
System Verilog 3.1 Donation
Part I: Testbench
Version 1.1, May 2002

Contains proprietary information of Synopsys, Inc.

ii

Copyright © 2002 Synopsys, Inc. Synopsys. All rights reserved. This documentation contains

proprietary information that is the property of Synopsys, Inc.

The Synopsys logo and VERA are registered trademarks of Synopsys, Inc. OpenVera is a
trademark of Synopsys Inc. All other brands or products are trademarks of their respective owners
and should be treated as such.

System Verilog 3.1 Donation

 Part I 1-1

VeraLite: The Language

1
VeraLite: The Language 1

This chapter covers the basics of VeraLite. It introduces the lexical
elements and some of the basic components of the language. The
following sections are included:

• Lexical Elements

• Data Types and Variable Declaration

• Arrays

• Enumerated types

• Operators

• Variable Assignment

1-2 Part I

VeraLite: The Language: Lexical Elements

Lexical Elements

VeraLite source code consists of a stream of lexical elements.
Lexical element types are:

• White Space

• Comments

• Statement Blocks

• Identifiers

• Keywords

• Strings

• Numbers

White Space

White space is any sequence of spaces, tabs, newlines, and
formfeeds. White space is used in VeraLite as a token separator.
Except within a string, white space is ignored.

Comments

VeraLite supports two forms of comments: a single-line comment
and a block comment.

A single-line comment starts with a double slash (//) and finishes out
the line. The syntax is:

any_vera_statement; //One line comment

 Part I 1-3

VeraLite: The Language: Lexical Elements

A block statement starts with a /* and ends with a */. Everything
between the start and end tags is a comment.

The syntax is:

/*Blocks of comments
can take up
multiple lines */

Note:
Block comments cannot be nested.

Statement Blocks

VeraLite supports two methods of creating statement blocks:
braces, and fork/join.

The syntax for statement blocks using braces is:

{
// vera_statements

}

Note:
An empty statement is not legal in VeraLite. For example, the
following generates a parse error:

if(1)
 ;
else

 ;

The syntax for fork/join statement blocks is:

fork
process1();
process2();
...
processN();

join

1-4 Part I

VeraLite: The Language: Lexical Elements

Forks and joins are discussed in more detail in fork and join on
page 4-2.

Identifiers

An identifier is a sequence of letters [a-zA-Z], digits[0-9] and
underscores[_]. Identifiers are case-sensitive and cannot begin with
a digit.

Strings

A string is a sequence of characters enclosed by double quotes. A
string must be contained in a single line unless the new line is
immediately preceded by a back slash. In this case, the back slash
and new line are ignored. There is no maximum string size limit for
constants.

Numbers

In VeraLite, a number can be formed using either the LIT_INTEGER
or NUMBER format.

The LIT_INTEGER format is a simple decimal number specified as
a sequence of digits from 0 to 9. Negative signs are allowed to
specify negative integers. Underscores are ignored and may be
used for clarity. The upper limit for integer sizes is dependent on the
host machine, but it is generally 32 bits. The syntax is:

[0123456789]+

The NUMBER format takes these forms:

<size>’<base><number>

 Part I 1-5

VeraLite: The Language: Lexical Elements

<size>:

The <size> specifies the number of bits in the number. If the
<size> is omitted, the number of bits for <number> defaults to
the host machine word size. A plus or minus sign before the
<size> specification signifies the number’s polarity. The
maximum size is 65535.

<base>:

The <base> is always preceded by a single quote (‘). The
<base> can be one of the following: d(ecimal), h(exadecimal),
o(ctal), or b(inary). The base identifier can be either upper or
lower case.

<number>:

 - The valid elements of <number> for each <base> are:

’b(binary): [01xXzZ_]
’d (decimal): [0123456789_]
’o (octal): [01234567xXzZ_]
’h (hexadecimal): [0123456789abcdefABCDEFxXzZ_]

The X and x represent unknown values, and Z and z represent high
impedance values in binary, octal, or hexadecimal form.
Underscores are ignored.

If the most significant specified digit of a <number> representation is
an x or a z, the VeraLite compiler extends the x or z to fill the higher
order bits or digits.

For example, 8’bx is equivalent to 8’bxxxxxxxx, and 8’bz00 is
equivalent to 8’bzzzzzz00.

If not all the bits are specified and the highest specified bit is not x or
z, then zero filling takes place.

1-6 Part I

VeraLite: The Language: Data Types and Variable Declaration

Data Types and Variable Declaration

VeraLite’s standard data types are:

• integer

• bit

• string

• event

VeraLite’s user-defined data types are:

• Enumerated types

• virtual port (port)

• class

All basic types can be declared as class members and can be used
to form associative and non-associative arrays.

The term scalar is used in this document to refer to a disjunctive list
of the data types: “integer,” “bit,” “bit[],” and “enum.” For example,
instead of the following four prototypes:

function integer function_name(...);
function bit function_name(...);
function bit[msb:lsb] function_name(...);
function enum function_name(...);

As a shorthand notation, scalar is specified:

function scalar function_name(...);

Variables are seen globally if they are declared at the top (program)
level. If they are declared in blocks (begin/end, {}, fork/join), they are
seen locally.

 Part I 1-7

VeraLite: The Language: Data Types and Variable Declaration

Standard Data Types

integer

Integers are signed variables. The upper limit for integer sizes is
dependent on the host machine. On 32 bit machines, the allowed

range is between -231 and 231 -1. An integer may become X
(unknown) when it is not initialized or when an undefined value is
stored.

The syntax to declare an integer is:

integer variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value is optional.

For expressions involving both bit and integer types, the integer
types are first converted to 32-bit unsigned integers.

bit

Bits can have the value 0, 1, z, or x.

Table 1-1 Value Levels and Conditions

Value Level Condition

0 logic 0

1 logic 1

z high impedance

x unknown

1-8 Part I

VeraLite: The Language: Data Types and Variable Declaration

The syntax to declare a bit is:

bit variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value is optional.

VeraLite also supports bit fields.

The syntax to declare a bit field is:

bit [high:0] variable_name [=initial_value];

High:

High specifies the upper limit on the field. The maximum size of
a bit field is 65535 bits. When declaring bit fields, you cannot use
variables for the high specifier.

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value is optional.

Note:
Verilog users: The keyword, reg, is equivalent to the keyword,
bit. Therefore, reg and bit can be used interchangeably.

string

Strings are character data types that have a wide range of operators
associated with them for manipulating characters.

 Part I 1-9

VeraLite: The Language: Data Types and Variable Declaration

The syntax to declare a string is:

string variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value is optional.

String operators are discussed in on page 1-28.

event

Events are pointers to a synchronization object. A synchronization
object can be either ON or OFF. An event can point either to an
object or be null. Events are passed as arguments to method calls to
specify the trigger point. Two or more events can point to the same
synchronization object.

The syntax to declare an event is:

event variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value

The initial_value can be either null or another event. The
default initial_value is a new synchronization object set to
OFF. Events assigned to null act as if always ON.

1-10 Part I

VeraLite: The Language: Data Types and Variable Declaration

User-Defined Data Types

Enumerated types

Enumerated types are named, integer constants.

The syntax to declare an enumerated type is:

enum category = list;

OR

enum category {list};

category:

The category is the name of the enumerated type. It is used to
assign list values to variables.

list:

list is a list of category values separated by commas. They are
assigned sequential integer values in the order listed.

Enumerated types cannot be declared inside classes or subroutines.

Enumerated types are discussed in more detail in “Enumerated
Types” on page 1-18.

class

A class is a collection of data and a set of subroutines that operate
on that data. A class’s data is referred to as properties, and
subroutines are called methods. The properties and methods, taken
together, define the contents and capabilities of a class instance or
object. Classes are discussed in more detail in Chapter 11.

 Part I 1-11

VeraLite: The Language: Arrays

Arrays

VeraLite supports one-dimensional and multi-dimensional arrays,
which are lists of variables that are all of the same type and called
with the same name. Arrays in VeraLite can be static (global) or
dynamic (local). You can also create associative arrays that have the
advantage that each entry of the array is allocated only when it is
accessed.

Fixed-size Arrays

Any variable type can be declared as an array.

The syntax to declare arrays is:

integer array_name[size];
bit [high:0] array_name[size];
port_name array_name[size];
event array_name[size];

size:

The size specifies the number of elements in the array. The

maximum number of elements in an array is 231-1 elements. For
larger arrays, you should use associative arrays.

Accessing an array with an unknown bit (‘x’) in the index causes a
simulation error. Also, writing to an array with an unknown in the
index is ignored, and reading with an unknown in the index returns
‘X’s.

