 11
to the virtual interface to interact directly with the UVM driver and monitor on one side and to the mixed-signal DUT 12
on the other. 13

The MS Bridge Core implements the physical connection functions required by the UVM agent driver and monitor as 14
well as data type conversions between the agent and the DUT I/O (Input/Output). Thus, UVM-MS eliminates any 15
requirements for Verilog-AMS connect modules within the MS Bridge. The core is written in the language that allows 16
best possible representation of the DUT I/O net abstraction. The MS Bridge also includes an MS Proxy class object (a 17
handle to which is passed to the UVM driver and monitor) to provide an application programming interface (API) to 18
allow the driver to call proxy class methods that control the bridge core. 19

Updating an existing digital-only UVM environment can then be accomplished by defining a new driver class, 20
extended from the existing UVM driver, that includes a pointer to the proxy class object and possibly utilizes a new 21
sequence item extended from the digital-only sequence item. The UVM factory allows for these new classes to be 22
used without having to modify the existing UVM environment code. Similarly, the UVM test could replace the original 23
sequence with a new sequence that uses the new sequence item to define a verification scenario targeted at the mixed-24
signal DUT. The rest of the UVM environment could be reused with minimal, if any, modifications. 25

If starting with an analog/mixed-signal DUT, the UVM environment can be defined from the beginning to rely on the 26
MS Bridge and the proxy class to interact with the DUT. All other aspects of the environment, including the UVM 27
test, would follow existing UVM guidelines, thus providing for a modular, reusable, constraint-driven verification 28
environment similar to what digital verification engineers have used for many years. 29

1.4 Word usage 30

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard and from 31
which no deviation is permitted (shall equals is required to).1,2 32

The word should indicates that among several possibilities one is recommended as particularly suitable, without 33
mentioning or excluding others; or that a certain course of action is preferred but not necessarily required (should 34
equals is recommended that). 35

The word may is used to indicate a course of action permissible within the limits of the standard (may equals is 36
permitted to). 37

1 The use of the word must is deprecated and cannot be used when stating mandatory requirements; must is used only to describe unavoidable
situations.
2 The use of will is deprecated and cannot be used when stating mandatory requirements; will is only used in statements of fact.

10
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

The word can is used for statements of possibility and capability, whether material, physical, or causal (can equals is 1
able to). 2

2. Normative references 3

The following referenced documents are indispensable for the application of this document (i.e., they must be 4
understood and used, so each referenced document is cited in text and its relationship to this document is explained). 5
For dated references, only the edition cited applies. For undated references, the latest edition of the referenced 6
document (including any amendments or corrigenda) applies. 7

Accellera VAMS-2023, Verilog-AMS Language Reference Manual. 3 8

IEEE Std 1800™, IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification 9
Language. 4,5 10

IEEE Std 1800.2™, IEEE Standard for Universal Verification Methodology Language Reference Manual. 11

3. Definitions, acronyms and abbreviations 12

3.1 Definitions 13

For the purposes of this document, the following terms and definitions apply. The normative references in Clause 2 14
and the IEEE Standards Dictionary Online should be consulted for terms not defined in this clause. 6 15

AMS: Analog/Mixed-Signal (AMS) simulation and verification refers to systems that can simulate and verify 16
analog/mixed-signal designs using co-simulation of digital (logic or real data types) event-driven engines and analog 17
(electrical data types) time-domain solvers (“AMS co-simulation”). 18
Blocking, non-blocking: A blocking task call suspends execution until it completes. A non-blocking call returns 19
immediately. 20
Bridge core: A module in the MS Bridge that performs data type conversion and manipulation between the UVM 21
agent and the DUT. This can include modeling of passive and active analog components. It is the bridge core that 22
directly connects to and drives the DUT. 23
DMS/RNM: Digital (or Discrete)/Mixed-Signal (DMS) simulation and verification refers to event-driven systems 24
that can simulate and verify analog designs using discrete abstractions of the analog design. Such designs can use 25
SystemVerilog user-defined net types (UDNs) and/or real variables to represent the analog intent. There is no standard 26
on how discrete modeling of analog nets should be done, so the examples given here are just one method of 27
implementation. Sometimes the term RNM (Real-Number Modeling) is used. The term DMS will be used to refer to 28
both DMS and RNM within this document. 29
MS: Mixed-Signal (MS) simulation and verification refers to verification of a DUT that is made up of digital and 30
analog blocks. These analog blocks could be transistor designs or a model abstraction utilizing DMS, AMS or a 31
mixture. The focus of this standard is to support MS rather than specifically DMS or AMS. 32
OOMR: An Out-of-Module Reference (OOMR) is a reference from one module to another. Sometimes called XMR 33
(Cross-Module Reference). 34

3 Accellera publications are available from the Accellera Systems Initiative (https://accellera.org/).
4 IEEE publications are available from the Institute of Electrical and Electronics Engineers (https://standards.ieee.org/).
5 The IEEE standards or products referred to in Clause 2 are trademarks owned by the Institute of Electrical and Electronics Engineers,
Incorporated.
6 IEEE Standards Dictionary Online is available at: http://dictionary.ieee.org. An IEEE Account is required for access to the dictionary, and one
can be created at no charge on the dictionary sign-in page.

https://accellera.org/
https://standards.ieee.org/
http://dictionary.ieee.org/

11
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

Proxy: A class functioning as an interface to another component or class. 1
UVM: The Universal Verification Methodology that enables creation of robust, reusable, modular and interoperable 2
verification IP and testbench components for digital verification. UVM is documented in IEEE Std 1800.2. 3
UVM-MS: A comprehensive and unified mixed-signal verification methodology based on UVM to improve AMS 4
and DMS verification of integrated circuits and systems. 5

3.2 Other acronyms and abbreviations 6

API Application Programming Interface 7
DC Direct Current 8
DUT Device Under Test 9
IF Interface 10
I/O Input/Output 11
IP Intellectual Property 12
PWL Piecewise-Linear 13
SV SystemVerilog 14
UDN User-Defined Nettype 15

4. UVM-MS architecture 16

4.1 Introduction 17

The structure of a generalized UVM-MS agent and its connection to a mixed-signal DUT are shown in Figure 1 below. 18
A UVM-MS agent differs from a digital-only UVM agent in that it contains a handle to a proxy class in addition to 19
the virtual interface to communicate with the DUT. The MS Bridge is the layer between the agent and the mixed-20
signal DUT. 21

The MS Bridge is a SystemVerilog module comprising a proxy class object (the MS Proxy), a SystemVerilog interface 22
(the SV IF), and a Bridge Core module. The bridge core performs signal data type conversion and manipulation 23
between the UVM agent and the DUT. This can include modeling of passive and active analog components. It is the 24
bridge core that directly connects to and drives the DUT. The proxy class is an API that conveys analog attributes 25
between the agent and the bridge core. The SV IF is used only for passing logic-type (i.e., not real or user-defined 26
nettype values) between the agent and the bridge core, whereas the proxy is used to drive values for controlling analog 27
signal generation or to monitor aspects of the analog signal. 28

 29
Figure 1 : UVM-MS Architecture 30

12
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

The agent contains a handle to the MS Proxy and a virtual interface to the SV IF. The dashed lines in the diagram 1
indicate communication via these mechanisms. The MS Proxy and SV IF can be used together or individually, 2
depending on the types of connections required. The SV IF may be placed either within the MS Bridge or between the 3
agent and the bridge. This document presents only one of those options in most places, but unless stated otherwise, 4
both are possible. See Clause 5 for more details. 5

The bridge core can be modeled with SystemVerilog, Verilog, or Verilog-AMS, based on the net types of the DUT 6
I/O it connects to. The choice of the modeling abstraction for the bridge core is made at elaboration time. The bridge 7
may contain more than one bridge core, of the same or different types. Each core may connect to one or more SV 8
interfaces. However, a bridge contains only one proxy, regardless of the number of cores inside. 9

As mentioned above, some changes are necessary to UVM drivers, monitors, and other objects to accommodate the 10
handle to the proxy class and use it appropriately. If a testbench already exists, this can be done by deriving a mixed-11
signal enhanced version of the digital component and using UVM factory overrides to replace the originals. Then a 12
modest set of changes can add the critical capabilities without disrupting any other purely digital applications of the 13
UVM collateral. 14

4.2 MS bridge 15

UVM-MS introduces the concept of an MS Bridge, whose sole purpose is to create a bridge between the UVM-MS 16
agent and the DUT, since direct connection via an SV interface is not possible for all DUT I/O abstractions. An 17
example of a bridge is shown below in Figure 2. It uses the analog attributes from the proxy to generate continuously 18
changing values (e.g., ramping voltage supply, electrically modeling drive strengths, R/C loading, etc.) in the bridge 19
core. 20

 21

Figure 2 : Example MS Bridge 22
The MS Bridge is written in SystemVerilog and shall contain the bridge core instance. The bridge core may use 23
SystemVerilog or Verilog-AMS data types to drive the DUT pins. The bridge core abstraction can be changed and the 24
existing UVM-MS framework will not require any other changes as long as the API is kept the same. 25

Although different abstractions of the bridge core can be used, Verilog-AMS only supports a limited set of port data 26
types, so the SV interface and the proxy shall connect to the bridge core using OOMRs, to avoid these restrictions. 27
These OOMRs shall only refer to constructs found in Verilog-AMS, which are common to all abstractions (but less 28
limited than Verilog-AMS port data types). 29

The DUT I/O of the MS Bridge shall be defined as SystemVerilog interconnect types. The net type of the bridge 30
DUT I/O should be resolved from the types of its connections, which may vary with the model abstraction level, so 31
defining ports as interconnect, which is typeless, allows the simulator to do this and also prevents OOMRs and 32

13
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

probes to them. Unless it is certain that the direction will always be unidirectional (input or output), it is 1
recommended that the direction be declared as inout, which is more precise and is portable with electrical modeling. 2

While the MS Bridge is written in SystemVerilog, the DUT ports and the Bridge Core ports may be Verilog-AMS 3
data types that are not supported in SystemVerilog. In order to support UVM-MS, the simulation tool needs to support 4
connections of the Bridge Core to the DUT of such data types through the MS Bridge I/O. 5

The MS bridge ports and the bridge core ports to the DUT shall not be unpacked arrays, which are not supported by 6
Verilog-AMS. For the same reason, ports may have only one packed array dimension. 7

4.2.1 MS proxy 8

In UVM, SystemVerilog interfaces are used to allow communication between the class-based portion of the testbench 9
and the DUT. There are several shortcomings with interfaces that impact mixed-signal verification: 10

• Setting parameters on an interface (e.g., for analog component values) results in a specific data type that 11
ripples through UVM configuration, hampering reuse. 12

• Implementing a bridge core API in an interface limits reuse, as it is impossible to override methods. 13

