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1. Overview

This chapter describes:
— How to use the Universal Verification Methodology (UVM) for creating SystemVerilog testbenches.

— The recommended architecture of a verification component.

1.1 Introduction to UVM

The following subsections describe the UVM basics.

1.1.1 Coverage-Driven Verification (CDV)

UVM provides the best framework to achieve coverage-driven verification (CDV). CDV combines
automatic test generation, self-checking testbenches, and coverage metrics to significantly reduce the time
spent verifying a design. The purpose of CDV is to:

— Eliminate the effort and time spent creating hundreds of tests.
— Ensure thorough verification using up-front goal setting.

— Receive early error notifications and deploy run-time checking and error analysis to simplify debug-
ging.

The CDV flow is different than the traditional directed-testing flow. With CDV, you start by setting
verification goals using an organized planning process. You then create a smart testbench that generates
legal stimuli and sends it to the DUT. Coverage monitors are added to the environment to measure progress
and identify non-exercised functionality. Checkers are added to identify undesired DUT behavior.
Simulations are launched after both the coverage model and testbench have been implemented. Verification
then can be achieved.

Using CDV, you can thoroughly verify your design by changing testbench parameters or changing the
randomization seed. Test constraints can be added on top of the smart infrastructure to tune the simulation to
meet verification goals sooner. Ranking technology allows you to identify the tests and seeds that contribute
to the verification goals, and to remove redundant tests from a test-suite regression.

CDV environments support both directed and constrained-random testing. However, the preferred approach
is to let constrained-random testing do most of the work before devoting effort to writing time-consuming,
deterministic tests to reach specific scenarios that are too difficult to reach randomly.

Significant efficiency and visibility into the verification process can be achieved by proper planning.
Creating an executable plan with concrete metrics enables you to accurately measure progress and
thoroughness throughout the design and verification project. By using this method, sources of coverage can
be planned, observed, ranked, and reported at the feature level. Using an abstracted, feature-based approach
(and not relying on implementation details) enables you to have a more readable, scalable, and reusable
verification plan.

1.1.2 Testbenches and Environments

An UVM testbench is composed of reusable verification environments called verification components. A
verification component is an encapsulated, ready-to-use, configurable verification environment for an
interface protocol, a design submodule, or a full system. Each verification component follows a consistent
architecture and consists of a complete set of elements for stimulating, checking, and collecting coverage
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information for a specific protocol or design. The verification component is applied to the device under test
(DUT) to verify your implementation of the protocol or design architecture.

Figure 1 shows an example of a verification environment with three interface verification components.
These verification components might be stored in a company repository and reused for multiple verification
environments. The interface verification component is instantiated and configured for a desired operational
mode. The verification environment also contains a multi-channel sequence mechanism (that is, virtual
sequencer) which synchronizes the timing and the data between the different interfaces and allows fine
control of the test environment for a particular test.

Verification Environment Verification Component Repository

bus vc
[t

mon | |driver

DUT

CPU

Virtual Sequencer

Periph Periph

Legend

monitor

D@(S sequencer

Figure 1—Verification Environment Example

interface verification component
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1.2 Verification Component Overview

The following subsections describe the components of a verification component.

1.2.1 Data Item (Transaction)

Data items represent the input to the device under test (DUT). Examples include networking packets, bus
transactions, and instructions. The fields and attributes of a data item are derived from the data item’s
specification. For example, the Ethernet protocol specification defines valid values and attributes for an
Ethernet data packet. In a typical test, many data items are generated and sent to the DUT. By intelligently
randomizing data item fields using SystemVerilog constraints, you can create a large number of meaningful
tests and maximize coverage.

1.2.2 Driver (BFM)

A driver is an active entity that emulates logic that drives the DUT. A typical driver repeatedly receives a
data item and drives it to the DUT by sampling and driving the DUT signals. (If you have created a
verification environment in the past, you probably have implemented driver functionality.) For example, a
driver controls the read/write signal, address bus, and data bus for a number of clocks cycles to perform a
write transfer.

1.2.3 Sequencer

A sequencer is an advanced stimulus generator that controls the items that are provided to the driver for
execution. By default, a sequencer behaves similarly to a simple stimulus generator and returns a random
data item upon request from the driver. This default behavior allows you to add constraints to the data item
class in order to control the distribution of randomized values. Unlike generators that randomize arrays of
transactions or one transaction at a time, a sequencer captures important randomization requirements out-of-
the-box. A partial list of the sequencer’s built-in capabilities includes:

— Ability to react to the current state of the DUT for every data item generated.

— Captures the order between data items in user-defined sequences, which forms a more structured and
meaningful stimulus pattern.

— Enables time modeling in reusable scenarios.
—  Supports declarative and procedural constraints for the same scenario.

— Allows system-level synchronization and control of multiple interfaces.

For more information about creating and using sequencers, refer to the UVM 1./ Class Reference and to
Section 3.10, and Section 4.8.2.

Sequencers also can be layered on top of each other to model protocol layering. Refer to Section 6.5.2.5 for
more information.

1.2.4 Monitor

A monitor is a passive entity that samples DUT signals but does not drive them. Monitors collect coverage
information and perform checking. Even though reusable drivers and sequencers drive bus traffic, they are
not used for coverage and checking. Monitors are used instead. A monitor:
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— Collects transactions (data items). A monitor extracts signal information from a bus and translates
the information into a transaction that can be made available to other components and to the test
writer.

— Extracts events. The monitor detects the availability of information (such as a transaction), structures
the data, and emits an event to notify other components of the availability of the transaction. A mon-
itor also captures status information so it is available to other components and to the test writer.

Performs checking and coverage.

Checking typically consists of protocol and data checkers to verify that the DUT output meets the
protocol specification.

Coverage also is collected in the monitor.

— Optionally prints trace information.

A bus monitor handles all the signals and transactions on a bus, while an agent monitor handles only signals
and transactions relevant to a specific agent.

Typically, drivers and monitors are built as separate entities (even though they may use the same signals) so
they can work independently of each other. However, you can reuse code that is common between a driver
and a monitor to save time.

Do not have monitors depend on drivers for information so that an agent can operate passively when only
the monitor is present.

1.2.5 Agent

Sequencers, drivers, and monitors can be reused independently, but this requires the environment integrator
to learn the names, roles, configuration, and hookup of each of these entities. To reduce the amount of work
and knowledge required by the test writer, UVM recommends that environment developers create a more
abstract container called an agent. Agents can emulate and verify DUT devices. They encapsulate a driver,
sequencer, and monitor. Verification components can contain more than one agent. Some agents (for
example, master or transmit agents) initiate transactions to the DUT, while other agents (slave or receive
agents) react to transaction requests. Agents should be configurable so that they can be either active or
passive. Active agents emulate devices and drive transactions according to test directives. Passive agents
only monitor DUT activity.

1.2.6 Environment

The environment (env) is the top-level component of the verification component. It contains one or more
agents, as well as other components such as a bus monitor. The env contains configuration properties that
enable you to customize the topology and behavior and make it reusable. For example, active agents can be
changed into passive agents when the verification environment is reused in system verification. Figure 2
illustrates the structure of a reusable verification environment. Notice that a verification component may
contain an environment-level monitor. This bus-level monitor performs checking and coverage for activities
that are not necessarily related to a single agent. An agent’s monitors can leverage data and events collected
by the global monitor.

4 UVM 1.1 User’s Guide May 18, 2011



Verification Component Environment
e Aactar Anant g lavin Anant
: Config: Master Agent Slave Agent
‘name | 'Config | [Config |
' has E L — _ 2 L 1
E - E m _ r _
----------- U "arAnalysis| Sequencer L Ta;Analysis| Sequencer
R T
bus monitor
checks monitor driver monitor driver
coverage
~ - — —
N ~N 2
DUT N
;| I——rl N \bUS

Figure 2—Typical Verification Component Environment

The environment class (uvm_env) is architected to provide a flexible, reusable, and extendable verification
component. The main function of the environment class is to model behavior by generating constrained-
random traffic, monitoring DUT responses, checking the validity of the protocol activity, and collecting
coverage.