Note that a bit field of an array element cannot be referenced directly.
To reference a bit field of an array element, use a temporary variable.
For example:

tmp = memory[42];

1-12 Part I

VeraLite: The Language: Arrays

if (tmp[3:2] == 0) ...

Array Initialization

An array can be initialized when declared. The values used for array
initialization are subject to the same limitations as the initialization of
scalar variables.

Single-dimensional array example:

integer array[5] = {0, 1, 2, 3, 4};

Concatenation is not supported in array initialization. An attempt to
concatenate will result in a compilation error.

Example of an illegal declaration:

#define OPCODE 8’ha
bit [16:0] array1[3] = { {OPCODE, 8’h00}, {OPCODE, 8’h01}, {OPCODE,

8’h02}};

Note:
In VeraLite v1.0, you cannot initialize an array in the declaration.

Table 1-2

Data Types Supported

integer yes

bit yes

enum yes

string yes

event no

bind no

port no

object no

 Part I 1-13

VeraLite: The Language: Arrays

Multi-dimensional Arrays

The declaration of a multi-dimensional array variable is similar to that
of a single dimensional array, with the addition of multiple
dimensions after the variable name. Any data type that can be used
for a single dimensional array can also be used for a
multi-dimensional array.

Examples:

integer matrix [2][5];
Color colors [3][4][2];
event myevent [2][2];

The following program illustrates the use of a three dimensional array.

task cube_add(integer cube[2][2][2], integer offset)
{

integer i, j, k;

for (i=0; i<2; ++i){
for (j=0; j<2; ++j){

for (k=0; k<2; ++k){
cube[i][j][k] += offset;

}
}

}
}

program array
{

integer cube[2][2][2], i, j, k;

 for (i = 0; i < 2; ++i) {
 for (j = 0; j < 2; ++j) {
 for (k = 0; k < 2; ++k) {
 cube[i][j][k] = i+j+k;
 }
 }
 }

 cube_add(cube,4);

1-14 Part I

VeraLite: The Language: Arrays

 for (i = 0; i < 2; ++i){
 for (j = 0; j < 2; ++j) {
 for (k = 0; k < 2; ++k) {
 printf("cube[%d][%d][%d] = %d\n", i, j, k,

cube[i][j][k]);
 }
 }
 }

}

When referencing elements in a multi-dimensional array, multiple
indices must be specified as follows:

vname[index_1]...[index_n]

When passing a multi-dimensional array as a parameter to a function,
the formal argument must be of the same type as the parameter
passed in.

For example, the declaration:

task fun(integer x[2][2])

creates a task “fun” that takes one parameter, a two dimensional
array where each dimension is two. Any call to “fun” must pass in a
two dimensional array where each dimension is two.

Also, the multi-dimensional array does not support bit slicing and
associative array declarations. An associative array can only have
one dimension.

The following generates compilation errors:

integer assoc_matrix[][2]; //Invalid
integer double_assoc_matrix[][]; //Invalid

 Part I 1-15

VeraLite: The Language: Arrays

Array Initialization

The values used for array initialization are subject to the same
limitations as the initialization of scalar variables. For example:

integer x[2][2]=
{

{0,1},
{2,3}

};

Initialization is identical to how C and C++ initialize multi-dimensional
arrays. The order of the data being loaded for the above example is:

x[0][0], x[0][1],
x[1][0], x[1][1]

Concatenation is not supported in array initialization. An attempt to
concatenate will result in a compilation error.

Example of an illegal declaration:

Table 1-3

Data Types Supported

integer yes

bit yes

enum yes

string yes

event no

bind no

port no

object no

1-16 Part I

VeraLite: The Language: Arrays

#define OPCODE 8’ha
bit [16:0] array1[3] = { {OPCODE, 8’h00}, {OPCODE, 8’h01}, {OPCODE,

8’h02}};

Associative Arrays

Associative arrays are arrays whose dimensions are not specified.
The syntax to declare associative arrays is:

integer array_name[];
bit [high:0] array_name[];
port_name array_name[];
event array_name[];

Array elements in associative arrays are allocated dynamically,
when you access a particular address. The array index tracks those
elements that have been assigned values and stores those values
within the array. The index is an unsigned number with a maximum

value of 2^64-2. When using integer and bit associative arrays, if you
try to access an element that has not been assigned a value, an ‘X’
is returned.

Note:
Using associative arrays slightly slows down simulation time. The
effect is usually unnoticeable.

Users can implement the system function, assoc_index() to
manipulate or analyze associative arrays.

The syntax for assoc_index is:

function integer assoc_index(CHECK | DELETE | FIRST | NEXT,
assoc_array_name [, var bit[63:0] index]);

 Part I 1-17

VeraLite: The Language: Arrays

Key words:

CHECK, DELETE, FIRST, or NEXT determines the function of
assoc_index().

assoc_array_name:

The assoc_name is the name of the associate array being
analyzed. It must be a valid array reference.

index:

The index is the numerical index of the element being
analyzed.

Table 1-4

Option Description

CHECK Checks if an element exists at the specified index
within the array. If it does, a 1 is returned. If
it does not, a 0 is returned. If the index is
omitted, the function returns the number of
allocated elements in the array.

DELETE Deletes the element specified at the specific
index. If it is successful, a 1 is returned. If the
element does not exist, a 0 is returned. If the
index is omitted, all the elements in the array are
deleted. Only the array elements are deleted, and
not the array itself.

FIRST Returns the element associated with the first valid
index. The index is assigned the value of the first
valid element in the array. The function returns a
0 if it fails, and 1 if an element is returned.

NEXT When NEXT is used, the function searches for the
first valid array element with an index greater
than the passed parameter index. If an element is
found, the function returns 1, and assigns the new
index to the parameter index. If none exists, it
leaves the value of index unchanged, and returns to
0.

1-18 Part I

VeraLite: The Language: Enumerated Types

The function assoc_index() returns an integer (1 or 0), or void.

• A “1” is returned when the function call is successful.

• A “0” is returned when the function call is unsuccessful.

In the case of assoc_index(), it is not mandatory to assign the return
value to a variable.

Enumerated Types

Enumerated types are a user-defined list of named integer
constants. As discussed in “Enumerated types” on page 1-10

The syntax to declare an enumerated type is:

enum category = list;

OR

enum category {list}

For example:

enum colors = red, green, blue, yellow, white, black;

This operation assigns a unique number to each of the color
identifiers, allowing us to create a new data type of type colors.

colors new_color;
integer val;
new_color = green;
new_color = 1; // Invalid assignment.

 Part I 1-19

VeraLite: The Language: Enumerated Types

This example assigns the color green to the colors variable
new_color. The second assignment is invalid because of the strict
typing rules used by enumerated types.

Different enumerated types cannot share the same name. For
instance, you cannot define an element called RANDOM for two
different enumerated type categories list and packet. RANDOM can
only be defined in one of the categories, not both.

Elements within enumerated type definitions are assigned
identifiers, which are numbered consecutively, starting from 0. In our
example, red is assigned 0, green is assigned 1, and so on.

Any explicit value in an enumerated type declaration affects all
subsequent enums without an explicit value.

You can further specify identifiers in the element list in several ways:

• name: This associates the next consecutive integer with
name.

• name[N]: This generates N names in the sequence (name0,
name1, ..., nameN-1) where N must be a constant
integer.

• name[n:m] :This creates a sequence of names starting with
namen and counting up (or down) to namem.

• name=N: This assigns the constant N to name.

For example:

enum instructions = add=10, sub[5], jmp[6:8];

1-20 Part I

VeraLite: The Language: Enumerated Types

This example assigns the number 10 to the enumerated type add. It
also creates the enumerated types sub0, sub1, sub2, sub3, and
sub4, and assigns them the values 11-15 respectively. Finally, the
example creates the enumerated types jmp6, jmp7, and jmp8, and
assigns them the values 16-18 respectively.

Enumerated Types in Numerical Expressions

Elements of an enumerated type or an enumerated type variable can
be used in numerical expressions. The value used in the expression
is the numerical value assigned to the enumerated type element.

For example:

colors new_color;
integer val1, val2;

val1 = blue * 3;
new_color = yellow;
val2 = new_color + green;

From our previous declaration, blue has a numerical identifier of 2.
This example assigns val1 a value of 6 (2*3). This example then
assigns val2 a value of 4 (3+1).

Note:
Assignments to enumerated type variables are strongly typed.
Thus, assigning numerical expressions to enumerated type
variables causes compilation errors.

 Part I 1-21

VeraLite: The Language: Enumerated Types

Increment and Decrement Operations on Enumerated
Types

The operators ++, --, +=, and -= have special meanings on
enumerated type variables.