• It is not possible to communicate with Verilog-AMS code via an interface. 14

Due to these shortcomings, an alternative approach, the MS Proxy, is used. The MS Proxy in the MS Bridge follows 15
the abstract/concrete class design pattern. The uvm_ms_proxy definition is provided within the uvm_ms_pkg.sv 16
file (see A.1). An abstract extension of uvm_ms_proxy is then declared with prototypes of a set of methods that form 17
the API through which a UVM-MS agent communicates with the MS Bridge. 18

Example: 19

import uvm_ms_pkg::*;
virtual class vsrc_proxy extends uvm_ms_proxy;
 pure virtual function void setVoltage(…);
 pure virtual function real getVoltage(…);
 pure virtual function void push(…);
 pure virtual function void pull(…);
. . .
endclass: vsrc_proxy

 20
The concrete version of the proxy class is declared in the MS Bridge and extends the abstract version, implementing 21
the API methods. A handle to the concrete proxy class is assigned to an abstract class handle in a UVM agent using 22
the uvm_config_db. Polymorphism allows the UVM agent to handle different implementations of the abstract class 23
without modification, e.g., implementations to suit DMS/AMS models of bridge cores. 24

Example: 25

module vsrc_bridge(PLUS, MINUS);
...
 vsrc_core #(…) i_core (…); // AMS model

 class AMSProxy extends vsrc_proxy;
 function void setVoltage(…);
 ...
 endfunction: setVoltage
 ...
 endclass: AMSProxy

14
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 AMSProxy i_proxy = new();
...
endmodule: vsrc_bridge

module hw_top;
 ...
 vsrc_bridge i_vsrc_bridge (.PLUS(vcc),.MINUS(gnd));
 ...
endmodule: hw_top

class tb extends uvm_env;
 ...
 function void build_phase(uvm_phase phase);
 uvm_config_db#(vsrc_proxy)::set(null, "uvm_test_top.env", "vsrc_proxy",

i_vsrc_bridge.i_proxy);
 ...
 endfunction
 ...
endclass: tb

 1
A typical MS Proxy API contains methods to implement the following features, described in more detail in Clause 6: 2

• Pull (read) bridge core values via function calls to the bridge core. 3

• Push (write) bridge core attributes using function calls to the bridge core. 4

• Push-Sync contains registers for end-of-transition detection or other synchronization from bridge core 5
control. 6

• Monitor continuous signals. 7

4.2.2 SV interface 8

The existing SV interface can continue to be used for logic-type communication normally used for UVM, thus 9
enabling reuse of existing verification collateral. There is a limitation on bidirectional signals, which requires the 10
driver and receiver part of the net to be manually split. 11

The SV interface can be located inside the MS bridge or outside the bridge, between the UVM agent and the bridge. 12
See Figure 3 and Figure 4. Each method has certain advantages. 13

 14

Figure 3 : SV interface inside bridge 15

15
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1

Figure 4 : SV interface outside bridge 2
Example code of an SV interface outside the bridge: 3

interface my_intf;
...
endinterface

module tb;

 my_intf i1();
 ms_bridge i2(.my_if(i1),.PLUS.....);

 // + DUT instantiation

endmodule

module ms_bridge(inout interconnect PLUS, ..., interface my_if);

 // SV IF to Core connections that are bidirectional
 my_short i1(my_if.a, core.net1);
 my_short i2(my_if.b, core.net2);

 // + Proxy declaration and instantiation
 // + Core instance

endmodule

 4
The SV interface is discussed in more detail in Clause 5. 5

4.2.3 Bridge core 6

The MS testbench may require the behavior and presence of passive and active analog components that a typical 7
UVM-RTL testbench could not include, such as: 8

• Capacitors, resistors, inductors, diodes, current/voltage sources, etc. 9
• A complex passive network 10
• A piece of Verilog-AMS code 11

Such components will be used to model the analog behavior of pads, lossy transmission lines, loads/impedances, 12
voltage/current-controlled sources, etc., required to accurately model the signals connecting to the ports of the DUT. 13
Those components can be placed inside the bridge core, to be controlled by the proxy. 14

In Figure 2, the example bridge core has four pins. PLUS and MINUS are two typical terminals on a component, 15
which could be a voltage/current source or a capacitor, for example. REF_VDD and REF_VSS allow a logic input 16
from the SV IF to be converted to a voltage relative to these values. In the MS Bridge, these ports are declared as 17

16
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

inout interconnect, so the actual net types are determined by their connections, in this case, the bridge core ports 1
and the DUT ports. 2

In AMS, the bridge core could instantiate SPICE primitives or Verilog-A modules; however, this restricts pre-3
simulation changes in component values that are possible during the UVM pre-run phases if bridge core functionality 4
is instead written using Verilog-A or Verilog-AMS analog contribution statements. 5

In DMS, there are no restrictions. Verilog-A modules can be compiled as Verilog-AMS, and the predefined Verilog-6
AMS macro `__VAMS_ENABLE__ allows Verilog-AMS-only code to be excluded when the same file is parsed as 7
Verilog-A. An example where a SPICE primitive might be needed is when a printed circuit board component is 8
supplied as a SPICE model. It is recommended to use Verilog-AMS analog statements to implement the electrical 9
functionality whenever possible. 10

The SV interface and the proxy shall connect to the bridge core with OOMRs, because Verilog-AMS only supports a 11
limited set of port data types and does not allow unpacked array ports. The SV interface may use direct OOMRs to 12
variables or wires in the bridge core, but the proxy should call functions defined in the bridge core. An example of 13
when a function cannot be used is when a bus of reals needs to be passed into the bridge core, as Verilog-AMS does 14
not support this. Another exception is shown in 6.1.5, where a bridge core synchronization variable is directly assigned 15
to a proxy variable. 16

4.2.3.1 Driving continuous analog signals 17

Perhaps the major difference between digital and analog simulations is that digital signals tend to change discretely, 18
whereas analog signals may be continuously changing. Many useful analog signals can be composed of other periodic 19
waveforms, such as a series of sine waves. Taken to the extreme, a square wave, which is modeled digitally as “set to 20
1; wait a short time; set to 0; wait a short time,” etc., could actually be modeled as an infinite series of harmonic sine 21
waves, although it would never actually be implemented that way. 22

In practice, a sine wave can be controlled simply by four values defining the frequency, phase, amplitude, and DC 23
bias of the generated signal. A UVM transaction can be defined that encodes the properties of the desired sine wave 24
as real values in the uvm_sequence_item. This item can then be passed to the UVM driver, which will in turn pass 25
the values to the MS Bridge Core via the MS Proxy. The Bridge Core will use those values to generate the signal. 26

In general, to drive such a continuous signal, the uvm_sequence_item would contain fields for all desired control 27
parameters of the desired analog signal, and the driver will drive those settings through the proxy class to the MS 28
Bridge Core to control the signal generator, which should be located in the domain of the DUT I/O it will connect to. 29
For example, an analog sine wave should be implemented in the analog domain although controlled from the digital 30
domain. 31

In this way, the UVM paradigm of having a relatively simple interface for the test writer is continued, providing a 32
way to control the generated signal as needed. 33

4.2.3.2 Multiple signal generators 34

It is possible to combine multiple signal generators to create more complex signals. For example, a signal source may 35
be defined to be a sine wave, as described in the previous section. An additional requirement may be to inject some 36
noise onto that signal. There are several ways to implement this. The noise source may use a different 37
uvm_sequence_item and may be controlled as part of the main UVM sequence, which could be used to inject noise 38
at predictable intervals within the sequence. Alternatively, it may be generated by a different sequence, where the 39
noise might be injected randomly. In either case, the driver will detect the sequence items as either signal or noise and 40
pass the appropriate information on to the signal generator(s), depending on the environment. 41

 42

17
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1
Figure 5 : Multiple analog drivers on a single net 2

4.3 UVM-MS agent 3

In general, adapting a pure digital UVM agent for UVM-MS potentially requires extensions and factory overrides of 4
the agent, driver, monitor, and sequence item classes. 5

The UVM-MS agent is in effect no different from a uvm_agent. However, some design choices can simplify extension 6
to allow operation with an MS DUT. For example, the handles to the MS proxy class and the virtual interface can be 7
contained in the agent configuration object. If there is an existing agent, it can be extended to create the MS agent. 8

Example: 9

class osc_ms_agent extends osc_agent;

4.3.1 UVM-MS driver 10

The UVM-MS driver is responsible for requesting and driving transactions from/to the agent sequencer. Driving can 11
involve communication with an MS proxy and/or an SV interface. Patterns for implementing the communication are 12
described in Clause 6. If there is an existing driver, it can be extended to create the MS driver. 13

Example of a driver call to a push method defined in the proxy: 14

task drive_transaction(osc_ms_transaction req);
 ...
 bridge_proxy.push(.ampl(req.ampl),.bias(req.bias),.freq(req.freq));
 ...

4.3.2 UVM-MS monitor 15

A UVM-MS monitor extends the UVM monitor by adding a handle to the MS Proxy. The MS Proxy supports 16
DMS/AMS DUT connections by implementing pull and monitor methods, as described in Clause 6. Logic signals 17
transferred via the SV IF can be monitored using the existing methods in UVM. If there is an existing monitor, it can 18
be extended to create the MS monitor. 19

18
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

4.3.3 UVM-MS sequence item 1

The sequence item used by the UVM-MS agent will likely have additional fields that will be used by the MS proxy. 2

Example: 3

class osc_ms_transaction extends osc_transaction;
 rand real ampl;
 rand real bias;
 ...