You can use derivation to specialize the existing classes to their specific protocol. This manual describes the
process and infrastructure that UVM provides to replace existing component behavior with IP-specific
behavior.

1.3 The UVM Class Library

The UVM Class Library provides all the building blocks you need to quickly develop well-constructed,
reusable, verification components and test environments (see Figure 3). The library consists of base classes,
utilities, and macros. Components may be encapsulated and instantiated hierarchically and are controlled
through an extendable set of phases to initialize, run, and complete each test. These phases are defined in the
base class library but can be extended to meet specific project needs. See the UVM 1.1 Class Reference for
more information.
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Figure 3—(Partial) UVM Class Hierarchy

The advantages of using the UVM Class Library include:
A robust set of built-in features—The UVM Class Library provides many features that are required

a)

for verification, including complete implementation of printing, copying, test phases, factory meth-

ods, and more.
b)

Correctly-implemented UVM concepts—Each component in the block diagram in Figure 2 is

derived from a corresponding UVM Class Library component. Figure 4 shows the same diagram
using the derived UVM Class Library base classes. Using these base-class elements increases the
readability of your code since each component’s role is predetermined by its parent class.
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Figure 4—Typical UVM Environment using Library Classes

1.4 Other UVM Facilities

The UVM Class Library also provides various utilities to simplify the development and use of verification
environments. These utilities support debugging by providing a user-controllable messaging utility. They
support development by providing a standard communication infrastructure between verification
components (TLM) and flexible verification environment construction (UVM factory).

The UVM Class Library provides global messaging facilities that can be used for failure reporting and
general reporting purposes. Both messages and reporting are important aspects of ease of use.

1.4.1 UVM Factory

The factory method is a classic software design pattern that is used to create generic code, deferring to run
time the exact specification of the object that will be created. In functional verification, introducing class
variations is frequently needed. For example, in many tests you might want to derive from the generic data
item definition and add more constraints or fields to it; or you might want to use the new derived class in the
entire environment or only in a single interface; or perhaps you must modify the way data is sent to the DUT
by deriving a new driver. The factory allows you to substitute the verification component without having to
provide a derived version of the parent component as well.
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The UVM Class Library provides a built-in central factory that allows:

— Controlling object allocation in the entire environment or for specific objects.

— Modifying stimulus data items as well as infrastructure components (for example, a driver).

Using the UVM built-in factory reduces the effort of creating an advanced factory or implementing factory
methods in class definitions. It facilitates reuse and adjustment of predefined verification IP in the end-
user’s environment. One of the biggest advantages of the factory is that it is transparent to the test writer and
reduces the object-oriented expertise required from both developers and users.

1.4.2 Transaction-Level Modeling (TLM)

UVM components communicate via standard TLM interfaces, which improves reuse. Using a
SystemVerilog implementation of TLM in UVM, a component may communicate via its interface to any
other component that implements that interface. Each TLM interface consists of one or more methods used
to transport data. TLM specifies the required behavior (semantic) of each method, but does not define their
implementation. Classes inheriting a TLM interface must provide an implementation that meets the
specified semantic. Thus, one component may be connected at the transaction level to others that are
implemented at multiple levels of abstraction. The common semantics of TLM communication permit
components to be swapped in and out without affecting the rest of the environment.
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2. Transaction-Level Modeling (TLM)

2.1 Overview

One of the keys to verification productivity is to think about the problem at a level of abstraction that makes
sense. When verifying a DUT that handles packets flowing back and forth, or processes instructions, or
performs other types of functionality, you must create a verification environment that supports the
appropriate abstraction level. While the actual interface to the DUT ultimately is represented by signal-level
activity, experience has shown that it is necessary to manage most of the verification tasks, such as
generating stimulus and collecting coverage data, at the transaction level, which is the natural way engineers
tend to think of the activity of a system.

UVM provides a set of transaction-level communication interfaces and channels that you can use to connect
components at the transaction level. The use of TLM interfaces isolates each component from changes in
other components throughout the environment. When coupled with the phased, flexible build infrastructure
in UVM, TLM promotes reuse by allowing any component to be swapped for another, as long as they have
the same interfaces. This concept also allows UVM verification environments to be assembled with a
transaction-level model of the DUT, and the environment to be reused as the design is refined to RTL. All
that is required is to replace the transaction-level model with a thin layer of compatible components to
convert between the transaction-level activity and the pin-level activity at the DUT.

The well-defined semantics of TLM interfaces between components also provide the ideal platform for
implementing mixed-language verification environments. In addition, TLM provides the basis for easily
encapsulating components into reusable components, called verification components, to maximize reuse and
minimize the time and effort required to build a verification environment.

This chapter discusses the essential elements of transaction-level communication in UVM, and illustrates
the mechanics of how to assemble transaction-level components into a verification environment. Later in
this document we will discuss additional concerns in order to address a wider set of verification issues. For
now, it is important to understand these foundational concepts first.

2.2TLM, TLM-1, and TLM-2.0

TLM, transaction-level modeling, is a modeling style for building highly abstract models of components and
systems. It relies on transactions (see Section 2.3, Basics), objects that contain arbitrary, protocol-specific
data to abstractly represent lower-level activity. In practice, TLM refers to a family of abstraction levels
beginning with cycle-accurate modeling, the most abstract level, and extending upwards in abstraction as far
as the eye can see. Common transaction-level abstractions today include: cycle-accurate, approximately-
timed, loosely-timed, untimed, and token-level.

The acronym TLM also refers to a system of code elements used to create transaction-level models. TLM-1
and TLM-2.0 are two TLM modeling systems which have been developed as industry standards for building
transaction-level models. Both were built in SystemC and standardized within the TLM Working Group of
the Open SystemC Initiative (OSCI). TLM-1 achieved standardization in 2005 and TLM-2.0 became a
standard in 2009.

TLM-1 and TLM-2.0 share a common heritage and many of the same people who developed TLM-1 also
worked on TLM-2.0. Otherwise, they are quite different things. TLM-1 is a message passing system.
Interfaces are either untimed or rely on the target for timing. None of the interfaces provide for explicit
timing annotations. TLM-2.0, while still enabling transfer of data and synchronization between independent
processes, is mainly designed for high performance modeling of memory-mapped bus-based systems. A
subset of both these facilities has been implemented in SystemVerilog and is available as part of UVM.
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2.2.1 TLM-1 Implementation

The following subsections specify how TLM-1 is to be implemented in SystemVerilog.

—  Section 2.4, Encapsulation and Hierarchy

—  Section 2.5, Analysis Communication

2.2.2 TLM-2.0 Implementation

The following subsections specify how TLM-2.0 is to be implemented in SystemVerilog.

—  Section 2.6, Generic Payload

—  Section 2.7, Core Interfaces and Ports

—  Section 2.8, Blocking Transport

—  Section 2.9, Nonblocking Transport

—  Section 2.10, Sockets

— Section 2.11, Time

—  Section 2.12. Use Models

2.3 Basics

Before you can fully understand how to model verification at the transaction level, you must understand
what a transaction is.

2.3.1 Transactions

In UVM, a transaction is a class object, uvm transaction (extended from uvm object), that
includes whatever information is needed to model a unit of communication between two components. In the
most basic example, a simple bus protocol transaction would be modeled as follows:

class simple_trans extends uvm_transaction;
rand data_ t data;
rand addr t addr;
rand enum {WRITE,READ} kind;
constraint cl { addr < 16'h2000; }

endclass

The transaction object includes variables, constraints, and other fields and methods necessary for generating
and operating on the transaction. Obviously, there is often more than just this information that is required to
fully specify a bus transaction. The amount and detail of the information encapsulated in a transaction is an
indication of the abstraction level of the model. For example, the simple trans transaction above could
be extended to include more information, such as the number of wait states to inject, the size of the transfer,
or any number of other properties. The transaction could also be extended to include additional constraints.
It is also possible to define higher-level transactions that include some number of lower-level transactions.
Transactions can thus be composed, decomposed, extended, layered, and otherwise manipulated to model
whatever communication is necessary at any level of abstraction.
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2.3.2 Transaction-Level Communication

Transaction-level interfaces define a set of methods that use transaction objects as arguments. A TLM port
defines the set of methods (the application programming interface (API)) to be used for a particular
connection, while a TLM export supplies the implementation of those methods. Connecting a port to an
export allows the implementation to be executed when the port method is called.