Note:
"enum_var += val;" is different than "enum_var = enum_var +
val;" The former is legal while the latter is illegal because
"enum_var + val" evaluates to a numerical expression which
cannot be assigned to an enumerated type variable.

Table 1-5

Enum Variable/
Operator

Assignment

enum_var++
Assigns the next member (as defined by the
definition order) to enum_var. The first
member is selected if enum_var is currently
holding the last member

enum_var--
Assigns the previous member (as defined by
the definition order) to enum_var. The last
member is selected if enum_var is currently
holding the first member.

enun_var+=val Assigns the val-th next member to enum_var.
A wrap to the beginning of the list occurs
when the end of the list is reached.

enum_var-=val Assigns the val-th previous to enum_var. A
wrap to the end of the list occurs when the
beginning of the list is reached.

1-22 Part I

VeraLite: The Language: Operators

Operators

VeraLite uses a set of standard operators for expressions and
concatenation. The increment (++) and decrement (--) operators
behave just like C/C++. All VeraLite operators which are defined in
Verilog work the same way as the Verilog operators. For example:

-1%4 = -1

Table 1-6 lists the basic VeraLite operators.

Table 1-6 VeraLite Operators

Operator Semantics

{} concatenation

´{} concatenation left of assignment

+ - * / arithmetic

% modulus

++ -- increment, decrement

> >= < <= relational

+= -= add and assign, subtract and assign

= assignment

! logical negation

&& logical and

|| logical or

== logical equality

!= logical inequality

=== case equality

!== case inequality

=?= wild equality

!?= wild inequality

~ bitwise negation

& bitwise and

&~ bitwise nand

| bitwise or

 Part I 1-23

VeraLite: The Language: Operators

Operator Precedence

The precedence order of VeraLite operators is defined in Table 1-7.

|~ bitwise nor

^ bitwise exclusive or

^~ bitwise exclusive nor

& unary and

~& unary nand

| unary or

~| unary nor

^ unary exclusive or

~^ unary exclusive nor

<< left shift

>> right shift

?: conditional

Table 1-7 Precedence Order of VeraLite Operators

Operator Precedence

() Highest precedence

.

++ --

& ~& | ~| ^ ~^

* / %

+ -

<< >>

< <= > >=

=?= !?= == != === !==

& &~

^ ^~

| |~

&&

Table 1-6 VeraLite Operators(Continued)

Operator Semantics

1-24 Part I

VeraLite: The Language: Operators

All operators associate left to right. That is, if multiple operators with
the same precedence are used (as in A + B - C), the expression is
evaluated left to right (A + B, then - C). When operators differ in
precedence, the highest precedence operator is executed first.
Parentheses change the operator precedence.

Arithmetic Operators

The unary arithmetic operators (+ and -) take precedence over the
binary arithmetic operators (+, -, *, /, and &).

If an operand has any bit with a value of x, the entire result is x.

Relational Operators

The relational operators are:

• a < b (a less than b)

• a > b (a greater than b)

• a <= b (a less than or equal to b)

• a >= b (a greater than or equal to b)

The relational operators yield a scalar value of 0 if the relation is
false, or a 1 if the relation evaluates to true. If there is are unknown
bits in the relation (a value of x), the relation yields an unknown value
(x).

||

?:

= += -= *= /= %=

<<= >>= &= |= ^= ~&= ~|= ~^= Lowest precedence

Table 1-7 Precedence Order of VeraLite Operators(Continued)

Operator Precedence

 Part I 1-25

VeraLite: The Language: Operators

Note that relational operators have a lower precedence than the
arithmetic operators.

Equality Operators

The equality operators are:

• a === b (a equal to b, including x and z values)

• a !==b (a not equal to b, including x and z values)

• a == b (a equal to b, not including x or z values)

• a != b (a not equal to b, not including x or z values)

• a =?= b (a equals b, x and z values are wildcards)

• a !?= b (a not equal to b, x and z values are wildcards)

The wild equality operator (=?=) and inequality operator (!?=) treat
an x value or z value in a given bit position (for bit values) as a
wildcard. They match any bit value (0, 1, z, or x) in the value of the
expression being compared against it.

These operators compare operands bit for bit. If the operands are
not the same length, 0’s fill the empty spaces. If the relation is true,
the operator yields a 1. If the relation is false, it yields a 0.

If the operands have an x or z value, the result is unknown (x) when
using the == and != operands. When using the === and !==
operands, x and z values must match exactly.

Logical AND and Logical OR Operators

The logical AND and OR operators are:

• && (AND)

• || (OR)

1-26 Part I

VeraLite: The Language: Operators

The AND and OR operators are logical connectives. Expressions
connected by these operators are evaluated left to right. If the
relation is true, the operation yields a 1. If the relation is false, it yields
a 0. If the result is unknown, it yields an unknown value (x).

Bitwise Operators

Bit-wise operators compare 1 bit in one operand to the equivalent bit
in another operand to calculate 1 bit for the result. If the operands are
not the same length, the smaller operand is zero-filled in the most
significant bit positions. The operator logic tables follow.

~

0 1

1 0

x x

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

 Part I 1-27

VeraLite: The Language: Operators

Reduction Operators

The reduction operators perform a bit-wise operation on a single
operand and yield a single bit result. The first step applies the
operator between the first and second bits of the operand.
Subsequent calls apply the operator between the result and the next
bit in the operand. The logic tables for the reduction operators are
the same as for the bit-wise operators. The logic tables for the AND,
OR, NAND, NOR, exclusive OR, and exclusive NOR follow.

Conditional Operator

The conditional operator follows this format:

conditional_expression ::= expression1 ? exprssion 2:
expression3

If expression1 evaluates to true (known value other than 0), then
expression2 is evaluated and used as the result. If expression1
evaluates to false, (0) then expression3 is evaluated and used as

^~ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

& | ~& ~|

no bits set 0 0 1 1

all bits set 1 1 0 0

some bits set 0 1 1 0

bit vector of 1, x, and z x 1 x 0

bit vector of 0, x, and z 0 x 1 x

^ ~^

odd number of bits set 1 0

even number of bits set (or none) 0 1

1-28 Part I

VeraLite: The Language: Operators

the result of the conditional expression. If expression1 evaluates
to an ambiguous value (x or z), then both expression2 and
expression3 are evaluated and their results are combined, bit by
bit, using the ?: truth table to calculate the final result (unless
expression2 or expression3 is real, in which case the result is
0). If the lengths of expression2 and expression3 are different,
then the shorter operand is lengthened to match the longer and zero
filled from the left. This logic table shows the results of unknown
conditional statements.

Operators for manipulating strings

VeraLite provides a set of operators that can be used to manipulate
combinations of string variables and string constants. Table 1-8 lists
the valid operators.

Note:
You can compare string variables to null.

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

Table 1-8 Valid VeraLite Operators

Operator Meaning

== Check equality of two strings

!= Check inequality of two strings

{str1,str2..} Generate a concatenated string with
str1, str2, ...

{num{str}} Generate a string duplicated num times.

 Part I 1-29

VeraLite: The Language: Operators

Concatenation

The syntax for concatenation is:

{var1, var2, ..., varN}

The result of the concatenation is variable. The arguments are
concatenated sequentially. Any combination of valid data types
(integer, bit, string and enum) is valid for concatenation.

For example:

bit [6:0] data;
bit parity;
bit [7:0] foo;
foo = {data, parity};

Multiple concatenation is also supported:

{var1 {var2}}

or

{var1,...,varN}

For example:

{ 32 {1’b1 } }
{ 4 {addr, data} }

This example concatenates addr and data four times.

VeraLite uses the left brace to both open a block, and for
concatenation. This creates a conflict when using the left brace for
concatenation on the left-hand side of assignments. Therefore,
VeraLite uses a single quote to prefix the left brace when it is used
for concatenation on the left. For example:

’{data,packet,parity} = 256'b0;

1-30 Part I

VeraLite: The Language: Variable Assignment

Variable Assignment

Variable assignment is the primitive operation to set a value for a
variable.

The syntax to assign values to variables is:

variable_name operator assign_expression

For example:

i = 0;
a = 1’b0;
temp[3:0] = 4’b1000;
memory [53] = 8’b0x0x0x0x;
for (i = 0; i < 10; i += 2)

There are two types of assign operators: the = operator is called the
simple assignment operator; all others are called compound
assignment operators.

For the compound assignment operator, the expression a operator =
b is equivalent to a = a operator b.

For example, the following are equivalent:

i = i + 5;
i += 5;

VeraLite supports the C-style ++ and -- operators.

For example:

result = 5;
a = result++;
a = ++result;

 Part I 1-31

VeraLite: The Language: Variable Assignment

The second line accesses the variable and then increments it. The
third line increments the variable and then accesses it.

VeraLite does not support assignment recursion.