4.4 UVM-MS scoreboard and coverage 4

Scoreboard and coverage architecture may not need to change. However, they may need to be extended to add 5
additional checks or to take into account additional information found in the extended transaction type. 6

4.5 UVM-MS testbench 7

The testbench needs to be extended to add the uvm_config_db call to pass the proxy handle and the set_override 8
calls to specify the overrides for any scoreboard, agent, driver, monitor, and sequence item that have been extended. 9

The following example is excerpted from the frequency adapter example in Annex B: 10

class freq_adpt_ms_tb extends freq_adpt_tb;

 `uvm_component_utils(freq_adpt_ms_tb)

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 endfunction : new

 // UVM build() phase
 function void build_phase(uvm_phase phase);

 // set up bridge proxy pointer references in generator & detector agents
 uvm_config_db #(osc_proxy)::set(this,"freq_generator.agent.*",
 "bridge_proxy", top.generator_bridge.proxy);
 uvm_config_db #(osc_proxy)::set(this,"freq_detector.agent.*",
 "bridge_proxy", top.detector_bridge.proxy);

 // override driver, monitor, and scoreboard with UVM-MS versions
 set_type_override_by_type(osc_transaction ::get_type(),
 osc_ms_transaction ::get_type());
 set_type_override_by_type(osc_driver ::get_type(),
 osc_ms_driver ::get_type());
 set_type_override_by_type(osc_monitor ::get_type(),
 osc_ms_monitor ::get_type());
 set_type_override_by_type(freq_adpt_scoreboard ::get_type(),
 freq_adpt_ms_scoreboard::get_type());

 super.build_phase(phase);

 endfunction : build_phase

endclass: freq_adpt_ms_tb

 11

19
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

5. Bridge configuration 1

The MS Bridge DUT I/O ports shall be of type interconnect, which disallows probes or assignments to these 2
ports at this level. All probes and assignments should be done in the bridge core that is instantiated in the MS Bridge. 3
Declaring the port as the typeless interconnect not only prevents OOMRs, but also means that the net type will 4
be resolved from its connections. It is recommended that the direction be inout. 5

Classical UVM has SystemVerilog interfaces instanced along with the DUT in a module. The DUT ports can be 6
connected to an instanced interface as individual port connections or themselves be grouped as a port of interface 7
type. If the DUT ports are an interface, then for UVM-MS, these shall only contain logic-type data types and do not 8
require a MS Bridge, as these ports cannot have any other abstraction. 9

UVM-MS supports the SV IF instanced inside the MS Bridge or external to the bridge. The SV IF shall only contain 10
logic-type signals. 11

If the SV IF is external to the MS Bridge (Figure 6), this allows multiple types of interfaces to be hooked up, e.g., in 12
a scenario where the DUT I/O could be used for multiple digital communication functions. For example, a group of 13
pins might work with I2C or with SPI. This allows the MS Bridge to be a generic connector decoupled from the digital 14
side. 15

In this configuration, the SV IFs connect to MS Bridge ports. Within the bridge, these ports connect to the bridge core 16
with OOMRs, not with ports, just as the MS Proxy connects to the core with OOMRs. This configuration enables the 17
insertion of the MS Bridge between the DUT and SV IF as a simple step from UVM to UVM-MS. However, the 18
hierarchical path to the SV interfaces is then different from the path to the proxy and the bridge. 19

 20

Figure 6 : SV interface connection external to bridge 21
If the SV IF is internal to the MS Bridge (Figure 7), an external IP provider only has to supply a single module to 22
instantiate with the DUT. This has the advantage that encryption is easier and the hierarchical paths to the proxy and 23
the interface are the same. 24

 25

Figure 7 : SV interface connection internal to bridge 26
Table 1 below shows the various possible configurations of the MS Bridge. In each case. the SV IF is shown within 27
the MS Bridge, but as discussed above, it could be external to the bridge. 28

20
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

The table describes the configuration assuming a single DUT port abstraction type. However, an MS Bridge could 1
have multiple types of DUT I/O connections that make up a protocol, e.g., a mixture of multiple supplies and logic 2
signals, such as USB. A bridge could also have more than one core internally. 3

In the table, DUT I/O type abstractions are divided into two kinds: digital, whose DUT I/O abstraction is made up of 4
2-state or 4-state logic types, whether individually or as part of an SV interface port, and mixed-signal, whose 5
abstraction can use reals or wreals (RNM), UDNs (DMS) or electrical (AMS). A subtype of mixed-signal is when the 6
port is a pure analog passive network. 7

A Passive network refers to the use case where the bridge controls an analog passive network in the bridge core needed 8
for the DUT, such as a speaker model. The analog passive network can be made up of many controllable components, 9
such as L/R/Cs. An example is a resistor used as a switch or variable resistance between two DUT pins. 10

Mixed-signal types can contain, for example, multiple sources of stimulus, such as controlling the data type conversion 11
of the interface to the DUT I/O (slew rate, A2D/D2A logic levels, output drive impedance, etc.) and driving a voltage 12
or current with some waveform representation (see Figure 8). 13

 14

Figure 8 : Mixed-signal bridge 15
Table 1 : Bridge configurations 16

Diagram Description
Option 1

Digital: Supported
Mixed-signal: Not supported
Passive network: Not supported

Notes:
Here, in all DUT abstractions, its I/O is logic (discrete) or an SV
interface port. DUT I/O is always digital, so it is a classic UVM
connection. UVM-MS stipulates that no connect modules should be used
in the UVM-MS framework, so this configuration cannot be used in
mixed-signal, as different abstractions of the DUT I/O would not be
supported. To support a mixed-signal DUT I/O, a MS Bridge is required.

21
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

Diagram Description
Option 2

Digital: Supported
Mixed-signal: Supported
Passive network: Not supported

Notes:
The bridge core abstraction is changed based on the DUT I/O data type.
Easily supports DUT I/O of logic, real, UDN, or electrical type. The proxy
is used to control the data conversion from the interface data type to the
DUT data type if different, as well as being used to control a MS passive
or active component. This is the most configurable connection to a DUT
I/O that has many different functional uses. Examples of bridge core
abstractions;

• Short-circuit between OOMR from SV IF to bridge core to DUT
I/O, if DUT I/O is digital, Mixed-signal cannot be represented
in this case. (SV view)

• DMS/RNM converter for the interface path to the DUT I/O, in
addition to mixed-signal features. (SV view)

• AMS converter for the interface path to the DUT I/O, in addition
to mixed-signal features. (Verilog-AMS view)

Option 3

Digital: Not supported
Mixed-signal: Supported
Passive network: Supported

Notes:
The proxy is used for push/pull commands to bridge core. Examples of the
bridge core abstractions:

• Open if DUT I/O cannot represent a passive load. (SV view)

• DMS/RNM representation of the passive load. (SV view)

• AMS representation of the passive load. (Verilog-AMS view)

 1

Passive analog components, such as capacitors, resistors and inductors, often have their value set once and left 2
unchanged during the simulation. A typical setup would use parameters on the instance to set their default values. This 3
makes the values easier to review. To avoid coding the default values for these components in the agent, functions are 4
used to read the parameter values and to store them in the uvm_config_db. In the following example, the 5
getParameters() function in the proxy is used to read all the parameters and pass them back to the agent to apply 6
them to the uvm_config_db in the UVM connect phase. If a testcase requires a change, the values are changed by a 7
call to setParameters() in the UVM start_of_simulation phase, before time is consumed. 8

The bridge core has internal variables that are initialized to the parameter values, but can be later overridden by a 9
setParameters() function call (recommended) or by an OOMR. These variables are the values that are used in the 10
subsequent code. The getParameters() function reads the initial values of the bridge core variables to ensure that any 11
defparam statement override is considered. It is recommended that the configuration be written out, as a mistake in 12
the values could be hard to debug. 13

22
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

Example: 1

package res_pkg; // This package contains definitions of common variables and types

 class res_config extends uvm_object;
 real res_val, res_tr, res_tf;

 `uvm_object_utils(res_config)

 function new(string name = "res_config");
 super.new(name);
 endfunction
 endclass: res_config

endpackage: res_pkg

module ms_bridge #(parameter real res_val=1.0, res_tf=1.0e-9, res_tf=1.0e-9)
 (inout interconnect PLUS, MINUS);

import uvm_pkg::*, uvm_ms_pkg::*;

`include "uvm_macros.svh"
`include "uvm_ms.svh"

import res_pkg::*;

//===
// API implementation of the proxy that the MS agent connects to
//===
class MSProxy extends uvm_ms_proxy;

 function new(string name);
 super.new(name);
 endfunction : new

 //==
 // Function to get initial values for config db taken
 // from bridge core in case a defparam has been used
 //==
 function res_config getParameters();
 res_config cfg = new();
 cfg.res_val = i_core.rseries_val;
 cfg.res_tr = i_core.rseries_tr;
 cfg.res_tf = i_core.rseries_tf;
 return(cfg);
 endfunction: getParameters

 //===
 // Function to set initial values from config class
 // into bridge core after modification by uvm_test
 //===
 function void setParameters(res_config cfg);
 i_core.rseries_val = cfg.res_val;
 i_core.rseries_tr = cfg.res_tr;
 i_core.rseries_tf = cfg.res_tf;
 endfunction: setParameters

 // Other code
endclass: MSProxy

23
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

// Instantiate proxy class
MSProxy i_proxy = new("i_proxy");

// instance of bridge core
bridge_core i_core #(.res_val(res_val),
 .res_tr (res_tr) ,
 .res_tf (res_tf))
 (.PLUS (PLUS),.MINUS(MINUS));
endmodule

Bridge Core:

`include "constants.vams"
`include "disciplines.vams"

module bridge_core (PLUS, MINUS);
 inout PLUS, MINUS;
 electrical PLUS, MINUS;

 // Values read by getParameters() in MS Bridge
 parameter real res_val = 1.0;
 parameter real res_tr = 1.0e-9;
 parameter real res_tf = 1.0e-9;

 // Initial values set from parameters, then overriden by setParameters()
 // Code uses rseries_* variables
 real rseries_val = res_val;
 real rseries_tr = res_tr;
 real rseries_tf = res_tf;

endmodule

6. Bridge core communication 1

The goal of the bridge core communication is that it should work whatever the abstraction of the bridge core is. The 2
Proxy/SV interface connection to the bridge core needs to be the same for any bridge core abstraction, so that the 3
abstraction can be changed without affecting the rest of the agent and the MS Bridge. Thus, any abstraction needs to 4
implement the same functions. This also leads to the code having to conform to the subset that is common to both 5
SystemVerilog and Verilog-AMS. 6

Therefore, the uvm_hdl_* methods shall not be used to read or write the logic variables. 7

Section 6.1 discusses communication in an AMS environment and section 6.2 describes communication in DMS. 8

6.1 AMS communication 9

Verilog-AMS defines ways in which continuous analog domain signals can update values that are then used in the 10
digital domain. The Verilog-AMS system functions to do this are cross(), above(), and absdelta(), which 11
can be used in a digital @() statement (above() is strongly preferred over cross()). This portion is the A->D 12
trigger direction, in that the analog domain will generate the event for the digital domain to use. Use cases are: 13

• Event generation from analog signals (cross(), above(), absdelta()) 14
• Quantized continuously monitored analog signals (absdelta()) 15

24
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

Verilog-AMS defines how the discrete domain can read analog values and how digital inputs shall be interpreted by 1
the analog domain. Digital inputs that are read by the analog domain should be filtered by a transition() function 2
to smooth out the discrete change into a PWL signal. This portion is the D->A trigger direction, in that the discrete 3
domain will generate the event for the analog to then use. These can be categorized into the following use cases; 4

• Pull (read) analog values via event-driven calls (do not cause an analog timestep, and values are interpolated) 5
• Push (write) bridge core controls 6
• Push bridge core controls with handshake synchronization 7

Combinations of A->D and D->A triggers can be used, e.g., an A->D event being used to pull an analog value causes 8
a D->A event. The subtleties are discussed in the next section to ensure robust communication. The UVM-MS 9
methodology does not dictate how this is done, but points to possible “gotchas” that are often missed. 10

6.1.1 Event generation from analog signals 11

Events in the digital domain can be generated from analog signals in two ways. In the first way, a cross()or 12
above() function call can be used to generate a digital event when an analog signal meets the requirements for the 13
function to trigger the event. This method is useful, for example, when the exact point the signal goes out of range is 14
required, but at a performance cost. 15