2.3.3 Basic TLM Communication

The most basic transaction-level operation allows one component to put a transaction to another. Consider
Figure 5.

producer [] :: consumer

Figure 5—Simple Producer/Consumer

The square box on the producer indicates a port and the circle on the consumer indicates the export. The
producer generates transactions and sends them out its put _port:

class producer extends uvm component;
uvm_blocking put port #(simple trans) put port; // 1 parameter
function new( string name, uvm component parent) ;
put port = new(“put port”, this);

endfunction
virtual task run() ;
simple trans t;
for(int 1 = 0; i < N; i++) begin
// Generate t.
put_port.put (t) ;
end
endtask

NOTE—The uvm_* port is parameterized by the transaction type that will be communicated. This may either be
specified directly or it may be a parameter of the parent component.

The actual implementation of the put () call is supplied by the consumer.

class consumer extends uvm_component;
uvm_blocking put imp #(simple trans, consumer) put_export; // 2 parameters

task put (simple_ trans t);
case (t.kind)
READ: // Do read.
WRITE: // Do write.
endcase
endtask
endclass

NOTE—The uvm_* _imp takes two parameters: the type of the transaction and the type of the object that declares the
method implementation.
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NOTE—The semantics of the put operation are defined by TLM. In this case, the put () call in the producer will
block until the consumer’s put implementation is complete. Other than that, the operation of producer is completely
independent of the put implementation (uvm_put_imp). In fact, consumer could be replaced by another component
that also implements put and producer will continue to work in exactly the same way. The modularity provided by
TLM fosters an environment in which components may be easily reused since the interfaces are well defined.

The converse operation to put is get. Consider Figure 6.

gt o et

producer consumer

Figure 6—Consumer gets from Producer
In this case, the consumer requests transactions from the producer via its get port:

class get consumer extends uvm_component;
uvm_blocking get port #(simple trans) get port;
function new( string name, uvm component parent) ;
get_port = new(“get_port”, this);

endfunction
virtual task run();
simple trans t;
for(int 1 = 0; i < N; i++) begin
// Generate t.
get_port.get (t);
end
endtask

The get () implementation is supplied by the producer.

class get producer extends uvm_ component;
uvm_blocking get imp #(simple trans, get producer) get export;

task get (output simple trans t);
simple trans tmp = new() ;
// BAssign values to tmp.
t = tmp;
endtask
endclass

As with put () above, the get _consumer’s get () call will block until the get producer’s method
completes. In TLM terms, put () and get () are blocking methods.

NOTE—In both these examples, there is a single process running, with control passing from the port to the export and
back again. The direction of data flow (from producer to consumer) is the same in both examples.

2.3.4 Communicating between Processes
In the basic put example above, the consumer will be active only when its put () method is called. In

many cases, it may be necessary for components to operate independently, where the producer is creating
transactions in one process while the consumer needs to operate on those transactions in another. UVM
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provides the uvm tlm fifo channel to facilitate such communication. The uvm tlm fifo
implements all of the TLM interface methods, so the producer puts the transaction into the
uvm_tlm fifo, while the consumer independently gets the transaction from the fifo, as shown in

Figure 7.

producer () tm fifo OD—] get

consumer

Figure 7—Using a uvm_tim_fifo

When the producer puts a transaction into the fifo, it will block if the fifo is full, otherwise it will put the
object into the fifo and return immediately. The get operation will return immediately if a transaction is
available (and will then be removed from the fifo), otherwise it will block until a transaction is available.
Thus, two consecutive get () calls will yield different transactions to the consumer. The related peek ()
method returns a copy of the available transaction without removing it. Two consecutive peek () calls will
return copies of the same transaction.

2.3.5 Blocking versus Nonblocking

The interfaces that we have looked at so far are blocking—the tasks block execution until they complete;
they are not allowed to fail. There is no mechanism for any blocking call to terminate abnormally or
otherwise alter the flow of control. They simply wait until the request is satisfied. In a timed system, this
means that time may pass between the time the call was initiated and the time it returns.

In contrast, a nonblocking call returns immediately. The semantics of a nonblocking call guarantee that the
call returns in the same delta cycle in which it was issued, that is, without consuming any time, not even a
single delta cycle. In UVM, nonblocking calls are modeled as functions.

class consumer extends uvm_component;
uvm_get port #(simple_ trans) get port;
task run;

for(int i=0; i<10; i++)
if (get_port.try get(t))
//Do something with t.
endtask
endclass
If a transaction exists, it will be returned in the argument and the function call itself will return TRUE. If no

transaction exists, the function will return FALSE. Similarly, with try peek (). The try put ()
method returns TRUE if the transaction is sent.

2.3.6 Connecting Transaction-Level Components
With ports and exports defined for transaction-level components, the actual connection between them is

accomplished via the connect () method in the parent (component or env), with an argument that is the
object (port or export) to which it will be connected. In a verification environment, the series of
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connect () calls between ports and exports establishes a netlist of peer-to-peer and hierarchical
connections, ultimately terminating at an implementation of the agreed-upon interface. The resolution of
these connections causes the collapsing of the netlist, which results in the initiator’s port being assigned to
the target’s implementation. Thus, when a component calls

put_port.put (t);
the connection means that it actually calls
target.put_export.put (t) ;

where target is the connected component.

2.3.7 Peer-to-Peer connections

When connecting components at the same level of hierarchy, ports are always connected to exports. All
connect () calls between components are done in the parent’s connect () method.

class my env extends uvm_env;

virtual function void connect () ;
// component.port.connect (target.export) ;
producer.blocking put port.connect (fifo.put export) ;
get consumer.get port.connect (fifo.get export) ;

endfunction
endclass

2.3.8 Port/Export Compatibility

Another advantage of TLM communication in UVM is that all TLM connections are checked for
compatibility before the test runs. In order for a connection to be valid, the export must provide
implementations for at least the set of methods defined by the port and the transaction type parameter for the
two must be identical. For example, a blocking put port, which requires an implementation of
put () may be connected to either a blocking put export oraput export. Both exports supply
an implementation of put (), although the put export also supplies implementations of try put ()
and can_put ().

2.4 Encapsulation and Hierarchy

The use of TLM interfaces isolates each component in a verification environment from the others. The
environment instantiates a component and connects its ports/exports to its neighbor(s), independent of any
further knowledge of the specific implementation. Smaller components may be grouped hierarchically to
form larger components (see Chapter 3). Access to child components is achieved by making their interfaces
visible at the parent level. At this level, the parent simply looks like a single component with a set of
interfaces on it, regardless of its internal implementation.

2.4.1 Hierarchical Connections

Making connections across hierarchical boundaries involves some additional issues, which are discussed in
this section. Consider the hierarchical design shown in Figure 8.
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Figure 8—Hierarchy in TLM

The hierarchy of this design contains two components, producer and consumer. producer contains
three components, stim, tlm fi, and conv. consumer contains two components, t1lm fi and
drive. Notice that, from the perspective of top, the producer and consumer appear identical to those in
Figure 5, in which the producer’s put _port is connected to the consumer’s put _export. The two fifos
are both unique instances of the same uvm_t1lm_ fifo component.

In Figure 8, connections A, B, D, and F are standard peer-to-peer connections as discussed above. As an
example, connection A would be coded in the producer’s connect () method as:

gen.put_port.connect (fifo.put_ export) ;

Connections C and E are of a different sort than what have been shown. Connection C is a port-to-port
connection, and connection E is an export-to-export connection. These two kinds of connections are
necessary to complete hierarchical connections. Connection C imports a port from the outer component to
the inner component. Connection E exports an export upwards in the hierarchy from the inner component to
the outer one. Ultimately, every transaction-level connection must resolve so that a port is connected to an
export. However, the port and export terminals do not need to be at the same place in the hierarchy. We use
port-to-port and export-to-export connections to bring connectors to a hierarchical boundary to be accessed
at the next-higher level of hierarchy.