This is an illegal assignment:

a = b = c;

The VeraLite source code is type checked at compile time. Event
variables cannot be used in assignments because they are used
only for triggering purposes. All other combinations of integer and bit
variables are valid.

Note:
To help avoid mistakes, assignments are not expressions.
Hence, statements like these are invalid:

if(a=b) a=c+d; // should be a==b
while(a=b) a=$random(); // should be a==b

1-32 Part I

VeraLite: The Language: Variable Assignment

 Part I 2-1

Programming Overview

2
Programming Overview 2

This chapter documents the basic elements of VeraLite
programming. It details the fundamental program structure used in
all VeraLite programs.

This chapter includes these sections:

• Overview

• Subroutines

2-2 Part I

Programming Overview: Overview

 Overview

A program involves the integration of several key components of a
testbench. The constituents are:

• a required program block,

• preprocessor directives,

• top level constructs.

The program block, the various constructs and the preprocessor
directives can occur in any order.

 program program_name

 top_level_constructs

The VeraLite Program

 preprocessor_directives

Program Block {

 }

 Part I 2-3

Programming Overview: Overview

Program Block

The program block is indicated by the keyword, program.

The program block contains:

program program_name

{
variable declarations
program block code

}

The main program block is where:

• global variables are declared,

• executable statements are carried out,

• calls to subroutines are made.

VeraLite, like C, supports both top level and lower level scope.
Variables declared in the main program block are global, whereas
any variable defined in a task or function has local scope.

Top level constructs

A program can have any number of the top level constructs:

• class prototypes

• extern declarations

• enumerated type definitions

• class definitions

• subroutines

2-4 Part I

Programming Overview: Overview

• HDL subroutines

• interface declarations

• system clock definitions

• port definitions

• bind definitions

• coverage_definitions definitions

Preprocessor Directives

The preprocessor directives:

• #define text_macro

• #include "filename"

• #include <vera_defines.vrh>

can occur anywhere in the program.

Referencing Variables

Forward reference is allowed with interface signals, global variables,
and task and function calls that are present at the top level.

Enumerated types, classes, coverage_def, functions, global
variables, hdl_tasks and tasks defined in other files require an extern
declaration in the file referencing that symbol (see External
Declarations on page 2-13).

 Part I 2-5

Programming Overview: Subroutines

Subroutines

VeraLite supports two means of encapsulating often-executed
program fragments: functions and tasks. All functions and tasks are
re-entrant and therefore can be called recursively.

VeraLite subroutines definitions cannot be nested. This means that
all subroutine declarations must be made at the top level. Since
tasks and functions are global by default, VeraLite supports
declaring subroutines as local. They are then separately compiled.

You can also declare external subroutines. These separately
compiled object files are linked at simulation time.

This section includes:

• Functions

• Tasks

• return Statement

• Static Variables

• Subroutine Arguments

• External Declarations

Functions

Functions are provided for implementing mathematical functions
containing some number of arguments and one return value.
Functions can be used in expressions in order to perform frequently
used calculations, or to encapsulate the calculation.

The syntax to declare a function is:

2-6 Part I

Programming Overview: Subroutines

function data_type function_name (type
argument_list){statements;}

data_type:

The data_type can be any of the valid VeraLite data types,
(integer, bit, string, event, port, or enum). The value returned
will be of the same data type with which the function is declared.

function_name:

The function_name is the name by which the function is called
throughout the program.

argument_list:

 An argument is a variable, including the data type, that is passed
to the function when the function is called. All data types can be
passed. Array arguments can be associative, as well as var, (see
Reference Passing on page 2-11 for discussion of var). Array
arguments are strongly typed. The array type, width, and size of
the call must exactly match the array type, width and size of the
declaration. Multiple arguments are separated by commas.

statements:

The statements can be any statement, including function
calls, timing modifiers, and variable assignments

Functions are designed to return a single value. They can return
values of any data type as well as data structures. Functions can
also return bit arrays. However, functions cannot return arrays of
other types (either fixed size or associative). To set the return value,
assign a value to the name of the function somewhere within the
body of the function.

This is an example function declaration:

function bit [3:0] even_byte_parity (bit [31:0] data)
{

 Part I 2-7

Programming Overview: Subroutines

bit [3:0] tmp;
tmp[3] = ^data[31:24];
tmp[2] = ^data[23:16];
tmp[1] = ^data[15: 8];
tmp[0] = ^data[7: 0];
even_byte_parity = tmp;

}

This example declares the function even_byte_parity() with the
argument data. The final line of the function contains the line that
sets the return value.

Functions can be called in expressions from within the main program
or from within other functions.

The syntax to call a function is:

variable = function(argument_list);

For example:

parity = even_byte_parity(Data);

By default, function names are global. Functions declared as local
can only be used in the file where they are defined. To invoke a
function defined in another file, you must use the extern declaration
(see External Declarations on page 2-13).

The syntax to declare a local function is:

local function data_type function_name (type argument_list)
{statements;}

For example:

extern local function bit[3:0] g_decode (integer i);

2-8 Part I

Programming Overview: Subroutines

Discarding Function Return Values

Function return values are enforced by the VeraLite compiler. Calling
a function as if it has no return value results in compilation errors. To
discard a function’s return value, use the void construct.

The syntax for the void construct is:

void = function(argument_list);

Tasks

Tasks are identical to functions except they do not return a value.

The syntax to declare a task is:

task task_name (type argument_list){statements;}

task_name:

The task_name is the name by which the task is called
throughout the program.

argument_list:

An argument is a variable, including the data type, that is
passed to the function when the function is called. All data types
can be passed, including ports. Array arguments can be
associative, as well as var, (see Reference Passing on
page 2-11 for discussion of var). Array arguments are strongly
typed. Array type, width, and size must match exactly between
the declaration and the call. Multiple arguments are separated by
commas.

 Part I 2-9

Programming Overview: Subroutines

statements:

The statements can be any VeraLite statement, including
function calls, timing modifiers, and variable assignments.

This is an example task declaration:

task handshake_port0(bit direction, bit [7:0] data1, bit[7:0]
data2)

{

@0,1000 port0.req == 1’b1;
port0.ack = 1’b1;
@1 port0.ack <= 1’b0;

if(direction) port0.data = data1;
else port0.data = data2;

}

Tasks can be invoked as statements.

The syntax to invoke a task is:

task_name(argument_list);

For example:

print_data(new_data);

By default, task names are global. Tasks declared as local can only
be used in the file where they are defined. To invoke a task defined
in another file, you must use the extern declaration (see External
Declarations on page 2-13).

The syntax to declare a local task is:

local task task_name (argument_list){statements;}

For example:

2-10 Part I

Programming Overview: Subroutines

local task print_data (bit[7:0] data)
{

printf("Local data = %h", data);
}

return Statement

Normally, functions and tasks return control to the caller after the last
statement of the block is executed. VeraLite provides the return
statement to manually pass control back to the caller.

The syntax for return is:

return;

When the return statement is executed, the subprocess is
terminated as if it had been exited normally. If the return statement
is executed in a function before a value has been assigned, an
undefined value is returned.

If a return statement is executed at the top code level, the simulation
is terminated.

Static Variables

By default, variables are local to the function or task that uses them.
They are allocated when the function or task is called. This construct
allows tasks and functions to be re-entrant and recursive.

If you want a variable to be shared across all invocations of a
function or task, use the static declaration.

The syntax to declare a static variable is:

static data_type variable_name;

 Part I 2-11

Programming Overview: Subroutines

Any data type can be declared as a static variable.

Note:
In the case of concurrent accesses, there may be races if
multiple threads assign to the same variable. Also, static
variables cannot be declared in a global context.

Subroutine Arguments

VeraLite provides two means of accessing arguments in functions
and tasks: “pass by value” and “pass by reference.”

Value Passing

“Pass by value” is the default method through which arguments are
passed into functions and tasks. Each subroutine retains a local
copy of the argument. If the arguments are changed within the
subroutine, the changes do not affect the caller.

Reference Passing

In “pass by reference,” functions and tasks directly access the
specified variables passed as arguments.

The syntax to pass a subroutine argument by reference is:

subroutine (var data_type variable);

In “pass by reference,” subroutines operate directly on the var
arguments. The caller sees any changes to variables made within
the subroutine. Variables of any type can be passed by reference.

This is an example of “pass by reference”:

task IO_read_indirect(bit[63:0] addr, var bit[31:0] io_data)

2-12 Part I

Programming Overview: Subroutines

{

// ... (modifies both addr and io_data)

// ... (only the change in io_data will be seen by caller)

}

// caller
IO_read_indirect(my_addr, my_data);

In this example, the variable io_data is passed by reference. The
task modifies all of the arguments passed, but only the change made
to io_data is seen outside the task.