Example: 16

always @(above(V(in)–0.9,…) or above(0.5-V(in),…)) -> out_of_range;
 17
The second way is when the nearest analog timestep is good enough, in which case the following code is suitable. The 18
absdelta() function is used to sample the analog value out_of_range_ana when its value toggles between 0 19
and 1. The advantage of this approach is that it does not affect the analog time step algorithm. 20
 21
integer out_of_range_ana;
analog begin
 if((V(in) >= 0.9) || (V(in)=<0.5)) out_of_range_ana = 1;
 else out_of_range_ana = 0;
end
always @(absdelta(out_of_range_ana,1,0,0,1)) -> out_of_range;

 22
NOTE—In Verilog-AMS, an event occurs whenever a value is assigned to an analog variable that appears in a @() event control, 23
regardless of whether the variable changes value or not, so triggering off out_of_range_ana directly would cause an event at 24
every analog timestep regardless of whether the value changed or not. 25

6.1.2 Quantized continuously monitored analog signals 26

Verilog-AMS provides the function absdelta() to quantize an analog signal for use in the discrete domain. The 27
absdelta() function provides controls how to do the quantization as well as an enable. In addition, it is possible 28
to query the analog value from the discrete domain by an event, such as a periodic clock. The choice between 29
absdelta()and a periodic sampling depends on the use case and on the signal to achieve optimal simulation 30
performance. Some examples are shown below; there is no generic solution that can be applied. See the Verilog-AMS 31
standard for a comprehensive description of the absdelta() function. 32

Setting the delta, time_tol and expr_tol arguments appropriately allows absdelta() to operate accurately. Using a 33
periodic digital event to sample the value may seem simpler, but each query causes a request to the analog solver to 34
interpolate the analog_expr to get a value for that digital time point. Each request for the analog value is a blocking 35
request, so control passes to the analog solver to get the value before returning to the digital solver. 36

 37

25
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

always @(absdelta(analog_expr, delta, time_tol, expr_tol, enable))
 discrete_real = analog_expr;

forever #10 discrete_real = analog_expr;
always @(posedge clk) discrete_real = analog_expr;

6.1.3 Event-driven queries of analog values 1

It is possible to use a digital function within a Verilog-AMS file to probe continuous variables or nets. The returned 2
value is interpolated from the last accepted matrix solution and the next proposed solution. The proxy would use a 3
function call to the function in the bridge core to return the value. (Note that functions in Verilog-AMS are required 4
to have at least one input, even if not needed, and support only a limited set of data types.) 5

function real getVoltage(input dummy);
 begin
 getVoltage = V(PLUS);
 end
endfunction

function real getCurrent(input dummy);
 begin
 getCurrent = I(<PLUS>);
 end
endfunction

 6

6.1.4 Push analog control 7

 8
Figure 9 : Push pattern for analog control example 9

The push pattern for analog control makes an instantaneous change to discrete bridge core variables and does not wait 10
for an event or a signal change to happen before returning. The agent driver simply calls a function in the proxy class 11
that in turn either calls a function in the bridge core or uses an OOMR to set the value of a variable internal to the 12
bridge core. The proxy function then immediately returns control to the driver. In Figure 9, txn is a transaction 13
instance name. 14

26
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

6.1.5 Push analog control with handshake (push-sync) 1

 2

Figure 10 : Push-sync pattern for analog control example 3
The push-sync mechanism synchronizes the digital and analog simulation engines, since the analog solver requires 4
time to change signal values. This pattern drives a change to the bridge core and waits for an event based on a signal 5
condition before passing control to the next sequence item. This can be useful for such operations as voltage ramping, 6
etc. 7

A push-sync pattern implementation shall declare a synchronization variable in the bridge core that indicates when 8
the event has occurred, and a corresponding synchronization variable in the proxy class. The driver waits for the proxy 9
synchronization variable before continuing. 10

Use function calls to prevent race conditions. A function does not return until its nested function calls have also 11
completed. 12

For example, the transition filter transition()in Verilog-AMS smooths a discrete signal into a continuous-time 13
signal. It stretches instantaneous changes in signals over a finite amount of time and can delay the transitions, as shown 14
in the following figure. 15

 16
Figure 11 : Verilog-AMS transition filter 17

Within Verilog-AMS, there is no signal to say that the transition filter has completed, even though the simulator has 18
that information. But Verilog-AMS code can detect whether the transition filter has completed, which is useful 19
feedback to an agent. The input value to the transition filter can be compared to the output, and when they are within 20
a certain tolerance, the filter can be deemed to have completed. 21

In the example below, the driver passes a voltage change to the Verilog-AMS bridge core via the proxy. The 22
setRampVoltage function in the proxy calls the corresponding function in the bridge core. It waits for the bridge 23

27
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

core function to complete, initializes the "end of transition" flag vdc_eot, and then returns to the driver. The driver 1
waits for the flag to become 1. 2

// in the driver
 proxy.setRampVoltage(5.0);
 wait(proxy.vdc_eot);

module ms_bridge
 ms_bridge_core icore (...); // instantiation of the bridge_core

 class MSProxy extends vdriver_proxy; // vdriver_proxy defines int vdc_eot

 function automatic void setRampVoltage(real val, tr = 1e-9, tf = 1e-9);
 void'(i_core.setRampVoltage(val, tr, tf));
 vdc_eot = i_core.vdc_eot;
 endfunction: setRampVoltage
 ...
 endclass

 // Capture changes from the bridge core and copy to proxy.
 // @(..) at the end so that proxy.vdc_eot is assigned when the process starts.
 // This saves an assignment initialization statement.
 always begin
 proxy.vdc_eot = i_core.vdc_eot;
 @(i_core.vdc_eot);
 end
...
endmodule

// Verilog-AMS
module ms_bridge_core

 function automatic integer setRampVoltage(input real val, tr, tf);
 begin
 vdc = val;
 vdc_tr = tr;
 vdc_tf = tf;
 vdc_eot = (abs(vdc_tran - vdc) < tol) ? 1:0; // Update vdc_eot
 setRampVoltage = 1; // Return 1; V-AMS does not have void functions
 end
 endfunction

 integer analog_clk;
 analog begin
 vdc_tran = transition(vdc, 0, vdc_tr, vdc_tf);
 // A change in vdc is a D2A even, triggering the analog solver.
 ...
 analog_clk = 1 - analog_clk; // Generate signal to update vdc_eot
 end

 // Update vdc_eot on every analog timestep.
 always@(absdelta(analog_clk,1,0,0)) vdc_eot = (abs(vdc_tran - vdc) < tol) ? 1:0;
...
endmodule
 3
In this example, vdc is a real value passed from the agent into the bridge core as a digital owned variable. vdc_tran 4
is the output of the transition filter and is a continuous real variable. At each analog timestep, the output of the 5
transition filter is updated and vdc_eot is recalculated. vdc_eot determines whether the continuous variable is within 6
a tolerance of the discrete value. A tolerance is needed as the comparison is on two real numbers. In this case, the two 7
real numbers represent voltages, so the recommendation for tol is the Verilog-AMS abstol for that discipline. 8

28
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

6.1.6 Pull analog value 1

 2

Figure 12 : Pulling a value from the bridge core 3
The pull pattern takes an instantaneous measurement from the bridge core such that it is suitable for a UVM monitor. 4
It is recommended that the monitor call a function in the proxy that in turn calls a function in the bridge core. In Figure 5
12, ap is the instance name of a uvm_analysis_port. 6

6.2 DMS communication 7

DMS as defined in this document uses native SystemVerilog constructs, and could have been set up without a bridge 8
and then the testbench and data communication would be simpler. However, in many cases, a DMS model either needs 9
to use an AMS model as a baseline to fine-tune its behavior, or both models need to run interchangeably. These cases 10
require setting up the DMS bridge core communication to be functionally identical to the AMS version and to inherit 11
the Bridge Core-Proxy-Agent communication pattern described above. Based on this principle, the HDL and UVM 12
testbench hierarchies could remain the same while switching between AMS and DMS modules at elaboration time. 13

This section describes how to implement in DMS the same communication patterns described in the previous section 14
for AMS. 15

6.2.1 Event generation from analog signals 16

In DMS, digital events could be generated by monitoring value changes of variables. However, the user needs to guard 17
against an excessive number of events due to noise. It is therefore important to utilize some tolerance. There are 18
multiple ways to achieve this, e.g., instead of simply @(myvar), it could be better to write “@(abs(myvar – 19
myvar_prev) - tol)” on a sensitive signal, where abs() is a user-defined absolute value function. 20

Dedicated modules can also be created to achieve these kinds of monitoring. For simplicity, a delay could also be used 21
for stimuli with predetermined duration (e.g., PWL or periodic waveforms) where end-of-signal transitions do not 22
necessarily indicate the end of the transaction. One useful programming pattern is to set the timescale of the module 23
to, e.g., one second, with a timeunit statement. A delay could then be sent from the UVM side in units of seconds, 24
and the delay implemented as #(delay_exp_in_sec * 1s). 25

6.2.2 Quantized continuously monitored analog signals 26

In DMS, analog signals can be directly monitored. 27

29
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

6.2.3 Event-driven queries of analog values 1

In order to preserve the function signatures and ensure a smooth transition between DMS and AMS, the proxy is used 2
to query values from the bridge core. DMS implementations need to accommodate the same set of functions. The 3
exact implementation of such functions may depend on the abstraction. 4

For example, when the analog output is modelled with the VIZ_wire user-defined nettype, defined as 5

typedef struct {
 real V;
 real I;
 real Z;
} VIZ_type;

nettype VIZ_type VIZ_wire;

function real getVoltage(input VIZ_wire p);
 begin
 getVoltage = p.V;
 end
endfunction

function real getCurrent(input VIZ_wire p);
 begin
 getCurrent = p.I;
 end
endfunction

6.2.4 Push analog control 6

 7

Figure 13 : Push analog control – DMS version 8
As in AMS, the driver calls a method in the proxy class to make an instantaneous change to a bridge core value and 9
then returns control to get the next sequence item. The setVoltage()/getVoltage() functions could remain 10
mostly the same. 11

Similar to the transition filter in Verilog-AMS, in DMS one could create a dedicated function to control the updates 12
to the voltage magnitude and frequency actually driven to the DUT and ensure that the changes are smooth. Instead 13
of directly writing changes to the core module, the changes are intercepted and filtered by intermediate signals. This 14
could improve performance by preventing too-frequent writes that would force the analog solver to reevaluate the 15
analog matrix. 16

30
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

6.2.5 Push analog control with handshake (push-sync) 1

 2

Figure 14 : Push-sync pattern for analog control example – DMS version 3
This push-sync pattern is similar to that of the AMS version. In the bridge core, the value update could be interpolated 4
in a fashion similar to that of a transition filter. 5