For connection E, the implementation resides in the fifo and is exported up to the interface of consumer. All
export-to-export connections in a parent component are of the form

export.connect (subcomponent .export)
so connection E would be coded as:
class consumer extends uvm_component;
uvm_put export #(trans) put export;
uvm_tlm fifo #(trans) fifo;
function void connect () ;
put_export.connect (fEifo.put_export); // E
bfm.get port.connect (fifo.get export); // F
endfunction
endclass
Conversely, port-to-port connections are of the form:

subcomponent . port . connect (port) ;
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so connection C would be coded as:
class producer extends uvm component;
uvm_put port #(trans) put port;

conv c;

function void connect () ;
c.put_port.connect (put_port) ;

en(;”lfl.mct ion
2.4.2 Connection Types

Table 1 summarizes connection types and elaboration functions.

Table 1—TLM Connection Types

Connection type connect() form
port-to-export compl.port.connect (comp2.export) ;
port-to-port subcomponent . port . connect (port) ;
export-to-export export.connect (subcomponent . export) ;

NOTE—The argument to the port . connect () method may be either an export or a port, depending on the nature of
the connection (that is, peer-to-peer or hierarchical). The argument to export . connect () is always an export of a
child component.

2.5 Analysis Communication

The put/get communication as described above allows verification components to be created that model the
“operational” behavior of a system. Each component is responsible for communicating through its TLM
interface(s) with other components in the system in order to stimulate activity in the DUT and/or respond its
behavior. In any reasonably complex verification environment, however, particularly where randomization
is applied, a collected transaction should be distributed to the rest of the environment for end-to-end
checking (scoreboard), or additional coverage collection.

The key distinction between the two types of TLM communication is that the put/get ports typically require
a corresponding export to supply the implementation. For analysis, however, the emphasis is on a particular
component, such as a monitor, being able to produce a stream of transactions, regardless of whether there is
a target actually connected to it. Modular analysis components are then connected to the analysis port,
each of which processes the transaction stream in a particular way.

2.5.1 Analysis Ports

The uvm_analysis port (represented as a diamond on the monitor in Figure 9) is a specialized TLM
port whose interface consists of a single function, write (). The analysis port contains a list of
analysis_ exports that are connected to it. When the component calls analysis_ port.write (),
the analysis port cycles through the list and calls the write () method of each connected export. If
nothing is connected, the write () call simply returns. Thus, an analysis port may be connected to zero,
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one, or many analysis exports, but the operation of the component that writes to the analysis port does not
depend on the number of exports connected. Because write () is a void function, the call will always
complete in the same delta cycle, regardless of how many components (for example, scoreboards, coverage
collectors, and so on) are connected.

sub2 sub

¥ ¥
5

oroducer —(C) tlm fifo O——[] get sp_

consumer

Figure 9—Analysis Communication

class get ap consumer extends get consumer;
uvm_analysis port #(my trans) ap;
function new(...);
super.new ()
ap = new(“analysis port”, this);

endfunction
task run;

for(int 1=0; i<10; i++)
if (get_port.try get(t)) begin
//Do something with t.
ap.write(t); // Write transaction.

end
endtask

In the parent environment, the analysis port gets connected to the analysis export of the desired components,
such as coverage collectors and scoreboards.

2.5.2 Analysis Exports

As with other TLM connections, it is up to each component connected to an analysis port to provide an
implementation of write () via an analysis export. The uvm_ subscriber base component can
be used to simplify this operation, so a typical analysis component would extend uvm_subscriber as:

class subl #(type T = simple_ trans) extends uvm_subscriber #(T);

function void write (T t);
// Record coverage information of t.
endfunction
endclass
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As with put () and get () described above, the TLM connection between an analysis port and export,
allows the export to supply the implementation of write (). If multiple exports are connected to an
analysis port, the port will call the write () of each export, in order. Since all implementations of
write () must be functions, the analysis port’s write () function completes immediately, regardless of
how many exports are connected to it.

class my env extends uvm_env;
get _ap component g;
subl s1;
sub2 s2;

function void connect () ;
g.ap.connect (sl.analysis export) ;
g.ap.connect (s2.analysis export) ;

endfunction
endclass

When multiple subscribers are connected to an analysis port, each is passed a pointer to the same
transaction object, the argument to the write () call. Each write () implementation must make a local
copy of the transaction and then operate on the copy to avoid corrupting the transaction contents for any
other subscriber that may have received the same pointer.

UVM also includes an analysis fifo, which is a uvm_tlm fifo that also includes an analysis
export, to allow blocking components access to the analysis transaction stream. The analysis fifo is

unbounded, so the monitor’s write () call is guaranteed to succeed immediately. The analysis component
may then get the transactions from the analysis fifo atits leisure.

2.6 Generic Payload
TLM-2.0 defines a base object, called the generic payload, for moving data between components. In

SystemC, this is the primary transaction vehicle. In SystemVerilog, this is the default transaction type, but it
is not the only type that can be used (as will be explained more fully in Section 2.7).

2.6.1 Attributes

Each attribute in the SystemC version has a corresponding member in the SystemVerilog generic payload.

protected rand bit [63:0] m address;

protected rand uvm _tlm command e m_command;
protected rand byte m _datall;

protected rand int unsigned m_length;

protected rand uvm_tlm response_ status_e m_response status;
protected rand bit m_dmi;

protected rand byte m_byte enablel];
protected rand int unsigned m_byte_enable_length;
protected rand int unsigned m_streaming_width;

The data types of most members translate directly into SystemVerilog. Bool and unsigned int in
SystemC become bit and int unsigned in SystemVerilog. M_data and m_byte enable, which
are defined as type char* in SystemC, are defined as dynamic arrays of bytes. uvm_tlm command e
anduvm_tlm response status_e are enumerated types. They are defined as:
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typedef enum

{

TLM_READ_ COMMAND,

TLM WRITE_ COMMAND,

TLM_IGNORE_COMMAND
} uvm_tlm command e;

typedef

{

enum

TLM OK RESPONSE = 1,
TLM INCOMPLETE RESPONSE = 0,

TLM_GENERIC_ERROR RESPONSE = -1,
TLM ADDRESS ERROR RESPONSE = -2,
TLM COMMAND_ERROR RESPONSE = -3,
TLM BURST_ ERROR RESPONSE = -4,

TLM BYTE_ ENABLE ERROR_RESPONSE = -5

} uvm_tlm response status_e;

All of the members of the generic payload have the rand qualifier. This enables instances of the generic
payload to be randomized. SystemVerilog allows arrays, including dynamic arrays to be randomized. See
subclause 18.4 of IEEE Std. 1800-2009, the SystemVerliog LRM, for more details.

2.6.2 Accessors

In SystemC, all of the attributes are private and are accessed through accessor methods. In SystemVerilog,
this means all members are protected and similarly accessed through accessor methods.

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

uvm_tlm command e get command () ;

void set command(uvm_tlm command e command) ;

bit is_read();

void set read();

bit is write();

void set_write();

void set_ address(bit [63:0] addr) ;

bit [63:0] get address();

void get_data (output byte p []);

void set data ptr(ref byte p []);

int unsigned get data length() ;

void set_data length(int unsigned length) ;

int unsigned get streaming width() ;

void set streaming width(int unsigned width) ;
void get_byte enable (output byte pl[]);

void set byte enable(ref byte pl]);

int unsigned get byte enable length();

void set byte enable length(int unsigned length) ;
void set _dmi allowed(bit dmi) ;

bit is dmi allowed() ;

uvm_tlm response_ status e get response_ status();
void set response status(uvm_tlm response status e status);
bit is response ok() ;

bit is response error() ;

string get response string() ;

The accessor functions let you set and get each of the members of the generic payload. All of the accessor
methods are virtual. This implies a slightly different use model for the generic payload than in SystemC. The
way the generic payload is defined in SystemC does not encourage you to create new transaction types
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derived from uvm_tlm generic payload. Instead, you would use the extensions mechanism (see
Section 2.6.3). Thus, in SystemC, none of the accessors are virtual.