Note:
In the case of concurrent accesses, a race condition may arise if
multiple threads assign to the same variable.

Default Arguments

To handle common cases or allow for unused arguments, VeraLite
allows you to define default values for each scalar argument.

The syntax to declare a default argument in a subroutine is:

subroutine(type arg=default_value){statements}

default_value:

The default_value can be any expression visible at the
current code level. It can include any combination of constants
and global variables.

When the subroutine is called, you can omit an argument that has a
default defined for it. Use an asterisk (*) as a placeholder in the
subroutine call. If an asterisk is used for a variable that does not have
a default value, a compilation error occurs.

 Part I 2-13

Programming Overview: Subroutines

This is an example of a subroutine with default arguments:

task read(integer i = 0, integer k, bit[5:0] data = 6’b0)
{

//..

}
read(100, 5, *);
read(*, 5, 6’b000111);

This example declares a task read() with default arguments. The first
call to read() is equivalent to read(100, 5, 6’b0). The second call to
read() is equivalent to read(0,5,6’b000111).

External Declarations

External declaration of subroutines enables the use of multiple
source files. Large functions and tasks can be compiled separately,
which facilitates debugging.

Declaring External Subroutines

You can create subroutines in multiple source files. You must declare
these subroutines as external at the top level.

The syntax to declare a subroutine as external is:

extern task | function subroutine (argument_list);

Note:
When using external subroutines, the argument types that are
passed must match exactly. So take extra care when passing
arguments to external subroutines.

2-14 Part I

Programming Overview: Subroutines

External Default Arguments

The default values can be set locally, and independently, for each
compilation unit using extern declarations with default values. A
general library, which can then be customized for a particular user or
testbench, can be implemented by using include files with different
defaults.

For example, the task write() may be defined in a separate library,
which is compiled independently. The VeraLite file in which the task
write() will be used must declare write() as being external. Default
values can be set in this extern declaration:

// file A (library)
task write (integer i, k, bit[5:0] data)
{

// write definition
}

// file B (testbench)
extern task write(integer i = 10,integer k,bit[5:0]

data=6’b1);

task xyz ()
{

write (*, 5);
//continue task declaration

}

 Part I 3-1

Sequential Control

3
Sequential Control 3

This chapter discusses the VeraLite constructs used for sequential
flow control. It includes these sections:

• if-else Statements

• case Statements

• repeat loops

• for loops

• while loops

• break and continue

3-2 Part I

Sequential Control: if-else Statements

if-else Statements

The if-else statement is the general form of selection statement.

The syntax to declare an if-else statement is:

if (expression) if_block [else else_block]

expression:

The expression can be any valid VeraLite expression.

block:

The if_block or else_block can be any valid VeraLite
statement or block of statements. If a code block is used, the
entire block is executed.

If the expression evaluates to true, the if_block is executed. If
it evaluates to false, the else_block is executed.

If the else_block is omitted, the conditional is evaluated and the
if_block is executed only if it evaluated to true. Otherwise, the
program continues execution with the first line after the if_block.

Nested if-else statements are supported.

Example:

if (operator==0) y=a+b;
else if (operator==1) y=a-b;
else if (operator==2) y=a*b;
else y=’bx;

This example uses several if-else statements. Note that the final else
statement is associated with the if_block immediately preceding
it.

 Part I 3-3

Sequential Control: case Statements

case Statements

The case statement provides for multi-way branching.

The syntax to declare a case statement is:

case (primary_expression)
{

case1_expression : statement
case2_expression : statement
...
caseN_expression : statement
[default : statement]

}

primary_expression:

The primary_expression is evaluated. The value of the
primary_expression is successively checked against each
case_expression. When an exact match is found, the
statement corresponding to the matching case is executed, and
control is passed to the first line of code after the case block. If
other matches exist, they are not executed.

case_expression:

The case_expression can be any valid VeraLite expression.
Expressions separated by commas allow multiple expressions to
share the same statement block.

All case expressions must be the same bit length. ‘X’ and ‘Z’
values are actual signal values and are not ignored.

statement:

The statement can be any valid VeraLite statement or block of
statements. If a code block is used, the entire block is executed.

3-4 Part I

Sequential Control: case Statements

A case statement must have at least one case item aside from the
default case, which is optional. The default case must be the last
item in a case statement.

An example case block:

case (bus[3:0])
{

4’b00ZZ: packet = null;
4’booo1, 4’b1001: packet = READ;
4’b0010, 4’b1010: packet = WRITE;
4’b00XX: packet = UNKNOWN;

default:
{

printf("Error: illegal packet %h detected\n",
bus[3:0]);

packet_error();
}

}

To use ‘X’ or ‘Z’ as a “don’t care,” use the casex or casez statements.
When using casex, ‘X’ and 'Z' values in both the primary_expression
and case_expressions are treated as “don’t care”. When using
casez, ‘Z’ values in both the primary_expression and
case_expressions are treated as “don’t care”. If no match is found,
the default statement is executed.

 Part I 3-5

Sequential Control: repeat loops

repeat loops

The repeat loop executes a statement a fixed number of times.

The syntax to declare a repeat loop is:

repeat (expression) statement

expression:

The expression can be any valid expression, including
constants.

statement:

The statement can be any valid statement or block of
statements. If a code block is used, the entire block is executed.

Repeat statements can be used to repeat any statement a fixed
number of times. The value of the expression is evaluated before the
repetitions start. Changing a variable within the expression does not
change the number of loops to be executed.

Repeat statements are often used to implement a wait or pause in
the simulation.

For example:

repeat (10) @(posedge CLOCK);

This example pauses the simulation 10 clock cycles.

3-6 Part I

Sequential Control: for loops

for loops

The syntax to declare a for loop is:

for (initial;condition;increment) statement

initial:

The initial is an assignment statement used to set the loop
control variables.

condition:

The condition can be any valid expression.

increment:

The increment defines how the loop control variable changes
each time the loop is repeated. It can be any valid expression.

statement:

The statement can be any valid statement or block of
statements. If a code block is used, the entire block is executed.

The for loop sets the initial value of the loop control variable. It
evaluates the condition. If the condition is true, the loop executes a
single time. When the loop finishes one iteration, the update
expression is executed. Typically this expression changes the value
of the loop control variable. Then the condition is checked again and
the process continues. The loop continues as long as the condition
evaluates to true. When it does not evaluate to true, the loop stops
and control is passed to the first line of VeraLite code after the loop.

You can specify multiple variables in the initial statement, separating
them with commas. Multiple variables can also be used in the
condition expression. These variables (with their initialized values)
are passed to the loop and can be used within the loop for loop
control or in VeraLite expressions.

 Part I 3-7

Sequential Control: while loops

VeraLite does not allow assignments within the conditional. The
conditional c=1 is invalid. Instead, you must use c==1.

Some examples of for loops:

for(count=0;count<3;count=count+1)
value=value+((a[count]) * (count+1));

for(count=0, done=0, i=0;i*count<125;i++)
printf("Value i = %d\n",i);

while loops

The syntax to declare a while loop is:

while (condition) statement

condition:

The condition can be any valid expression.

statement:

The statement can be any valid statement or block of
statements. If a code block is used, the entire block is executed.

The loop iterates while the condition is true. When the condition is
false, control passes to the first line of code after the loop. The
condition is checked at the top of each loop.VeraLite does not allow
assignments within the conditional. The conditional c=1 is invalid.
Instead, you must use c==1.

This is an example of a while loop:

operator = 0;
while (operator<5)
{

operator=operator+1;
printf("Operator is %d", operator);

}

3-8 Part I

Sequential Control: break and continue

This loop continues until operator equals 5. Each time through the
loop, operator is increased by 1. The check is made at the top of
each loop. After 5 passes through the loop, the loop ends, and
control is passed to the first line of code after the loop.

If the condition is a non-zero constant, the loop becomes infinite.
Infinite loops can only be broken using the break statement (see
break on page 3-8).

break and continue

The break and continue statements are used for flow control within
loops.

break

The break statement is used to force the immediate termination of a
loop, bypassing the normal loop test.

The syntax to declare a break is:

break;

When the break statement is executed from inside a loop, the loop
is immediately terminated and control passes to the first line of
VeraLite code after the loop. If the break statement is executed
outside of a loop, a syntax error is generated.

This is an example of the break statement:

while (test_flag)
{

if (done) break;
...

}

 Part I 3-9

Sequential Control: break and continue

This example breaks if the condition is satisfied. Control returns to
the first line after the loop.

continue

The continue statement forces the next iteration of a loop to take
place, skipping any code in between.

The syntax to declare a continue statement is:

continue;

In a repeat loop, the continue statement passes control back to the
top of the loop. If the loop is complete, control is then passed to the
first line of code after the loop.