6.2.6 Pull analog value 6

 7

Figure 15 : Pulling a value from the bridge core – DMS version 8
This pattern is also similar to that of AMS. In AMS, these queries need to be carried out by access functions, whereas 9
in DMS, bridge core variables can be queried directly. User can also incorporate current or resistance with user defined 10
net types into the model and enable queries of such signals. 11

7. Messaging 12

7.1 General 13

Users need the ability to report what is happening during simulation. Users may want to display: 14

• Errors, both in creating the verification environment and in simulation results 15
• Debug messages, to help understand why problems have occurred 16
• Progress reports, to show that the simulation is doing what it should 17

Some messages (e.g., errors) will be more important than others (e.g., progress reports). Therefore, users need the 18
ability to categorize messages by severity: 19

31
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

• Fatal – e.g., the simulation has failed and cannot continue 1
• Error – e.g., there is a problem, but simulation can continue 2
• Warning – e.g., there is a possible problem or anticipated issue 3
• Info – e.g., for progress reports 4

Severity codes allow users to link specific actions with messages, for example, to stop the simulation on a fatal 5
message or after a certain number of error messages. A summary of the messages of each severity at the end of the 6
simulation enables the user to understand the simulation results at a glance. A standalone messaging mechanism for 7
UVM is needed to allow separate control of simulation and simulator reports and to ensure portability, as shown in 8
Figure 16. 9

 10
Figure 16 : UVM messaging system overview 11

7.2 UVM messaging from the bridge core 12

It is a requirement to implement UVM messaging from the bridge core. However, reporting macros are not supported 13
in Verilog-AMS modules. A solution to this is via upwards name referencing. 14

For Verilog-AMS files, the `include file "uvm_ms.vamsh" defined in this standard, found in Annex A, contains 15
local parameters that define UVM verbosity levels as integers to match the UVM enums. The file "uvm_ms.svh" 16
included in the top-level SystemVerilog file of the MS Bridge declares void functions that wrap calls to the 17
uvm_report_*() reporting functions. 18

Within a digital block of a Verilog-AMS file, users can call `uvm_ms_[info|warning|error|fatal](…) and 19
upwards name referencing finds the corresponding function in the MS Bridge file. See Annex A for more details. 20
SystemVerilog files in the bridge that need to call reporting functions can include either of the two files. The output 21
messages report the file name and the line number from where the reporting function was called. An example is shown 22
below in 7.2.1. 23

As in `uvm_info, the user specifies the verbosity in the call to `uvm_ms_info. If the verbosity argument is omitted 24
(legal only in SystemVerilog), the default verbosity is UVM_MEDIUM. The verbosity level for `uvm_ms_warning, 25
`uvm_ms_error, and `uvm_ms_fatal is UVM_NONE, as with their regular UVM counterparts. 26

32
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

7.2.1 UVM messaging from an AMS bridge core 1

Calling user-defined non-analog functions is not allowed in a Verilog-AMS analog block, but a solution to invoke 2
messaging is to set a string value and toggle an integer, then use absdelta() to trigger on the toggle and read the 3
string to call `uvm_ms_*(…). 4

Example: 5

parameter string P__TYPE = “vdriver”;
...
//Convert the detection in the analog block to a UVM report.
string message;
always@(absdelta(I_thr_triggered,1,0,0,1)) begin
 if(I_thr_triggered) begin
 $sformat(message,"The Current is above the threshold @ %eA",I_PLUS);
 `uvm_ms_info(P__TYPE,message,UVM_MEDIUM)
 end
end

A typical output message might look like this: 6

UVM_INFO ../vdriver_bridge/vdriver_core.sv(377) @ 6400000000.00000 fs: reporter [vdriver] The 7
Current is above the threshold @ 1.000265e+00A 8

7.2.2 UVM messaging from a DMS bridge core 9

In principle, a digital core model could use regular UVM messaging, but it is recommended to use the UVM-MS 10
messaging functions for consistency of reported contexts. 11

8. Testbench 12

Unlike classical UVM, UVM-MS needs to provide support for designs in a schematic capture tool that require some 13
sort of netlist extraction. To facilitate this, a “dual-top” configuration is suggested. One of the top-level modules, 14
called the test_bench, encapsulates the physical DUT and MS Bridge components. The other top-level module, called 15
the test_env, encapsulates the UVM test, environment, agents, etc. This approach allows the test_env and associated 16
collateral to be different for different netlist extractions of the test_bench. For example, depending on whether the 17
test_bench is extracted as AMS or DMS, a different test_env could be used. In addition, the various schematic capture 18
tools can deal with the complexities of creating design configurations to support instance view bindings. 19

 20

33
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

Figure 17 Dual-top UVM-MS hierarchy 1

9. Verilog-AMS circuit initialization 2

9.1 General 3

Understanding how a Verilog-AMS simulation is initialized can help avoid issues that cause time to debug. The 4
Verilog-AMS standard defines the order, but a simplified description is presented here for convenience. 5

1. Variables are initialized, either to their default values or as specified in a variable declaration assignment. (In 6
this, Verilog-AMS behaves like SystemVerilog, and not like Verilog, where variable declaration assignments 7
execute at the same time as initial blocks.) 8

2. analog initial blocks execute. These blocks may not contain OOMRs, and the order of execution 9
between analog initial blocks in different modules does not matter. These statements occur before the 10
analog matrix is formed, so it is not possible here to probe a voltage, for example. These blocks are used for 11
setting internal variables. 12

3. Digital initial and always blocks begin to execute in a nondeterministic order until they start to 13
consume time. These blocks may contain OOMRs. So a digital initial block may query a value from an 14
analog block. Thus, it is important to ensure that the values of analog variables read in this step are set 15
correctly in step 2. 16

4. At this point, control passes over to the analog solver, which will try to find a DC operating point. Analog 17
DC analysis and the digital simulation at time 0 execute iteratively until all signals at the A/D boundaries 18
reach steady state, which is the DC operating point for transient and AC analysis. 19

9.2 UVM phases 20

Finding a DC operating point is an iterative process because it will try to converge. This may cause an analog-to-21
digital event to happen. The RTL code may do something that would then cause a digital-to-analog event that then 22
changes the analog solution. This iteration might have to repeat a few times. The best thing to do is to make sure that 23
the A-to-D or D-to-A boundaries are static. One way to do that is to start the supply zero and then ramp everything 24
up. Assuming all of that works, a DC operating point will be obtained, and the analog solver will choose a point in 25
time to move to and then pass back control to the digital simulator. 26

This provides an opportunity in the pre-run phases to reconfigure analog parameters. For example, it is possible to 27
change a capacitor value or reconfigure resistors acting as switches to be open or closed before finding a DC operating 28
point. This can be done in a pre-run phase after build. 29

For example, there is a capacitor and it has parameter values on it. In the connect_phase, the parameters can be read 30
into the UVM configuration. The configuration could then be modified in the end_of_elaboration phase. Finally, in 31
the start_of_simulation phase, the values on the capacitor can be updated to the values contained in the configuration. 32
In the run_phase, no analog values should be changed until some time has been consumed by the digital simulator 33
(e.g., #1). This ensures that the DC operating point of the circuit is retained. 34

34
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1

Figure 18 : UVM pre-run phases 2

10. Known limitations 3

10.1 Inout ports on the SystemVerilog interface 4

Driver-receiver segregation is needed on inout connections from the SV IF to the bridge core when the DUT I/O 5
abstraction is a user-defined type or electrical. The current workaround is to split the SV IF port into a driver and 6
receiver manually. 7

10.2 Unpacked array ports on DUT 8

Using a DUT I/O bus of an unpacked array type, such as an array of real values, prevents swapping the abstraction of 9
the bridge core between DMS and AMS. Verilog-AMS does not yet support unpacked array ports. 10

35
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 (normative) UVM-MS package and include files 1

The standard package uvm_ms_pkg contains the definition of the abstract base proxy class uvm_ms_proxy. 2

The MS Bridge and other SystemVerilog files should include the "uvm_ms.svh” file in addition to the standard 3
UVM package and include file(s). Verilog-AMS modules in the MS Bridge hierarchy need to include 4
“uvm_ms_vamsh”. 5

A.1 uvm_ms_pkg.sv 6

// ==
// Proxy class to be extended in the MS Bridge module.
// It allows UVM components to access proxy API by
// passing a handle to the proxy instance via uvm_config_db.
// Class is declared virtual so it cannot
// be instantiated, it must be derived.
// ==

`ifndef UVM_MS_PKG_SV
`define UVM_MS_PKG_SV

`include "uvm_macros.svh"

package uvm_ms_pkg;
 import uvm_pkg::*;

 /* uvm_ms_proxy provides a communication API between driver/monitor and the bridge.
 * A proxy specific to the bridge should be created inside the bridge by extending
 * uvm_ms_proxy and then implementing the API functions accordingly.
 */

 virtual class uvm_ms_proxy;
 string name;

 function new(string name="uvm_ms_proxy");
 this.name = name;
 endfunction

 // Example prototype for push function to core
 // This function should be added to a derived class
 // and NOT to the uvm_ms_proxy class
 // virtual function void push(input real ampl, bias, freq, bit enable);
 // `uvm_warning("proxy","Function push not implemented")
 // endfunction

 endclass : uvm_ms_proxy

endpackage : uvm_ms_pkg

`endif

A.2 uvm_ms.svh 7

// ===
// Wrapper functions to hook the bridge core digital calls to the UVM
// reporting system. Upwards name referencing is used so it works in
// various abstractions of the bridge core, e.g., both SV and Verilog-AMS.
//

36
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

// The UVM messaging macros are based on class hierarchy. UVM-MS uses different
// macro names to distinguish them from the UVM macros.
//
// `uvm_ms_info works the same as `uvm_info except that it passes `__FILE__ and
// `__LINE__ arguments pass to the info message, reporting where the macro is called,
// typically the bridge core
//
// Output format:
// UVM_INFO <file path>(<line number>) @ <time>: reporter <tag> <message>
// ("reporter" is the typical default UVM report handler name
// ===
`define uvm_ms_info(id,message,uvm_verbosity) \
 uvm_ms_info(id,message,uvm_verbosity,`__FILE__ ,`__LINE__);

`define uvm_ms_warning(id,message) uvm_ms_warning(id,message,`__FILE__ ,`__LINE__);

`define uvm_ms_error (id,message) uvm_ms_error (id,message,`__FILE__ ,`__LINE__);

`define uvm_ms_fatal (id,message) uvm_ms_fatal (id,message,`__FILE__ ,`__LINE__);

// The uvm_ms_info function takes arguments from the `uvm_ms_info macro and recreates
// a message identical to `uvm_info. This is needed because `uvm_ms_info is being
// called from a module representing the bridge core and not from a UVM component.

function void uvm_ms_info(string id, string message, int verbosity, string file,
 int line);
 uvm_report_info(id,message,verbosity,file,line);
endfunction: uvm_ms_info

function void uvm_ms_warning(string id, string message, string file, int line);
 uvm_report_warning(id, message,, file, line);
endfunction: uvm_ms_warning

function void uvm_ms_error(string id, string message, string file, int line);
 uvm_report_error(id, message,, file, line);
endfunction: uvm_ms_error

function void uvm_ms_fatal(string id, string message, string file, int line);
 uvm_report_fatal(id, message,, file, line);
endfunction: uvm_ms_fatal

 1

A.3 uvm_ms.vamsh 2

// `include file for Verilog-AMS. Not needed for SystemVerilog.
// enums and dynamic objects cannot be accessed via OOMRs,
// so local parameters are used.

localparam integer UVM_NONE = 0;
localparam integer UVM_LOW = 100;
localparam integer UVM_MEDIUM = 200;
localparam integer UVM_HIGH = 300;
localparam integer UVM_FULL = 400;
localparam integer UVM_DEBUG = 500;

// UVM messaging can be called from Verilog-AMS digital code using these functions.
// Via upwards name referencing, the code calls the function in the SystemVerilog
// wrapper layer that then calls the UVM macros (see file "uvm_ms.svh").
// The system can also be used in SystemVerilog implementations of the bridge core.