In SystemVerilog, an important use model is to add randomization constraints to a transaction type. This is
most often done with inheritance—take a derived object and add constraints to a base class. These
constraints can further be modified or extended by deriving a new class, and so on. To support this use
model, the accessor functions are virtual, and the members are protected and not local.

2.6.3 Extensions

The generic payload extension mechanism is very similar to the one used in SystemC; minor differences
exist simply due to the lack of function templates in SystemVerilog. Extensions are used to attach additional
application-specific or bus-specific information to the generic bus transaction described in the generic
payload.

An extension is an instance of a user-defined container class based on the uvm_tlm extension class.
The set of extensions for any particular generic payload object are stored in that generic payload object
instance. A generic payload object may have only one extension of a specific extension container type.

Each extension container type is derived from the uvm tlm extension class and contains any
additional information required by the user:

class gp Xs_ ext extends uvm tlm extension#(gp Xs ext);
byte XmaskI[];

‘uvm_object new
‘uvm_object_utils _begin(gp_ Xs_ext)
‘uvm_field int array(Xmask, UVM_ALL_ON)
‘uvm_object_utils_end
endclass

To add an extension to a generic payload object, allocate an instance of the extension container class and
attach it to the generic payload object using the set _extension () method:

gp_Xs_ext Xs = new();
gp.set_extension(Xs) ;

The static function ID () in the user-defined extension container class can be used as an argument to the
function get extension method to retrieve the extension (if any) of the corresponding container type—

if it is attached to the generic payload object.

gp_Xs_ext Xs;
Scast (Xs, gp.get extension(gp Xs ext::ID));

The following methods are also available in the generic payload for managing extensions.
function int get num extensions();
function void clear extension() ;

function void clear extensions();

clear extension () removes any extension of a specified type. clear extensions () removes all
extension containers from the generic payload.
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2.7 Core Interfaces and Ports

In the SystemVerilog implementation of TLM-2.0, we have provided only the basic transport interfaces.
They are defined in the uvm_t1lm if# () class:

class uvm_tlm if #(type T=uvm _tlm generic payload, type P=uvm_tlm phase e);
endclass

The interface class is parameterized with the type of the transaction object that will be transported across the
interface and the type of the phase enum. The default transaction type is the generic payload. The default
phase enum is:

typedef enum

{

UNINITIALIZED_ PHASE,
BEGIN_ REQ,
END REQ,
BEGIN_ RESP,
END_ RESP
} uvm_tlm phase e;

Each of the interface methods take a handle to the transaction to be transported and a handle to a timescale-
independent time value object. In addition, the nonblocking interfaces take a reference argument for the
phase.

virtual function uvm tlm sync e nb transport fw(T t, ref P p, input
uvm_tlm time delay);

virtual function uvm_tlm sync_e nb_transport_bw(T t, ref P p, input
uvm_tlm time delay);

virtual task b_transport (T t, uvm tlm time delay);

In SystemC, the transaction argument is of type T&. Passing a handle to a class in SystemVerilog most
closely represents the semantics of T& in SystemC. One implication in SystemVerilog is transaction types
cannot be scalars. If the transaction argument was qualified with ref, indicating it was a reference
argument, then it would be possible to use scalar types for transactions. However, that would also mean
downstream components could change the handle to a transaction. This violates the required semantics in
TLM-2.0 as stated in rule 4.1.2.5-b of the TLM-2.0 LRM, which is quoted here.

“If there are multiple calls to nb_transport associated with a given transaction instance, one and the
same transaction object shall be passed as an argument to every such call. In other words, a given
transaction instance shall be represented by a single transaction object.”

The phase and delay arguments may change value. These are also references in SystemC; e.g., P& and
sc_timeé&. However, phase is a scalar, not a class, so the best translation is to use the ref qualifier to
ensure the same object is used throughout the call sequence.

The uvm_tlm_ time argument, which is present on all the interfaces, represents time. In the SystemC
TLM-2.0 specification, this argument is reference to an sc_time variable, which lets the value change on
either side. This was translated to a class object in SystemVerilog in order to manage timescales in different
processes. Times passed through function calls are not automatically scaled. See also: Section 2.11.

An important difference between TLM-1 and TLM-2.0 is the TLM-2.0 interfaces pass transactions by
reference and not by value. In SystemC, transactions in TLM-1 were passed as const references and in
TLM-2.0 just as references. This allows the transaction object to be modified without copying the entire
transaction. The result is much higher performance characteristics as a lot of copying is avoided. Another
result is any object that has a handle to a transaction may modify it. However, to adhere to the semantics of
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the TLM-2.0 interfaces, these modifications must be made within certain rules and in concert with
notifications made via the return enum in the nb_* interfaces and the phase argument.

2.8 Blocking Transport
The blocking transport is implemented using one interfaces:

task b_transport (T t, uvm tlm time delay);

The b_transport task transports a transaction from the initiator to the target in a blocking fashion. The
call to b_transport by the initiator marks the first timing point in the execution of the transaction. That
first timing point may be offset from the current simulation by the delay value specified in the delay
argument. The return fromb_transport by the target marks the final timing point in the execution of the
transaction. That last timing point may be offset from the current simulation time by the delay value
specified in the delay argument. Once the task returns, the transaction has been completed by the target.
Any indication of success or failure must be annotated in the transaction object by the target.

The initiator may read or modify the transaction object before the calltob _transport and after its return,
but not while the call to b_transport is still active. The target may modify the transaction object only
while the b_transport call is active and must not keep a reference to it after the task return. The initiator
is responsible for allocating the transaction object before the call to b_transport. The same transaction
object may be reused across b_transport calls.

2.9 Nonblocking Transport
The blocking transport is implemented using two interfaces:

function uvm_tlm sync e nb_transport fw(T t, ref P p, input uvm_tlm_ time
delay) ;

function uvm_tlm sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time
delay) ;

nb transport fw transports a transaction in the forward direction, that is from the initiator to the target
(the forward path). nb_transport bw does the reverse, it transports a transaction from the target back to
the initiator (the backward path). An initiator and target will use the forward and backward paths to update
each other on the progress of the transaction execution. Typically, nb _transport fw is called by the
initiator whenever the protocol state machine in the initiator changes state and nb transport bw is
called by the target whenever the protocol state machine in the target changes state.

The nb_* interfaces each return an enum uvm_tlm sync_e. The possible enum values and their
meanings are shown in Table 2.

Table 2—uvm_tim_sync_e enum Description

Enum value Interpretation

UVM_TLM_ACCEPTED Transaction has been accepted. Neither the
transaction object, the phase nor the
delay arguments have been modified.
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Table 2—uvm_tIm_sync_e enum Description (Continued)

Enum value Interpretation

UVM_TLM_UPDATED Transaction has been modified. The transac-
tion object, the phase or the delay argu-
ments may have been modified.

UVM_TLM_COMPLETED Transaction execution has completed. The
transaction object, the phase or the
delay arguments may have been modified.
There will be no further transport calls asso-
ciated with this transaction.

The P argument of nb_transport fwandnb transport bw represents the transaction phase. This
can be a user-defined type that is specific to a particular protocol. The default type is uvm_t1lm phase e,
whose values are shown in Table 3. These can be used to implement the Base Protocol.

Table 3—uvm_tim_phase_e Description

Enum value Interpretation
UNITIALIZED PHASE Phase has not yet begun
BEGIN_REQ Request has begun
END REQ Request has completed
BEGIN RESP Response has begun
END RESP Response has terminated

The first call to nb_transport fw by the initiator marks the first timing point in the transaction
execution. Subsequent calls to nb_transport fw and nb transport bw mark additional timing
points in the transaction execution. The last timing point is marked by a return from nb_transport fw
or nb_transport bw with UVM_TLM COMPLETED. All timing points may be offset from the current
simulation time by the delay value specified in the delay argument. An nb_transport fw call on the
forward path shall under no circumstances directly or indirectly make a call to nb _transport bw on the
backward path, and vice versa.