In a for loop, the continue statement causes the conditional test and
increment portions of the loop to execute.

In a while loop, the continue statement passes control to the
conditional test.

This is an example of a continue statement:

for (i=0;i<10;i++)
{

if (skip_loop) continue;
...

}

3-10 Part I

Sequential Control: break and continue

 Part I 4-1

Concurrency Control

4
Concurrency Control 4

This chapter discusses how VeraLite handles concurrency. It
explains how to model parallel, independent activities and details the
VeraLite constructs used to control those concurrent threads.
Included are these sections:

• fork and join

• Synchronizing concurrent processes with event variables

• Semaphores

• Mailboxes

• Timeout Limit

4-2 Part I

Concurrency Control: fork and join

fork and join

Fork/join blocks provide the primary mechanism for creating
concurrent processes.

The syntax to declare a fork/join block is:

fork
{

statement1
}

{
statement2

}

...

{
statementN

}
join [all | any | none]

statement:

The statement can be any valid VeraLite statement or
sequence of statements.

Keywords:

The all | any | none options specify when the code after the fork/
join block executes. They are optional.

The default is all.

 Part I 4-3

Concurrency Control: fork and join

You do not need to specify more than one forked thread. If only a
single thread is specified in a fork/join block and that thread consists
of a single VeraLite statement, the thread does not need to be
encapsulated with braces ({}).

The flow for a fork/join block is shown in Figure 4-1.

Figure 4-1 fork/join Flow Diagram

Note:
When defining a fork/join block, encapsulating the entire fork
inside braces ({}) results in the entire block being treated as a
single thread, and the code executes consecutively.

Table 4-1 all, any, none

all The default option is all. Code after the
block executes after all of the concurrent
processes are completed

any When any is used, code after the block
executes after any single concurrent process
is completed

none When none is used, code after the block
executes immediately, without waiting for any
of the processes to complete

join none

fork

join [all]

fork

join any

fork

4-4 Part I

Concurrency Control: fork and join

For example, do not use this construct:

fork
{

statement1
statement2

}
join //becomes simply a sequential process

Example of a basic fork/join construct:

 (Default is all)

fork
{

@1,100 bus.ack == 1’b0;
printf("First Block: bus.ack is driven\n");

}

{
@5 bus.req = 1’b0;
@1 bus.req <= 1’b1;
printf("Second Block: bus.req is driven\n");

}
join

The concurrent block executes all the statements in parallel. The
beginning of each statement is executed at the same point in time.
Subsequent statements are executed based on any timing
considerations within the process.

fork and join Control

VeraLite provides several constructs and a system task to control
fork/join blocks.

• wait_child()

• wait_var()

 Part I 4-5

Concurrency Control: fork and join

• terminate

• suspend_thread()

The constructs, wait_child() and wait_var(), wait for the completion
of processes. The terminate construct stops the execution of
processes. The suspend_thread() system task temporarily
suspends threads.

wait_child()

The wait_child() system task is used to ensure that all child
processes are executed before the VeraLite program terminates.

The syntax for wait_child() is:

task wait_child();

By default, a simulation is terminated when the end of the program
is reached, regardless of the status of any child processes. Using the
wait_child() task causes the simulation to wait until all the child
processes in the current context are completed before executing the
next line of code.

This is an example of a program using the wait_child() construct:

program test
{

start_monitors(); /*Starts monitors that loop
forever in background*/

do_test(); //Performs the actual test
}

task start_monitors()
{

fork
{...}
join none

}

4-6 Part I

Concurrency Control: fork and join

task do_test()
{

//Code to do testing

fork
{...}
join none /*Creates child processes that take an

indeterminate amount of time to complete*/
wait_child();

}

This example calls two separate tasks. The do_test task forks off
several child processes that take an indeterminate amount of time to
complete. The wait_child() call waits for the threads called in the
do_test task to complete before executing subsequent VeraLite
code. Note that the wait_child() call does not wait for any child
processes created outside of its context.

The definition of context assumed here is:

A context is a node in the simulator’s call Stack. VeraLite
constructs that create a new context are:

- the program block

- task

- function

- each process inside the fork/join

To see how fork/join-all and wait_child() differ, consider the
following code.

 Part I 4-7

Concurrency Control: fork and join

fork/join-all:

fork
{statement3};
{statement4};
join none

fork
{statement1};
{statement2};
join all

wait_child():

fork
{statement3};
{statement4};
join none

fork
{statement1};
{statement2};
join none

wait_child();

In the fork/join-all example, code following the block executes after
the concurrent processes, statements1 and 2 are completed.
However, code after the block executes immediately, without waiting
for statements 3 and 4 to complete.

In the wait_child() example, statements 3 and 4 are waited for.

wait_var()

The wait_var() system task blocks the calling process until one of
the variables in its arguments list changes values.

The syntax for wait_var() is:

task wait_var(integer|bit|string|enum variable_list);

4-8 Part I

Concurrency Control: fork and join

variable_list:

The variable_list consists of one or more variables
(separated by commas) of type integer, bit, string, array, or
enumerated type.

The wait_var() task blocks the current process until one of the
specified variables changes value. Only true value changes unblock
the process. Reassigning the same value does not unblock. If more
than one variable is specified, a change to any of the variables
unblocks the process.

This is an example of the wait_var() task:

bit[7:0] data [100];
integer i;

fork
{

wait_var(data[2]);
printf("Data[2] has changed to: %d\n", data[2]);

}
{

for (i=0;i<100;i++)
{

data[i]=$random();
@(posedge CLOCK);

}
}
join

This example forks off concurrent processes. The first thread is
suspended until the second element of array data is changed. The
second process randomly changes the values within array data.
When data[2] is changed, the first process prints its message.

 Part I 4-9

Concurrency Control: fork and join

terminate

The terminate statement terminates all active descendants of the
process in which it was called.

The syntax for terminate is:

terminate;

If any of the child processes have other descendants, the terminate
command terminates them as well. If used at the top level, terminate
terminates all child processes. When the main program is
completed, the VeraLite simulator executes an implicit terminate
statement.

This is an example of how terminate is used within a simple fork/join
block:

task do_test()
{

// Code to do testing
fork
{...}
join any/* Creates child processes that take an

 indeterminate amount of time to complete
 Code to do more testing*/

terminate;
}

This example forks off several child processes within a task. After
any of the child processes are complete, the code continues to
execute. Before the task is completed, all remaining child processes
are terminated.

4-10 Part I

Concurrency Control: fork and join

suspend_thread()

The suspend_thread() system task is used to temporarily suspend
the current thread.

The syntax suspend_thread() is:

task suspend_thread();

The suspend_thread() system task temporarily suspends the
current thread and allows other ready concurrent threads to run.
When all ready threads have had one chance to block, the
suspended thread resumes execution.

For example:

for (i=0;i<10;i++)
{

fork
my_task(i);
join none
suspend_thread();

}

This example forks multiple threads calling my_task(). The thread is
forked, the task is called, and then the calling thread is suspended.
The forked thread calling my_task(0) completes and passes control
back to the for loop. The next iteration of the loop occurs and forks
the next thread. That thread begins and completes execution. All 10
threads are created and execute in sequence.

Note:
Suspended threads execute after all other current threads
execute. However, relative to simulation time, the thread is still
executed concurrently with the other threads.

 Part I 4-11

Concurrency Control: Semaphores

Maximum Threads

To limit memory consumption set the VERA_MAX_CONTEXTS
environment variable:

setenv VERA_MAX_CONTEXTS number

If more than number threads are created at the same time, a
warning message is printed.

Semaphores

A semaphore is an operation used for mutual exclusion and
synchronization.

• Conceptual Overview

• Allocating a Semaphore

• Checking Key Availability

• Returning Keys

Conceptual Overview

Conceptually, semaphores can be viewed as a bucket. When you
allocate a semaphore, you create a virtual bucket. Inside the bucket
are a number of keys. No process can be executed without first
having a key. So, if a specific process requires a key, only a finite
number of occurrences of that process can be in progress
simultaneously. All others must wait until a key is returned to the
virtual bucket.

The semaphore system functions are:

4-12 Part I

Concurrency Control: Semaphores

function integer alloc(SEMAPHORE,integer semaphore_id,
integer semaphore_count, integer key_count);

function integer semaphore_get(WAIT | NO_WAIT,
integer semaphore_id, integer key_count);

task semaphore_put(integer semaphore_id, integer
key_count);

Allocating a Semaphore

To allocate a semaphore, you must use the alloc() system function.