37
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

`define uvm_ms_info(id,message,verbosity) \
 uvm_ms_info(id,message,verbosity,`__FILE__ ,`__LINE__);

`define uvm_ms_warning(id,message) uvm_ms_warning(id,message,`__FILE__ ,`__LINE__);

`define uvm_ms_error (id,message) uvm_ms_error (id,message,`__FILE__ ,`__LINE__);

`define uvm_ms_fatal (id,message) uvm_ms_fatal (id,message,`__FILE__ ,`__LINE__);

 1

38
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 (informative) Example: migrating UVM to UVM-MS 1

B.1 Overview 2

The example presented here is an oscillator agent used to drive and monitor a clock signal to and from a frequency 3
adapter DUT. A block diagram of the DUT is shown in Figure 19: 4

 5

Figure 19 : Frequency adapter DUT 6
The frequency adapter DUT has a single-ended clock input and a differential clock output. Five control signals modify 7
the clock input to produce the clock outputs: 8

• en_mux enables the multiplexer. 9
• sel_mux selects one of four multiplication factors – 2X, 1X, 0.5X, 0.25X. 10
• pw_adj is an 8-bit signal that adjusts the pulse width of the 2X clock. 11
• ampl_adj is a 2-bit signal that adjusts the amplitude of the output clocks. 12
• sr_adj is a 2-bit signal that adjusts the slew rate of the output clocks (only applicable for DMS/AMS 13

model). 14

There are two oscillator agents, one for generating the input clock and one for detecting the output clock, and an I2C 15
agent for programming the registers with the values used to drive the control signals. 16

39
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

The UVM testbench, including two instances of the oscillator interface osc_if, is shown in Figure 20: 1

 2

Figure 20 : UVM testbench, showing oscillator interface 3
The frequency adapter DUT can be implemented as a pure digital (SystemVerilog), DMS (SystemVerilog/Verilog-4
AMS) or AMS (Verilog-AMS/SPICE) model, with the clk_in, clkout_p, and clkout_n ports implemented as 5
pure digital, DMS or AMS signals respectively. Code snippets showing the respective module declarations are shown 6
below: 7

 8

This example assumes that pure digital versions of the frequency adapter DUT and the oscillator agent existed 9
previously. Therefore, the new DMS and AMS DUTs necessitate the creation of DMS and AMS versions of the 10
oscillator agent. 11

The full working testcase is available in the frequency_adapter directory of the UVM-MS Working Group on the 12
Accellera website: https://accellera.org/downloads/drafts-review. 13

// digital
module frequency_adapter (
 output logic clkout_p, clkout_n, // differential output
 input logic clk_in, // clock input
 input logic en_mux, [1:0] sel_mux, // register control
 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj); // digital control voltage

// DMS
module frequency_adapter import rnm_pkg::*; (
 output wreal4state clkout_p, clkout_n, // differential output
 input wreal4state clk_in, // clock input
 input logic en_mux, [1:0] sel_mux, // register control
 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj); // digital control voltage

// AMS
module frequency_adapter(clkout_p, clkout_n, clk_in, en_mux, sel_mux, pw_adj, sr_adj, ampl_adj);
 output clkout_p, clkout_n; // differential output
 input clk_in; // clock input
 input en_mux, [1:0] sel_mux; // register control
 input [7:0] pw_adj, [1:0] sr_adj, ampl_adj; // digital control voltage
 electrical clkout_p, clkout_n, clk_in;

https://accellera.org/downloads/drafts-review

40
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

B.2 Creating the bridge module 1

The original interface for the oscillator (osc_if) communicates with the DUT through the osc_clk net for a single-2
ended clock, or osc_clk_p and osc_clk_n for a differential clock, as shown in the snippet below: 3

 4

The interface is instantiated twice. generator_if connects the agent driver and the DUT input, and detector_if 5
connects the agent monitor and the DUT outputs. 6

For an MS environment, the MS Bridge that is created has to append to or replace this interface in function. Therefore, 7
the ports of the MS Bridge (osc_bridge) will match the above nets. The bridge module will also contain the 8
instantiation of the bridge core (osc_bridge_core) and the implementation of the bridge proxy 9
(osc_bridge_proxy, which extends the base class osc_proxy). The bridge module is also instantiated twice, like 10
the interface, once for the generator and once for the detector. 11

interface osc_if ();
...
 // DUT signals
 wire osc_clk = clk; // Single-ended clock
 wire osc_clk_p, osc_clk_n; // Differential clock
...
endinterface

41
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1

B.3 Extending the driver and monitor classes 2

The mixed-signal version of the oscillator driver class (osc_ms_driver) uses the bridge proxy to read and write from 3
the bridge core. The mixed-signal driver extends the digital driver (osc_driver), so the interface declaration and 4
connection in the base class are inherited by the extended class. Code snippets are shown below Key items to note: 5

1. The mixed-signal driver osc_ms_driver extends the digital driver osc_driver. 6

2. The mixed-signal driver instantiates a variable of base proxy type (osc_proxy) and assigns the variable a 7
handle to the bridge proxy in a way similar to how the virtual interface vif is assigned a handle to the osc_if 8
interface in the digital driver, with a call to uvm_config_db::get() in the UVM connect phase. 9

3. The bridge core is driven and monitored using calls to bridge proxy methods and references to variables in 10
the proxy. 11

module osc_bridge (
 output interconnect osc_clk,
 input interconnect osc_clk_p,
 input interconnect osc_clk_n
);

 // UVM + MS extras
 import uvm_pkg::*;
 import uvm_ms_pkg::*;
 `include "uvm_macros.svh"
 `include "uvm_ms.svh"

 // UVM package for this component
 import osc_pkg::*;

 // The clock detector can be configured in active or passive mode using the "passive" parameter,
 // and to choose between single-ended or differential clock using the "diff_sel" parameter
 parameter bit diff_sel = 0;
 parameter bit passive = 0;

 // Class osc_bridge_proxy extends the osc_proxy included in osc_pkg.sv
 class osc_bridge_proxy extends osc_bridge_proxy;
 function new(string name = "");
 super.new(name);
 endfunction : new

 // implementation of pull function from base class not needed
 // implementation of push function from base class
 function void push(input real ampl, bias, freq, bit enable);
 core.ampl_in = ampl;
 core.bias_in = bias;
 core.freq_in = freq;
 core.enable = enable;
 endfunction

 endclass

 osc_bridge_proxy proxy = new("proxy");

...

 // Bridge core instantiation
 osc_bridge_core #(.diff_sel(diff_sel), .passive(passive)) core (
 .osc_clk (osc_clk),
 .osc_clk_p(osc_clk_p),
 .osc_clk_n(osc_clk_n)
);

endmodule

42
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

//---------------------------
// CLASS: osc_driver
//---------------------------
class osc_driver extends uvm_driver #(osc_transaction);

 // The virtual interface used to drive and view HDL signals.
 virtual interface osc_if vif;

 // Count transactions sent
 int num_sent;

 // period of the generated clock
 real period;

 // component macro
 `uvm_component_utils_begin(osc_driver)
 `uvm_field_int(num_sent, UVM_ALL_ON)
 `uvm_field_real(period, UVM_ALL_ON)
 `uvm_component_utils_end

 int test_config;

 // Constructor - required syntax for UVM automation and utilities
 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction : new

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction

 function void connect_phase(uvm_phase phase);
 if (!uvm_config_db#(virtual osc_if)::get(this,"","vif", vif))
 `uvm_error("NOVIF",{"virtual interface must be set for: ",get_full_name(),".vif"})
 endfunction: connect_phase
 ...

endclass : osc_driver

//---------------------------
// CLASS: osc_ms_driver
//---------------------------
class osc_ms_driver extends osc_driver;

 protected osc_proxy bridge_proxy;

 osc_ms_transaction ms_req;

 // Get value to drive onto diff_sel
 bit diff_sel;

 // Provide implmentations of virtual methods such as get_type_name and create
 `uvm_component_utils_begin(osc_ms_driver)
 `uvm_field_int(diff_sel, UVM_ALL_ON)
 `uvm_component_utils_end

 // Constructor - required syntax for UVM automation and utilities
 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction : new

...

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 //TODO: Put this in the connect_phase()
 if(!uvm_config_db#(osc_proxy)::get(this,"","bridge_proxy",bridge_proxy))

43
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 `uvm_error(get_type_name(),"bridge proxy not configured");
 endfunction

endclass : osc_ms_driver

// UVM run() phase
task osc_ms_driver::run_phase(uvm_phase phase);
 super.run_phase(phase);
 fork
 get_and_drive();
 join
endtask

// Gets transactions from the sequencer and passes them to the driver.
task osc_ms_driver::get_and_drive();
 forever begin
 // Get new item from the sequencer
 seq_item_port.get_next_item(req);
 $cast(ms_req,req);
 // Drive the item
 drive_transaction(ms_req);
 fork
 #(200*1ns); //Time for transaction
 begin : sample_thread
 #(1ns) bridge_proxy.sampling_do = 1;
 #(1ns) bridge_proxy.sampling_do = 0;
 end
 join
 // Communicate item done to the sequencer
 seq_item_port.item_done();
 end
endtask : get_and_drive

The osc_monitor class is similarly extended to osc_ms_monitor, as shown below.