The value of the phase argument represents the current state of the protocol state machine. Any change in
the value of the transaction object should be accompanied by a change in the value of phase. When using
the Base Protocol, successive calls to nb_transport fwornb transport bw with the same phase
value are not permitted.

The initiator may modify the transaction object, the phase and the delay arguments immediately before
calls to nb_transport fw and before it returns from nb transport bw only. The target may
modify the transaction object, the phase and the delay arguments immediately before calls to
nb transport bw and before it returns from nb transport fw only. The transaction object,
phase and delay arguments may not be otherwise modified by the initiator or target.

The initiator is responsible for allocating the transaction object before the first call tonb_transport fw.
The same transaction object is used by all of the forward and backward calls during its execution. That
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transaction object is alive for the entire duration of the transaction until the final timing point. The same
transaction object may be reused across different transaction execution that do not overlap in time.

2.10 Sockets

In TLM-1, the primary means of making a connection between two processes is through ports and exports,
whereas in TLM-2.0 this done through sockets. A socket is like a port or export; in fact, it is derived from the
same base class as ports and export, namely uvm_port base. However, unlike a port or export a socket
provides both a forward and backward path. Thus, you can enable asynchronous (pipelined) bi-directional
communication by connecting sockets together. To enable this, a socket contains both a port and an export.

Components that initiate transactions are called initiators and components that receive transactions sent by
an initiator are called targets. Initiators have initiator sockets and targets have target sockets. Initiator
sockets can only connect to target sockets; target sockets can only connect to initiator sockets.

Figure 10 shows the diagramming of socket connections. The socket symbol is a box with an isosceles
triangle with its point indicating the data and control flow direction of the forward path. The backward path
is indicated by an arrow connecting the target socket back to the initiator socket. Section 3.4 of the TLM-2.0
LRM fully explains sockets, initiators, targets, and interconnect components.
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Figure 10—Socket Connections
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Sockets come in several flavors: Each socket is an initiator or a target, a passthrough, or a terminator.
Furthermore, any particular socket implements either blocking interfaces or nonblocking interfaces.
Terminator sockets are used on initiators and targets as well as interconnect components as shown in
Figure 10. Passthrough sockets are used to enable connections to cross hierarchical boundaries.

The cross product of {initiator, target} X {terminator, passthrough} X {blocking, nonblocking} yields eight
different kinds of sockets. The class definitions for these sockets are as follows:

class uvm_tlm nb passthrough initiator socket # (type
T=uvm_tlm generic payload,
type P=uvm_tlm phase e)
extends uvm_tlm nb passthrough initiator socket_base #(T,P);

class uvm_tlm nb passthrough_ target_socket #(type T=uvm_tlm generic_payload,
type P=uvm tlm phase_ e)
extends uvm_tlm nb passthrough target socket base #(T,P);

class uvm_tlm b passthrough initiator socket # (type
T=uvm_tlm_generic_payload)
extends uvm_tlm b passthrough initiator socket base #(T);

class uvm_tlm b passthrough target_socket #(type T=uvm_tlm generic_payload)
extends uvm_tlm b passthrough target socket base #(T);

class uvm_tlm b target socket #(type T=uvm_ tlm generic payload,
type IMP=int)
extends uvm_tlm b target socket base #(T);

class uvm_tlm b initiator_ socket #(type T=uvm tlm generic_payload)
extends uvm_tlm b initiator socket base #(T);

class uvm_tlm nb target socket #(type T=uvm _tlm generic_payload,
type P=uvm_tlm phase_ e,
type IMP=int)
extends uvm_tlm nb target socket base #(T,P);

class uvm_tlm nb initiator socket #(type T=uvm_tlm generic_payload,
type P=uvm tlm phase e,
type IMP=int)

extends uvm_tlm nb initiator socket base #(T,P);

Table 4 shows the different kinds of sockets and how they are constructed.

Table 4—Socket Construction

Socket Blocking Nonblocking
initiator IS-A forward port IS-A forward port; HAS -A backward imp
target IS-A forward imp IS-A forward imp; HAS - A backward port
passthrough initiator IS-A forward port IS-A forward port; HAS -A backward export
passthrough target IS-A forward export IS-A forward port; HAS -A backward export
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IS-A and HAS-A are types of object relationships. IS-A refers to the inheritance relationship and HAS-A
refers to the ownership relationship. For example, if you say D is a B, it means D is derived from base B. If
you say object A HAS-A B, it means B is a member of A.

Each <socket types>::connect () calls super.connect (), which performs all the connection
mechanics. For the nonblocking sockets which have a secondary port/export for the backward path,
connect () is called on the secondary port/export to form a backward connection.

Each socket type provides an implementation of the connect () method. Connection is defined
polymorphically using the base class type as the argument.

function void connect (this_type provider) ;
where this type is defined in uvm_port base as:
uvm_port_base #(IF) this_type;

Further, IF is defined by uvm_t1lm if# (T, P). Thus, compile-time interface type checking is achieved.
However, this is not sufficient type checking. Additionally, each implementation of connect () in each
socket type does run-time type checking to ensure it is connected to allowable socket types. For example, an
initiator socket can connect to an initiator passthrough socket, a target passthrough socket, or a target socket.
It cannot connect to another initiator socket. These kinds of checks are performed for each socket type.

2.11 Time

Integers are not sufficient on their own to represent time without any ambiguity; you need to know the scale
of that integer value, which is conveyed outside of the integer. In SystemVerilog, this is based on the
timescale that was active when the code was compiled. SystemVerilog properly scales time literals, but not
integer values because it does not know the difference between an integer that carries an integer value and an
integer that carries a time value. t ime variables are simply 64-bit integers, they are not scaled back and
forth to the underlying precision. Here is a short example that illustrates part of the problem.

“timescale 1ns/1ps
module m() ;

time t;

initial begin

#1.5;
Swrite ("T=%f ns (Now should be 1.5)\n", S$realtime()) ;
t =1.5;

#t; // 1.5 will be rounded to 2

Swrite ("T=%f ns (Now should be 3.0)\n", S$realtime()) ;
#10ps;

Swrite ("T=%f ns (Now should be 3.010)\n", Srealtime()) ;
t = 10ps; // 0.010 will be converted to int (0)

#t;
Swrite ("T=%f ns (Now should be 3.020)\n", Srealtime()) ;
end
endmodule

yields

T=1.500000 ns (Now should be 1.5)
T=3.500000 ns (Now should be 3.0)
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T=3.510000 ns (Now should be 3.010)
T=3.510000 ns (Now should be 3.020)

Within SystemVerilog, we have to worry about different time scales and precision. Because each endpoint
in a socket could be coded in different packages and, thus, be executing under different timescale directives,
a simple integer cannot be used to exchange time information across a socket.

For example,
“timescale 1ns/lps
package a_pkg;
class a;
function void f (inout time t);
t += 10ns;

endfunction

endclass

endpackage

“timescale 1lps/1lps

program p;

import a pkg::*;
time t = 0;

initial begin
a A = new;

A.f(t);
#t;
Swrite ("T=%0d ps (Should be 10,000)\n",
end
endprogram

yields

T=10 ps (Should be 10,000)

$time());

Scaling is needed every time you make a procedural call to code that may interpret a time value in a different

timescale. Using the uvm_t1lm_ time type:
“timescale 1ns/lps
package a_pkg;
import uvm pkg::*;
class a;
function void f (uvm_tlm time t);
t.incr(10ns, 1ns);
endfunction
endclass

endpackage

“timescale 1lps/lps
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program p;

import uvm pkg::*;
import a pkg::*;

uvm_tlm time t = new;

initial begin
a A = new;
A.f(t);
#(t.get _realtime (1ns));
Swrite ("T=%0d ps (Should be 10,000)\n", Stime());
end
endprogram

yields
T=10000 ps (Should be 10,000)

To solve these problems, the uvm _tlm time class contains the scaling information so that as time
information is passed between processes, which may be executing under different time scales, the time can
be scaled properly in each environment.