 The syntax for alloc() is:

function integer alloc(SEMAPHORE, integer semaphore_id,
integer semaphore_count, integer key_count);

semaphore_id:

The semaphore_id is the ID number of the particular
semaphore being created. It must be an integer value. You
should generally use 0. When you use 0, a semaphore ID is
automatically generated by the simulator. Using any other
number explicitly assigns an ID to the semaphore being created.

semaphore_count:

The semaphore_count specifies how many semaphore
“buckets” you want to create. It must be an integer value.

key_count:

The key_count specifies the number of keys initially allocated
to each semaphore “bucket” you are creating.

 Part I 4-13

Concurrency Control: Semaphores

Note:

The number of keys in the bucket can increase if more keys
are put into the bucket than are removed. Therefore,
key_count is not necessarily the maximum number of keys
in the bucket.

The alloc() function returns the base semaphore ID if the
semaphores are successfully created. Otherwise, it returns 0.

Checking Key Availability

To check that there are enough keys left in the semaphore, you must
use the semaphore_get() system function.

The syntax for semaphore_get() is:

function integer semaphore_get(NO_WAIT | WAIT,
integer semaphore_id, integer key_count);

Predefined Macros:

NO_WAIT

The NO_WAIT option continues code execution even if there are
not enough keys available.

WAIT

The WAIT option suspends the process until there are enough
keys available, at which time execution continues.

semaphore_id:

The semaphore_id specifies which semaphore to get keys
from.

4-14 Part I

Concurrency Control: Semaphores

key_count:

The key_count specifies the number of keys being taken from
the semaphore.

When the semaphore_get() function is called, it checks the
specified semaphore for the number of required keys.

• If there are enough keys available, a 1 is returned and execution
continues.

• If there are not enough keys available, a 0 is returned and the
process is suspended depending on the wait option.

The semaphore waiting queue is FIFO based. By default, a process
will wait at a semaphore without timing out. Users can set a time limit
with the timeout() system task. See Timeout Limit on page 4-20.

If multiple semaphores are allocated, you can access the Nth
semaphore using this method:

semID=alloc(SEMAPHORE, 0, 4, 2);
if (semaphore_get(WAIT, semID+2, 1))

printf("The semaphore was successful.");

This example allocates four semaphores with IDs 0 to 3, each with
two keys. Then it checks to see if there is a key in the third
semaphore. If there is, a message is printed.

Returning Keys

To put keys back into a semaphore, you must use the
semaphore_put() system task.

The syntax for semaphore_put() is:

task semaphore_put(integer semaphore_id, integer key_count);

 Part I 4-15

Concurrency Control: Mailboxes

semaphore_id:

The semaphore_id specifies which semaphore to return the
keys to.

key_count:

The key_count specifies the number of keys being returned to
the semaphore.

When the semaphore_put() system task is called, the specified
number of keys is returned to the semaphore. If a process has been
suspended to wait for a key, that process executes when enough
keys have been returned.

Mailboxes

A mailbox is a mechanism to exchange messages between
processes. Data can be sent to a mailbox by one process and
retrieved by another.

Conceptual Overview

Conceptually, mailboxes behave like real mailboxes. When a letter is
delivered and put into the mailbox, you can retrieve the letter (and
any data stored within). However, if the letter has not been delivered
when you check the mailbox, you must choose whether to wait for
the letter or retrieve the letter on subsequent trips to the mailbox.
Similarly, VeraLite’s mailboxes allow you to transfer and retrieve data
in a very controlled manner.

The mailbox system functions are:

4-16 Part I

Concurrency Control: Mailboxes

Allocating a Mailbox

To allocate a mailbox, you must use the alloc() system function.

The syntax for allocating a Mailbox is:

function integer alloc(MAILBOX, integer mailbox_id, integer
mailbox_count);

mailbox_id:

The mailbox_id is the ID number of the particular mailbox
being created. It must be an integer value. You should generally
use 0. A mailbox ID is automatically generated when 0 is used.

mailbox_count:

The mailbox_count specifies how many mailboxes you want
to create. It must be an integer value.

The alloc() function returns the base mailbox ID if the mailboxes are
successfully created. Otherwise, it returns 0.

The maximum number of mailboxes that can be created is
determined by vera_mailbox_size.

Sending Data to the Mailbox

The mailbox_put() system task sends data to the mailbox.

The syntax for mailbox_put() is:

task mailbox_put(integer mailbox_id, scalar data)

mailbox_id:

The mailbox_id specifies which mailbox receives the data.

 Part I 4-17

Concurrency Control: Mailboxes

data:

The data can be any general expression that evaluates to a
scalar.

The mailbox_put() system task stores data in a mailbox in a FIFO
manner. Note that when passing objects, only object handles are
passed through the mailbox.

Returning Data

The mailbox_get() system function returns data stored in a mailbox.

The syntax for mailbox_get is:

function integer mailbox_get(NO_WAIT | WAIT | COPY_NO_WAIT |
COPY_WAIT, integer mailbox_id [, scalar dest_var [, CHECK]]);

4-18 Part I

Concurrency Control: Mailboxes

Predefined Macros:

Table 4-2 provides the definitions of the various wait options.

mailbox_id:

The mailbox_id specifies which mailbox data is being
retrieved from.

dest_var:

 The dest_var is the destination variable of the mailbox data.

CHECK:

CHECK specifies whether type checking occurs between the
mailbox data and the destination variable. CHECK is optional.

The mailbox_get() system function assigns any data stored in the
mailbox to the destination variable and returns the number of entries
in the mailbox, including the entry just received.

• If there is a type mismatch between the data sent to the mailbox
and the destination variable, a runtime error occurs unless the
CHECK option is used.

Table 4-2 Wait Option definitions

WAIT OPTIONS Description

NO_WAIT Dequeues mailbox data if it is available.
Otherwise, it returns an empty status (0).

WAIT Suspends the calling thread until data is
available in the mailbox, and then dequeues
the data.

COPY_NO_WAIT Copies mailbox data without dequeuing it if
it is available. Otherwise, it returns an
empty status (0).

COPY_WAIT Suspends the calling thread until data is
available in the mailbox, and then copies
the data without dequeuing it.

 Part I 4-19

Concurrency Control: Mailboxes

• If the CHECK option is active, a -1 is returned, and the message
is left in the mailbox and is dequeued on the next mailbox_get()
function call.

• If the mailbox is empty, the function waits for a message to be
sent, depending on the wait option. If the wait option is NO_WAIT,
the function returns a 0.

• If no destination variable is specified, the function returns the
number of entries in the mailbox, but it does not dequeue an item
from the mailbox.

For example, this can be used to continue generating mailbox
entries until a specified number are generated:

mboxID=alloc(MAILBOX, 0, 1);
while (mailbox_count <11)
{

mb_data=$random();
mailbox_put(mboxID, mb_data);
mailbox_count=mailbox_get(NO_WAIT, mboxID);

}

This example generates random numbers and puts them in the
mailbox. The loop continues while the number of entries is less than
11.

The mailbox waiting queue is FIFO based. By default, a process will
wait at a mailbox without timing out. Users can set a time limit with
the timeout() system task. See Timeout Limit on page 4-20.

4-20 Part I

Concurrency Control: Timeout Limit

Timeout Limit

A process will wait forever in semaphore and mailbox if the waiting
resources are not available. However, the system task timeout() can
be used to set a time limit.

The syntax for timeout() is:

task timeout(EVENT, integer cycle_limit);

or

task timeout(event event_name, integer cycle_limit]);

or

task timeout(SEMAPHORE | MAILBOX | WAIT_VAR | WAIT_CHILD,
integer cycle_limit [, integer object_id]);

Predefined Macros:

EVENT, SEMAPHORE, MAILBOX, WAIT_VAR and
WAIT_CHILD specify the type of object for which the timeout is
defined.

cycle_limit:

The cycle_limit specifies the maximum number of cycles
any request will wait.

event_name:

The event_name is an event variable.

object_id:

The object_id specifies an individual resource for which the
timeout is set. If it is not specified, the timeout exists for all objects
of the type specified.

 Part I 4-21

Concurrency Control: Timeout Limit

When the timeout() system task is used, it sets the maximum
number of cycles that an object will wait for a request. The cycles are
based on the SystemClock. If the cycle limit is set to 0 cycles, the
timeout is disabled. You can specify a timeout for a specific event or
for all events of a certain type.

When a semaphore or event times out, a verification error occurs.

These are examples of timeout statements:

timeout(SEMAPHORE, 100);
timeout(EVENT, 20);
timeout(myevent, 300);

Note:
Specific timeouts take precedence over global timeouts.

4-22 Part I

Concurrency Control: Timeout Limit

 Part I 5-1

Interfacing to the Device Under Test: Interface Declaration

5
Interfacing to the Device Under Test 5

This chapter covers the properties of the interface specifications,
and signal declarations.