//---------------------------
// CLASS: osc_monitor
//---------------------------
class osc_monitor extends uvm_monitor;

 // Virtual Interface for monitoring DUT signals
 virtual interface osc_if vif;
...
 osc_transaction osc_clk_transaction, osc_clk_p_transaction;

 // This TLM port is used to connect the monitor to the scoreboard
 uvm_analysis_port #(osc_transaction) item_collected_port;
...
 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction: build_phase

 function void connect_phase(uvm_phase phase);
 if (!uvm_config_db#(virtual osc_if)::get(this, get_full_name(), "vif", vif))
 `uvm_error("NOVIF",{"virtual interface must be set for: ",get_full_name(),".vif"})
 if (!uvm_config_int::get(this,"","diff_sel", diff_sel))
 `uvm_error("NOCONFIG",{"value must be set for: ",get_full_name(),".diff_sel"})
 else `uvm_info("CONFIG_CORRECT",{"Value of ",get_full_name(), $sformatf(".diff_sel
= %d",diff_sel)}, UVM_MEDIUM)
 endfunction: connect_phase
...
endclass : osc_monitor

//---------------------------
// CLASS: osc_ms_monitor
//---------------------------
class osc_ms_monitor extends osc_monitor;

44
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 // Virtual interface for monitoring DUT signals
 protected osc_proxy bridge_proxy;

 // Count transactions collected
 int num_col;
...
 virtual function void connect_phase(uvm_phase phase);
 super.connect_phase(phase);
 if(!uvm_config_db#(osc_proxy)::get(this,"","bridge_proxy",bridge_proxy))
 `uvm_error(get_type_name(),"bridge proxy not configured");
 endfunction
...
endclass : osc_ms_monitor
...
task osc_ms_monitor::collect_transaction();
 // This monitor re-uses its data items for ALL transactions
 transaction = osc_ms_transaction::type_id::create("transaction", this);
 forever begin
 @(posedge bridge_proxy.sampling_done);
 // Begin transaction recording
 void'(begin_tr(transaction, "analog_clock source monitor"));
 transaction.data_type = OSC_MS_SAMPLE;
 transaction.ampl = bridge_proxy.ampl_out;
 transaction.bias = bridge_proxy.bias_out;
 transaction.freq = bridge_proxy.freq_out;
 `uvm_info(get_type_name(),
 $sformatf("source transaction collected :\n%s", transaction.sprint()), UVM_HIGH)
 //Temporarily dropped verbosity
 if (checks_enable) perform_checks();
 if (coverage_enable) perform_coverage();

 // Send transaction to scoreboard via TLM write()
 item_collected_port.write(transaction);
 num_col++;

 fork
 begin : wait_for_sampling_done
 @(negedge bridge_proxy.sampling_done);
 disable wait_for_timeout;
 end
 begin : wait_for_timeout
 #150ns;
 disable wait_for_sampling_done;
 end
 join
 // End transaction recording
 end_tr(transaction);
 end
 endtask : collect_transaction

B.4 Extending the sequence item class 1

The mixed-signal agent uses the frequency, amplitude, and DC bias to generate the clock signal. These fields are also 2
used to collect the information received by the monitor. The enable field is used to turn the clock generation on or off, 3
and the delay and duration fields are used to set the delay before sampling and specify the number of cycles sampled. 4

The fields other than frequency (included in the digital sequence item, osc_transaction) are included in the mixed-5
signal agent’s sequence item (osc_ms_transaction). osc_ms_transaction extends osc_transaction and 6
retains the fields and constraints from the base class, since the extended class does not override them. 7

45
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1

//----------------------------
// CLASS: osc_transaction
//----------------------------
class osc_transaction extends uvm_sequence_item;

 rand real freq; // frequency of input clock
 bit diff_sel;

 `uvm_object_utils_begin(osc_transaction)
 `uvm_field_real(freq, UVM_ALL_ON)
 `uvm_object_utils_end

 // Constraints go here
 constraint default_freq_c {
 freq > 5e8;
 freq < 1e9;
 }

 // Constructor - required syntax for UVM automation and utilities
 function new (string name = "osc_transaction");
 super.new(name);
 endfunction : new

endclass : osc_transaction

//----------------------------
// CLASS: osc_ms_transaction
//----------------------------
class osc_ms_transaction extends osc_transaction;

 rand osc_ms_data_type_e data_type;

 // Drive fields
 rand real ampl;
 rand real bias;
 rand bit enable;

 //Measurement fields
 rand real delay; //Delay in ns
 rand int duration;

 `uvm_object_utils_begin(osc_ms_transaction)
 `uvm_field_enum(osc_ms_data_type_e, data_type, UVM_DEFAULT)
 `uvm_field_real(ampl, UVM_DEFAULT)
 `uvm_field_real(bias, UVM_DEFAULT)
 `uvm_field_int(enable, UVM_DEFAULT)
 `uvm_field_real(delay, UVM_DEFAULT)
 `uvm_field_int(duration, UVM_DEFAULT)
 `uvm_object_utils_end

 // Constraints go here
 // To override, use the same constraint name or TCL to disable
 constraint default_drive_trans_c {
 ampl > 0.95;
 ampl < 1.65;
 bias inside {[-0.05:0.5]};
 enable dist {1'b0 := 1, 1'b1 := 5};
 }
 constraint default_measurement_trans_c {
 duration > 20;
 duration < 32;
 delay > 0.0;
 delay < 1.0;
 }

 // Constructor - required syntax for UVM automation and utilities
 function new (string name = "unnamed-osc_ms_transaction");
 super.new(name);
 endfunction : new

endclass : osc_ms_transaction

46
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

B.5 Extending the scoreboard class 1

The scoreboard has a write_osc_gen() function to record the attributes of the input clock and a write_osc_det() 2
function to record the attributes detected on the output clocks. The write_i2c() function will record the register 3
values driving the frequency adapter control signals. The scoreboard will use the values of the control registers to 4
determine whether the output clock was generated correctly. 5

Since the monitors for the oscillator agent are extended to mixed-signal, including the sequence item that they operate 6
on, the implementations of the scoreboard write functions need to be likewise extended. Key points: 7

1. The mixed-signal freq_adpt_ms_scoreboard class is extended from the digital 8
freq_adpt_scoreboard class. 9

2. The write_osc_gen() and write_osc_det() methods are overridden in the mixed-signal scoreboard. 10

3. The write_i2c() method, which is the write function for the digital-only register monitor, is also 11
overridden in the mixed-signal scoreboard. 12

 13

B.6 Changes to testbench class 14

In order to incorporate the extended driver, monitor, sequence item and scoreboard classes, and handles to the new 15
bridge proxies, the mixed-signal testbench class freq_adpt_ms_tb extends the digital-only testbench class 16
freq_adpt_tb, with the following changes in the UVM build phase: 17

1. Set up pointer references for the bridge proxy in the generator and detector agents, using the 18
uvm_config_db::set() method. 19

2. Override the driver, monitor, sequence item and scoreboard with the mixed-signal versions, using the 20
set_type_override_by_type() method. 21

3. Call the base class’s build phase with super.build_phase(). 22

// Scoreboard of the frequency adapter UVCs (freq_generator, freq_detector and registers)
// There will always be error messages to display the comparision results between
// expected output frequency (frequency_generator) and actual frequency (frequency_detector).

class freq_adpt_scoreboard extends uvm_scoreboard;

 typedef enum bit {COV_ENABLE, COV_DISABLE} cover_e;
 cover_e coverage_control = COV_ENABLE;

 // component utils macro
 `uvm_component_utils_begin(freq_adpt_scoreboard)
 `uvm_field_enum(cover_e, coverage_control, UVM_ALL_ON)
 `uvm_component_utils_end

 // define TLM port implementation object
 `uvm_analysis_imp_decl(_i2c)
 `uvm_analysis_imp_decl(_osc_gen)
 `uvm_analysis_imp_decl(_osc_det)

 uvm_analysis_imp_i2c #(i2c_packet , freq_adpt_scoreboard) sb_i2c_in;
 uvm_analysis_imp_osc_gen #(osc_transaction, freq_adpt_scoreboard) sb_osc_gen;
 uvm_analysis_imp_osc_det #(osc_transaction, freq_adpt_scoreboard) sb_osc_det;
...
 // write() function for I2C registers block
 virtual function void write_i2c(i2c_packet packet);

47
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 i2c_packet sb_packet;

 //Make a copy for storing in the scoreboard
 $cast(sb_packet, packet.clone()); // Clone returns uvm_object type
 i2c_packets_in++;

 if (sb_packet.tg_addr != sb_packet.tg_id || sb_packet.reg_addr > 2)
 i2c_in_drop++;
 else begin
 if(sb_packet.rw_ == 0)
 INT_REG[sb_packet.reg_addr] = sb_packet.data;
 MUX_REG = INT_REG[1];
 en_mux = MUX_REG[2];
 sel_mux = MUX_REG[1:0];
 end
 endfunction

 // write() function for generator
 virtual function void write_osc_gen(osc_transaction packet);
 osc_transaction sb_packet;

 $cast(sb_packet, packet.clone()); // Clone returns uvm_object type
 freq_generator_packets_in++;
 freq_in_reg = sb_packet.freq;
 endfunction: write_osc_gen
// write() function for detector
 virtual function void write_osc_det(osc_transaction packet);
 osc_transaction sb_packet;
 $cast(sb_packet, packet.clone()); // Clone returns uvm_object type
 if(en_mux) begin
 // Compare output freq with expected result calculated from input freq
 actualresult_checker_p = sb_packet.freq;
...
 end
 endfunction: write_osc_det
...
endclass: freq_adpt_scoreboard

//---
// Mixed-signal version of scoreboard
//---

class freq_adpt_ms_scoreboard extends freq_adpt_scoreboard;
 `uvm_component_utils(freq_adpt_ms_scoreboard)

// variables of freq_generator
 real ampl, bias, freq;

 // variables for freq_detector coverage check and compare
 real freq_out_p, freq_out_n;
 real freq_tol;
 bit pktcompare;
...
 // write() function for I2C registers block
 virtual function void write_i2c(i2c_packet packet);
...
 endfunction

 // write() function for frequency generator
 virtual function void write_osc_gen(osc_transaction packet);
 osc_ms_transaction sb_packet;

 $cast(sb_packet, packet.clone()); // Clone returns uvm_object type

 freq_generator_packets_in++;
 freq = sb_packet.freq;
 ampl = sb_packet.ampl;
 bias = sb_packet.bias;

48
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 `uvm_info("WRITE_OSC_GEN",
 $sformatf("\nFreq = %f\tAmpl = %f \t Bias = %f",freq,ampl,bias),UVM_LOW)

 osc_gen_change_observed = 1;
 endfunction: write_osc_gen

 // write() function for detector
 virtual function void write_osc_det(osc_transaction packet);
 osc_ms_transaction sb_packet;
 $cast(sb_packet, packet.clone()); // Clone returns uvm_object type
 freq_detector_packets_in++;
 // Compare immediately if the report from the detector was due to a change from the generator
 if(osc_gen_change_observed) begin
 if(en_mux) begin
 // Compare output freq with expected result calculated from input freq
 ...
 endfunction: write_osc_det
...
endclass: freq_adpt_ms_scoreboard

 1

// tb class for digital version of frequency adapter
class freq_adpt_tb extends uvm_env;

 `uvm_component_utils(freq_adpt_tb)

 i2c_env i2c;
 osc_env freq_generator;
 osc_env freq_detector;

 freq_adpt_scoreboard freq_adpt_sb;