2.12 Use Models

Since sockets are derived from uvm_port base, they are created and connected in the same way as port
and exports. You can create them in the build phase and connect them in the connect phase by calling
connect (). Initiator and target termination sockets are the end points of any connection. There can be an
arbitrary number of passthrough sockets in the path between the initiator and target.

Some socket types must be bound to imps—implementations of the transport tasks and functions. Blocking
terminator sockets must be bound to an implementation of b _transport (), for example. Nonblocking
initiator sockets must be bound to an implementation of nb transport bw and nonblocking target
sockets must be bound to an implementation of nb_transport fw. Typically, the task or function is
implemented in the component where the socket is instantiated and the component type and instance are
provided to complete the binding.

Consider, for example, a consumer component with a blocking target socket:
class consumer extends uvm component;
uvm_tlm b target_ socket #(trans, consumer) target_socket;

function new(string name, uvm_ component parent) ;
super.new (name, parent) ;
endfunction

function void build() ;
target socket = new("target socket", this, this);
endfunction

task b_transport (ref trans t, ref time delay);
#5;
‘uvm_info ("consumer", t.convert2string());
endtask
endclass
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The interface task b _transport is implemented in the consumer component. The consumer component
type is used in the declaration of the target socket, which informs the socket object of the type of the object
containing the interface task, in this case b _transport (). When the socket is instantiated this is
passed in twice, once as the parent, just like any other component instantiation, and again to identify the
object that holds the implementation of b_transport (). Finally, in order to complete the binding, an
implementation of b_transport () must be present in the consumer component.

Any component that has a blocking termination socket, nonblocking initiator socket, or nonblocking
termination socket must provide implementations of the relevant components. This includes initiator and
target components, as well as interconnect components that have these kinds of sockets. Components with
passthrough sockets do not need to provide implementations of any sort. Of course, they must ultimately be
connected to sockets that do provide the necessary implementations.
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3. Developing Reusable Verification Components

This chapter describes the basic concepts and components that make up a typical verification environment.
It also shows how to combine these components using a proven hierarchical architecture to create reusable
verification components. The sections in this chapter follow the same order you should follow when
developing a verification component:

— Modeling Data Items for Generation
— Transaction-Level Components

—  Creating the Driver

—  Creating the Sequencer

—  Creating the Monitor

— Instantiating Components

—  Creating the Agent

—  Creating the Environment

—  Enabling Scenario Creation

— Managing End of Test

— Implementing Checks and Coverage

NOTE—This chapter builds upon concepts described in Chapter 1 and Chapter 2.

3.1 Modeling Data Items for Generation

Data items:
— Are transaction objects used as stimulus to the device under test (DUT).
— Represent transactions that are processed by the verification environment.
— Are classes that you define (“user-defined” classes).

— Capture and measure transaction-level coverage and checking.

NOTE—The UVM Class Library provides the uvm_sequence_item base class. Every user-defined data item must
be derived directly or indirectly from this base class.

To create a user-defined data item:

a) Review your DUT's transaction specification and identify the application-specific properties, con-
straints, tasks, and functions.

b) Derive a data item class from the uvm_sequence_item base class (or a derivative of it).
¢) Define a constructor for the data item.
d) Add control fields (“knobs™) for the items identified in Step (a) to enable easier test writing.

e) Use UVM field macros to enable printing, copying, comparing, and so on.

UVM has built-in automation for many service routines that a data item needs. For example, you can use:
— print () to print a data item.
— copy () to copy the contents of a data item.

— compare () to compare two similar objects.

UVM allows you to specify the automation needed for each field and to use a built-in, mature, and consistent
implementation of these routines.

To assist in debugging and tracking transactions, the uvm_ transaction base class includes the
m_transaction id field. In addition, the uvm_sequence item base class (extended from
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uvm_transaction) also includes the m_sequence_1id field, allowing sequence items to be correlated
to the sequence that generated them originally. This is necessary to allow the sequencer to route response
transactions back to the correct sequence in bidirectional protocols.

The class simple item in this example defines several random variables and class constraints. The UVM
macros implement various utilities that operate on this class, such as copy, compare, print, and so on. In
particular, the ~uvm_object utils macro registers the class type with the common factory.

1 class simple_item extends uvm sequence_item;

2 rand int unsigned addr;

3 rand int unsigned data;

4 rand int unsigned delay;

5 constraint cl { addr < 16'h2000; }

6 constraint c2 { data < 16'h1000; }

7 // UVM automation macros for general objects
8 “uvm_object utils begin(simple item)

9 “uvm_field int (addr, UVM_ALL_ON)

10 “uvm_field int (data, UVM_ALL ON)

11 “uvm_field int (delay, UVM_ALL ON)

12 “uvm_object utils end

13 // Constructor

14 function new (string name = "simple item");
15 super.new (name) ;

16 endfunction : new

17 endclass : simple item

Line 1 Derive data items from uvm_sequence_item so they can be generated in a procedural sequence.
See Section 3.10.2 for more information.

Line 5 and Line 6Add constraints to a data item definition in order to:
Reflect specification rules. In this example, the address must be less than 16 'h2000.

Specify the default distribution for generated traffic. For example, in a typical test most transactions
should be legal.

Line 7-Line 12 Use the UVM macros to automatically implement functions such as copy (), compare (),
print (), pack (), and so on. Refer to “Macros” in the UVM 1.1 Class Reference for information on the
“uvm_object utils begin, “uvm object utils end, “uvm field *, and their associated
macros.

NOTE—UVM provides built-in macros to simplify development of the verification environment. The macros automate
the implementation of functions defined in the base class, such as copy (), compare (), and print (), thus saving
many lines of code. Use of these macros is optional, but recommended.

3.1.1 Inheritance and Constraint Layering

In order to meet verification goals, the verification component user might need to adjust the data-item
generation by adding more constraints to a class definition. In SystemVerilog, this is done using inheritance.
The following example shows a derived data item, word_aligned item, which includes an additional
constraint to select only word-aligned addresses.

class word aligned item extends simple item;
constraint word aligned addr { addr[1:0] == 2'b00; }
“uvm_object_utils(word aligned item)
// Constructor
function new (string name = "word aligned item");
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super.new (name) ;
endfunction : new
endclass : word aligned item

To enable this type of extensibility:

— The base class for the data item (simple item in this chapter) should use virtual methods to allow
derived classes to override functionality.

— Make sure constraint blocks are organized so that they are able to override or disable constraints for
a random variable without having to rewrite a large block.

— Do not use the protected or local keyword to restrict access to properties that may be con-
strained by the user. This will limit your ability to constrain them with an inline constraint.

3.1.2 Defining Control Fields (“Knobs™)

The generation of all values of the input space is often impossible and usually not required. However, it is
important to be able to generate a few samples from ranges or categories of values. In the simple item
example in Section 3.1, the delay property could be randomized to anything between zero and the maximum
unsigned integer. It is not necessary (nor practical) to cover the entire legal space, but it is important to try
back-to-back items along with short, medium, and large delays between the items, and combinations of all
of these. To do this, define control fields (often called “knobs™) to enable the test writer to control these
variables. These same control knobs can also be used for coverage collection. For readability, use
enumerated types to represent various generated categories.