 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 endfunction : new

 function void build_phase(uvm_phase phase);
 `uvm_info("MSG","In the build phase",UVM_MEDIUM)

 uvm_config_db#(virtual osc_if)::set(this,"freq_generator*", "vif", top.generator_if);
 uvm_config_db#(virtual osc_if)::set(this,"freq_detector*" , "vif", top.detector_if);
 uvm_config_db#(virtual i2c_if)::set(this,"i2c.agent.*" , "vif", top.i2c_if);

 // config the value of diff_sel for freq_generator to 0 - single-ended clock generation
 // config the value of diff_sel for freq_detector to 1 - differential clock detection
 uvm_config_int::set(this,"freq_generator.agent.*","diff_sel", 0);
 uvm_config_int::set(this,"freq_detector.agent.*" ,"diff_sel", 1);

 super.build_phase(phase);

 // create the envs for the generator, detector, registers and scoreboard
 freq_generator = osc_env::type_id::create("freq_generator", this);
 freq_detector = osc_env::type_id::create("freq_detector", this);
 i2c = i2c_env::type_id::create("i2c", this);
 freq_adpt_sb = freq_adpt_scoreboard::type_id::create("freq_adpt_sb", this);
 endfunction : build_phase

 function void connect_phase(uvm_phase phase);
 // Connect the TLM ports from the UVCs to the scoreboard
 i2c.agent.monitor.item_collected_port.connect(freq_adpt_sb.sb_i2c_in);
 freq_generator.agent.monitor.item_collected_port.connect(freq_adpt_sb.sb_osc_gen);
 freq_detector.agent.monitor.item_collected_port.connect (freq_adpt_sb.sb_osc_det);
 endfunction : connect_phase
endclass : freq_adpt_tb

 2

49
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

// tb class for SV-RNM and VAMS version of frequency adapter
class freq_adpt_ms_tb extends freq_adpt_tb;

 // component macro
 `uvm_component_utils(freq_adpt_ms_tb)

 // Constructor
 function new (string name, uvm_component parent=null);
 super.new(name, parent);
 endfunction : new

 // UVM build() phase
 function void build_phase(uvm_phase phase);
 `ifdef UVM_AMS
 // set up bridge proxy pointer references in generator and detector agents
 uvm_config_db #(osc_proxy)::set(this,"freq_generator.agent.*","bridge_proxy",

top.generator_bridge.proxy);
 uvm_config_db #(osc_proxy)::set(this,"freq_detector.agent.*","bridge_proxy",

top.detector_bridge.proxy);
 `endif

 // override driver, monitor, and scoreboard with UVM-AMS versions
 set_type_override_by_type(osc_transaction::get_type(),osc_ms_transaction::get_type());
 set_type_override_by_type(osc_driver::get_type() ,osc_ms_driver::get_type());
 set_type_override_by_type(osc_monitor::get_type() ,osc_ms_monitor::get_type());
 set_type_override_by_type(freq_adpt_scoreboard::get_type(),

 (freq_adpt_ms_scoreboard::get_type());

 `ifdef DMS_I2C
 uvm_config_db #(i2c_proxy)::set(this,"i2c.agent.*","bridge_proxy", top.i2c_bridge.proxy);
 set_type_override_by_type(i2c_driver::get_type(),i2c_ms_driver::get_type());
 `endif

 super.build_phase(phase);

 endfunction
endclass : freq_adpt_ms_tb

 1

B.7 Changes to top-level module 2

The only changes required for the top-level module are: 3

1. Importing the UVM MS package and including the UVM MS macros file. 4

2. Instantiating the MS bridges for the oscillator agents 5

3. Replacing the assign statements for the DUT’s clkin and clkout_p/n ports with port connections to 6
the respective MS bridges 7

50
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 1

 2

module top;

 // Import the UVM libraries
 import uvm_pkg::*;
 import uvm_ms_pkg::*;

 // Include the UVM macros
 `include "uvm_macros.svh"
 `include "uvm_ms.svh"

 // Import the UVC packages
 import osc_pkg::*;
 import i2c_pkg::*;

 // Include the test library files
 `include "freq_adpt_scoreboard.sv"
 `include "freq_adpt_tb.sv"
 `include "test_lib.sv"
...
 // Clock and reset signals
 wire clkout_p, clkout_n;
 wire clk_in;
...
 bit en_mux;
 bit [1:0] sel_mux;
 bit [1:0] ampl_adj;
 bit [1:0] sr_adj;
 bit [7:0] pw_adj;
...
 // Interfaces to the DUT
 osc_if generator_if ();
 osc_if detector_if ();
...
 // For a pure digital DUT, we map the inputs and outputs directly to the
 // generator and detector interface nets, respectively.
 // For a mixed-signal DUT (AMS/DMS), we instantiaTE MS bridges for the generator and detector UVCs.
 // These in turn instantiate bridge cores that perform the generation/detection operations for the UVCs.
 `ifdef UVM_AMS
 osc_bridge #(.diff_sel(0), .passive(0)) generator_bridge (.osc_clk(clk_in), .osc_clk_p(), .osc_clk_n());
 osc_bridge #(.diff_sel(1), .passive(1)) detector_bridge (.osc_clk() , .osc_clk_p(clkout_p),

 .osc_clk_n(clkout_n));
 `else
 assign clk_in = generator_if.osc_clk;
 assign detector_if.osc_clk_p = clkout_p;
 assign detector_if.osc_clk_n = clkout_n;
 `endif

 //Frequency Adapter DUT
 frequency_adapter #(.vsup(1.0)) DUT(
 .clk_in (clk_in),
 .clkout_p (clkout_p),
 .clkout_n (clkout_n),
 .en_mux (en_mux),
 .pw_adj (pw_adj),
 .sel_mux (sel_mux),
 .ampl_adj (ampl_adj),
 .sr_adj (sr_adj)
);
...
endmodule : top

51
Copyright © Accellera Systems Initiative Inc.

August 9, 2024

 (informative) Bibliography 1

Brennan, J., T. Ziller, K. Fotouhi, and A. Osman, “The How To’s of Advanced Mixed-Signal Verification,” DVCon 2
Europe 2015, accessed June 30, 2024, https://dvcon-proceedings.org/wp-content/uploads/the-how-tosof-advanced-3
mixed-signal-verification.pdf. 4

Freitas, A., and R. Santonja, “UVM Ready: Transitioning Mixed-Signal Verification Environments to Universal 5
Verification Methodology,” DVCon Europe 2014, accessed June 30, 2024, https://dvcon-proceedings.org/wp-6
content/uploads/uvm-ready-transitioning-mixed-signal-verification-environments-to-universal-verification-7
methodology.pdf. 8

Maurice, M., “Modeling Analog Devices using SV-RNM,” DVCon 2022, accessed June 30, 2024, https://dvcon-9
proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM.pdf, https://dvcon-10
proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM-1.pdf. 11

Sanyal, S., A. Hazra, P. Dasgupta, S. Morrison, S. Surendran, and L. Balasubramanian, “CoveRT: A Coverage 12
Reporting Tool for Analog Mixed-Signal Designs,” 2020 33rd International Conference on VLSI Design and 2020 13
19th International Conference on Embedded Systems (VLSID), Bangalore, India, 2020, pp. 119-124, accessed June 14
30, 2024, https://ieeexplore.ieee.org/document/9105529. 15

Vlach, M., and S. Little, “Tutorial: SystemVerilog-AMS: The Future of Analog/Mixed-Signal Modeling,” DVCon 16
USA 2016, accessed June 30, 2024, https://www.accellera.org/resources/videos/systemverilog-ams-tutorial-2016. 17

https://dvcon-proceedings.org/wp-content/uploads/the-how-tosof-advanced-mixed-signal-verification.pdf
https://dvcon-proceedings.org/wp-content/uploads/the-how-tosof-advanced-mixed-signal-verification.pdf
https://dvcon-proceedings.org/wp-content/uploads/uvm-ready-transitioning-mixed-signal-verification-environments-to-universal-verification-methodology.pdf
https://dvcon-proceedings.org/wp-content/uploads/uvm-ready-transitioning-mixed-signal-verification-environments-to-universal-verification-methodology.pdf
https://dvcon-proceedings.org/wp-content/uploads/uvm-ready-transitioning-mixed-signal-verification-environments-to-universal-verification-methodology.pdf
https://dvcon-proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM.pdf
https://dvcon-proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM.pdf
https://dvcon-proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM-1.pdf
https://dvcon-proceedings.org/wp-content/uploads/Modeling-Analog-Devices-using-SV-RNM-1.pdf
https://ieeexplore.ieee.org/document/9105529
https://www.accellera.org/resources/videos/systemverilog-ams-tutorial-2016

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Approach
	1.4 Word usage

	2. Normative references
	3. Definitions, acronyms and abbreviations
	3.1 Definitions
	3.2 Other acronyms and abbreviations

	4. UVM-MS architecture
	4.1 Introduction
	4.2 MS bridge
	4.2.1 MS proxy
	4.2.2 SV interface
	4.2.3 Bridge core
	4.2.3.1 Driving continuous analog signals
	4.2.3.2 Multiple signal generators

	4.3 UVM-MS agent
	4.3.1 UVM-MS driver
	4.3.2 UVM-MS monitor
	4.3.3 UVM-MS sequence item

	4.4 UVM-MS scoreboard and coverage
	4.5 UVM-MS testbench

	5. Bridge configuration
	6. Bridge core communication
	6.1 AMS communication
	6.1.1 Event generation from analog signals
	6.1.2 Quantized continuously monitored analog signals
	6.1.3 Event-driven queries of analog values
	6.1.4 Push analog control
	6.1.5 Push analog control with handshake (push-sync)
	6.1.6 Pull analog value

	6.2 DMS communication
	6.2.1 Event generation from analog signals
	6.2.2 Quantized continuously monitored analog signals
	6.2.3 Event-driven queries of analog values
	6.2.4 Push analog control
	6.2.5 Push analog control with handshake (push-sync)
	6.2.6 Pull analog value

	7. Messaging
	7.1 General
	7.2 UVM messaging from the bridge core
	7.2.1 UVM messaging from an AMS bridge core
	7.2.2 UVM messaging from a DMS bridge core

	8. Testbench
	9. Verilog-AMS circuit initialization
	9.1 General
	9.2 UVM phases

	10. Known limitations
	10.1 Inout ports on the SystemVerilog interface
	10.2 Unpacked array ports on DUT

	Annex A (normative) UVM-MS package and include files
	A.1 uvm_ms_pkg.sv
	A.2 uvm_ms.svh
	A.3 uvm_ms.vamsh

	Annex B (informative) Example: migrating UVM to UVM-MS
	B.1 Overview
	B.2 Creating the bridge module
	B.3 Extending the driver and monitor classes
	B.4 Extending the sequence item class
	B.5 Extending the scoreboard class
	B.6 Changes to testbench class
	B.7 Changes to top-level module

	Annex C (informative) Bibliography