Knobs Example

typedef enum {ZERO, SHORT, MEDIUM, LARGE, MAX} simple item delay e;
class simple_item extends uvm_sequence_item;
rand int unsigned addr;
rand int unsigned data;
rand int unsigned delay;
rand simple item delay e delay kind; // Control field
// UVM automation macros for general objects
“uvm_object_utils_begin(simple_item)
“uvm_field int (addr, UVM_ALL_ON)
“uvm_field enum(simple_item delay e, delay kind, UVM_ALL ON)
“uvm_object utils end
constraint delay order c { solve delay kind before delay; }
constraint delay c {
(delay _kind == ZERO) -> delay == 0;
(delay kind SHORT) -> delay inside { [1:10] };
(delay kind MEDIUM) -> delay inside { [11:99] };
(delay kind LARGE) -> delay inside { [100:999] };
(delay kind == MAX ) -> delay == 1000;
delay >=0; delay <= 1000; }
endclass : simple_item

Using this method allows you to create more abstract tests. For example, you can specify distribution as:

constraint delay kind d {delay kind dist {ZERO:=2, SHORT:=1,
MEDIUM:=1, LONG:=1, MAX:=2};}

When creating data items, keep in mind what range of values are often used or which categories are of

interest to that data item. Then add knobs to the data items to simplify control and coverage of these data
item categories.
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3.2 Transaction-Level Components

As discussed in Chapter 2, TLM interfaces in UVM provide a consistent set of communication methods for
sending and receiving transactions between components. The components themselves are instantiated and
connected in the testbench, to perform the different operations required to verify a design. A simplified
testbench is shown in Figure 11.

Sequencer
r—— - - — = B
T | Produces data
| .
| Analysis |
b | B%
| L — — —_ —
L — — —
? seq_item_export
seq_item_port
Monitor Driver
checking Consumes and sends
coverage data to the DUT

O
PP

DUT

Figure 11—Simplified Transaction-Level Testbench

The basic components of a simple transaction-level verification environment are:

a)
b)
¢)
d)

34

A stimulus generator (sequencer) to create transaction-level traffic to the DUT.
A driver to convert these transactions to signal-level stimulus at the DUT interface.
A monitor to recognize signal-level activity on the DUT interface and convert it into transactions.

An analysis component, such as a coverage collector or scoreboard, to analyze transactions.
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As we shall see, the consistency and modularity of the TLM interfaces in UVM allow components to be
reused as other components are replaced and/or encapsulated. Every component is characterized by its
interfaces, regardless of its internal implementation (see Figure 12). This chapter discusses how to
encapsulate these types of components into a proven architecture, a verification component, to improve
reuse even further.

r— - - — — /7
| Analysis

|
|
Lo _ U

Agent |
______ . |
| Config | |
|
| | |
L - — — — J
| Sequencer
| Produces data
“pnalysis ]|
r na
| An’ﬁl y : |
|
| L _ _ 1
L _| |
| seq_item_export
_l_ - — — 1
seq_item_port
Monitor Driver
checking Consumes and sends
coverage data to the DUT
T_Vi T_

Vi
DUT

Figure 12—Highly Reusable Verification Component Agent
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Figure 12 shows the recommended grouping of individual components into a reusable interface-level
verification component agent. Instead of reusing the low-level classes individually, the developer creates a
component that encapsulates it’s sub-classes in a consistent way. Promoting a consistent architecture makes
these components easier to learn, adopt, and configure.

3.3 Creating the Driver

The driver’s role is to drive data items to the bus following the interface protocol. The driver obtains data
items from the sequencer for execution. The UVM Class Library provides the uvm_driver base class,
from which all driver classes should be extended, either directly or indirectly. The driver has a run ()
method that defines its operation, as well as a TLM port through which it communicates with the sequencer
(see the example below). The driver may also implement one or more of the parallel run-time phases
(pre_reset - post_shutdown) to refine its operation further.

To create a driver:
a)  Derive a driver from the uvm_driver base class.

b) If desired, add UVM infrastructure macros for class properties to implement utilities for printing,
copying, comparing, and so on.

¢) Obtain the next data item from the sequencer and execute it as outlined above.

d) Declare a virtual interface in the driver to connect the driver to the DUT.

Refer to Section 3.10.2 for a description of how a sequencer, driver, and sequences synchronize with each
other to generate constrained random data.

The class simple driver in the example below defines a driver class. The example derives
simple driver from uvm_driver (parameterized to use the simple item transaction type) and
uses the methods in the seq_item port object to communicate with the sequencer. As always, include a
constructor and the ~uvm component utils macro to register the driver type with the common
factory.

1 class simple driver extends uvm _driver #(simple item);

2 simple item s_item;

3 virtual dut if vif;

4 // UVM automation macros for general components

5 “uvm_component utils(simple driver)

6 // Constructor

7 function new (string name = "simple driver", uvm_component parent) ;
8 super.new (name, parent) ;

9 endfunction : new

10 function void build phase (uvm phase phase) ;

11 string inst_ name;

12 super.build phase (phase) ;

13 if (luvm_config db# (virtual dut if) ::get(this,

14 e nyifr,vif))

15 “uvm_fatal ("NOVIF",

16 {"virtual interface must be set for: ",
17 get full name(),".vif"});

18 endfunction : build phase
19 task run phase (uvm_phase phase) ;

20 forever begin

21 // Get the next data item from sequencer (may block).
22 seq item port.get next item(s_item);

23 // Execute the item.

24 drive item(s_item) ;
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25 seq _item port.item done(); // Consume the request.
26 end

27 endtask : run

28
29 task drive item (input simple item item);
30 ... // Add your logic here.

31 endtask : drive_item

32 endclass : simple driver
Line 1 Derive the driver.
Line 5 Add UVM infrastructure macro.
Line 13 Get the resource that defines the virtual interface
Line 22 Callget _next item() to get the next data item for execution from the sequencer.
Line 25 Signal the sequencer that the execution of the current data item is done.
Line 30 Add your application-specific logic here to execute the data item.

More flexibility exists on connecting the drivers and the sequencer. See Section 3.5.

3.4 Creating the Sequencer

The sequencer generates stimulus data and passes it to a driver for execution. The UVM Class Library
provides the uvm_sequencer base class, which is parameterized by the request and response item
types. The uvm_sequencer base class contains all of the base functionality required to allow a sequence
to communicate with a driver. The only time it is necessary to extend the uvm_sequencer class is if you
need to add additional functionality, such as additional ports. The uvm_sequencer gets instantiated
directly, with appropriate parameterization as shown in Section 3.8.1, Line 4. In the class definition, by
default, the response type is the same as the request type. If a different response type is desired, the optional
second parameter must be specified for the uvm_sequencer base type:

uvm_sequencer # (simple item, simple rsp) sequencer;

Refer to Section 3.10.2 for a description of how a sequencer, driver, and sequences synchronize with each
other to generate constrained-random data.

3.5 Connecting the Driver and Sequencer

The driver and the sequencer are connected via TLM, with the driver’s seq_item port connected to the
sequencer’s seq_item export (see Figure 13). The sequencer produces data items to provide via the
export. The driver consumes data items through its seq_item port and, optionally, provides responses.
The component that contains the instances of the driver and sequencer makes the connection between them.
See Section 3.8.
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Figure 13—Sequencer-Driver Interaction

The seq_item port in uvm_driver defines the set of methods used by the driver to obtain the next
item in the sequence. An important part of this interaction is the driver’s ability to synchronize to the bus,
and to interact with the sequencer to generate data items at the appropriate time. The sequencer implements
the set of methods that allows flexible and modular interaction between the driver and the sequencer.

3.5.1 Basic Sequencer and Driver Interaction

Basic interaction between the driver and the sequencer is done using the tasks get next item() and
item done (). As demonstrated in the example in Section 3.3, the driver uses get _next item() to
fetch the next randomized item to be sent. After sending it to the DUT, the driver signals the sequencer that
the item was processed using item done () .Typically, the main loop within a driver resembles the
following pseudo code.

get_next item(req) ;
// Send item following the protocol.
item done () ;

NOTE—get_next_ item() is blocking.

3.5.2 Querying for the Randomized Item

In addition to the get _next item() task, the uvm_seqg item pull port class provides another
task, try next item(). This task will return in the same simulation step if no data items are available
for execution. You can use this task to have the driver execute some idle transactions, such as when the DUT
has to be stimulated when there are no meaningful data to transmit. The following example shows a revised
implementation of the run() task in the previous example (in Section 3.3), this time using
try next item() to drive idle transactions as long as there is no real data item to execute:
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task run phase (uvm phase phase) ;
forever begin
// Try the next data item from sequencer (does not block).
seq_item port.try next item(s_item);
if (s_item == null) begin
// No data item to execute, send an idle transact