The interface specification can group signals by clock domains for
multiple clock designs. There is no limit to the number of interface
declarations that can be created.

Interface Declaration

The syntax of the VeraLite interface declaration is depicted in
Figure 5-1. Included are the syntax for port-connected interface
signals and for direct-connected (HDL) signals.

5-2 Part I

Interfacing to the Device Under Test: Interface Signal Declarations

Figure 5-1 The VeraLite Interface

The limit on the number of signals that can be declared per interface
is 4096.

Interface Signal Declarations

This section deals with the properties of:

• Port-connected Interface Signals

• Direct-connect Interface Signals

• Interface Signal of type CLOCK

Port-connected Interface Signals

A port-connected interface signal involves connecting port level
signal on an VeraLite testbench.

The syntax to declare a port-connected interface signal is:

signal_direction [signal_width] signal_name signal_type ;

inout[signal_width] signal_name input_signal_type
output_signal_type;

interface interface_name
{
 signal_direction [signal_width] signal_name signal_type [signal_type]
 [hdl_node "hdl_path"];
}

 Part I 5-3

Interfacing to the Device Under Test: Interface Signal Declarations

signal_direction:

The signal_direction specifies the direction of the signal
with respect to VeraLite and not to the DUT. See Figure 5-2
on page 5-4

- input indicates that the signal goes from the DUT to
VeraLite.

- output indicates that the signal goes from VeraLite to the
DUT.

- inout specifies a bi-directional signal.

inout:

The inout specifies the bi-direction of the signal. A
bi-directional signal has two signal_types for each signal_type.

5-4 Part I

Interfacing to the Device Under Test: Interface Signal Declarations

Figure 5-2 Representing the signal in0 in the DUT, Interface and VeraLite
Program

signal_width:

The signal_width is a bit vector specifying the width of the
signal. It must be in the form [msb:0].

signal_name:

The signal_name identifies the signal being defined. It is the
VeraLite name of the HDL signal being connected at the
top-level. It is also the name of one of the DUT instance’s ports.

signal_type:

The valid signal types and their definitions are listed in Table 5-1.

DUT "adder"

VeraLite Interface "adder" (signals maintained here)

@ 1 adder.in0 = 0; //example of drive

VeraLite Program

input[8:0] in0

output [8:0] in0 INPUT_EDGE #-1;

 Part I 5-5

Interfacing to the Device Under Test: Interface Signal Declarations

For a unidirectional signal, only one signal type can be used.
Furthermore, input signals are only sampled, and output signals
are only driven. A bidirectional signal can be both sampled and
driven.

Note:

In order to sample an output signal, declare it as signal type,
inout.

Direct-connect Interface Signals

A direct-connect interface signal involves connecting to an internal
signal within the hierarchy of the DUT.

The syntax to declare a direct-connect interface signal is:

Table 5-1 Signal types

Signal type Operation

NHOLD Output is driven on the negative
edge of the interface clock.

PHOLD Output is driven on the positive edge
of the interface clock.

NSAMPLE Input is sampled (evaluated) at the
negative edge of the interface clock.

PSAMPLE Input is sampled (evaluated) at the
positive edge of the interface clock.

CLOCK Specifies the clock to which the
interface signals synchronizes.

5-6 Part I

Interfacing to the Device Under Test: Interface Signal Declarations

signal_direction [signal_width] signal_name signal_type
hdl_node "hdl_path";

signal_direction:

The signal_direction specifies the direction of the signal
with respect to VeraLite.

- input indicates that the signal goes from the DUT to
VeraLite.

- output indicates that the signal goes from VeraLite to the
DUT.

- inout specifies a bi-directional signal.

signal_width:

The signal_width is a bit vector specifying the width of the
signal. It must be in the form [msb:0].

signal_name:

The signal_name identifies the signal being defined. It is the
top-level name of the DUT signal being connected.

signal_type:

The valid signal_types and their definitions are listed in
Table 5-1 on page page 5-5.

hdl_path:

The hdl_path is the HDL path to the specified signal. It must
be surrounded by double quotes.

Below are samples of HDL node declarations in a Verilog:

input[31:0] grant PSAMPLE #-2 hdl_node
"sys.cpu2.p0_d1";

 Part I 5-7

Interfacing to the Device Under Test: Interface Signal Declarations

/* "sys" is the top level Verilog module, and "cpu" is the
DUT */

Notice, that the path always starts from the top level HDL module.
What can be included in the string is determined by what the
simulator supports. For example, when using a Verilog simulator,
you can concatenate multiple Verilog nodes.

Example:
module top()

reg[7:0]datH;
reg[7:0]data:;

endmodule

interface myint
{

input CLOCK...
input[15:0]data...hdl_node"{top.dataH,top.dataL}";

}

Interface Signal of type CLOCK

Each interface may include, at most, one input signal of type
CLOCK. If an input signal of type CLOCK is not designated then the
interface signals are synchronized using SystemClock.

The syntax for declaration is:

input clock_name CLOCK;

The other signals defined in a given interface are governed by this
clock. VeraLite samples and drives interface signals on the specified
edge of this clock.

A signal of type CLOCK can be either a port-connected or a
direct-connect interface signal.

5-8 Part I

Interfacing to the Device Under Test: Interface Signal Declarations

Note:
Clock domains can be overlapped. The same signal can be
associated with multiple clocks via multiple interface definitions.
However, despite multiple interfaces, a single signal cannot be
driven to two values at the same time.

 Part I 6-1

Signal Operations

6
Signal Operations 6

This chapter covers the four primitive statements provided by
VeraLite that operate on interface signals; synchronization, drive,
sample, and expect. This chapter also includes discussion of
implicitly synchronized, explicitly synchronized and asynchronous
signal operations. These topics are covered in the following sections:

• Synchronization

• Driving a signal

• Sampling a Signal

• The expect Event

• Implicit Synchronization

• Asynchronous Signal Operations

• Sub-Cycle Delays

6-2 Part I

Signal Operations: Synchronization

Synchronization

"Implicit" synchronization involves a signal in an interface being
synchronized to the interface clock. The synchronization operator
(@) is used to perform explicit synchronization. That is, you are
explicitly synchronizing to the signal changing value.

The syntax is:

@([specified_edge] interface_signal);

specified_edge:

The specified_edge identifies the edge at which the
synchronization occurs. Either negedge, which specifies a
negative or falling edge of the interface signal, or posedge,
which specifies a positive or rising edge of the interface signal,
can be designated. If no edge is specified, the synchronization
occurs on the next change in the specified signal.

interface_signal:

The interface_signal specifies the signal to which the
synchronization is linked. It can be any signal in an interface
declaration or CLOCK. The interface signal can be any subfield
of a signal as well. If CLOCK is specified, the synchronization
operation is performed on SystemClock.

If the interface signal is a subfield of a signal, the synchronization
occurs on the first change of the signal subfield. If the subfield is a
1-bit subfield, you can synchronize on clock edges. If you specify
variables in the subfield, they are evaluated at runtime.

You can use the or keyword to specify multiple interface signals. If
you specify more than one signal, the synchronization occurs on the
next change of any of the listed signals.

 Part I 6-3

Signal Operations: Driving a signal

These are some example synchronization statements:

• In the first example, the synchronization occurs on the next
change in the signal, ack_1.

@(ram_bus.ack_l);

• The second example synchronizes to the SystemClock.

@(CLOCK);

• The third example synchronizes to the positive edge of the
interface clock, ram_bus.clock.

@(posedge ram_bus.clock);

• The fourth example synchronizes to the falling edge of the
specified subfield, intf.sign[a]. Note that the specified
subfield must be a 1-bit subfield and a is evaluated at runtime.

@(negedge intf.sign[a]);

• The final example specifies multiple interface signals. The
synchronization occurs on the next positive edge of either
intf.sig1 or intf.sig2, whichever changes first.

@(posedge intf.sig1 or intf.sig2);

At initialization, HDLs can create edges at time = 0 (for example,
going from X to the initialized value). This means that
synchronization conditions can be set before initialization of the
signal.

Driving a signal

The drive operator sets the value of output interface signals.

6-4 Part I

Signal Operations: Driving a signal

The syntax to drive a signal is:

[delay] signal_name range drive_operator expression;

delay:

The delay optionally specifies the number of cycles that pass
before the signal is driven. It is in the form @n , where n is the
number of cycles. When delay is not specified, the default is @0.

Note:
Drive delays are specified in VeraLite as integers.

signal_name:

The signal_name is the name of the interface signal being
driven.

range:

The range specifies which bits of the signal are driven. If no
range is specified, the entire signal is driven.

drive_operator:

The drive_operator must be either =, which specifies a
blocking drive, or <=, which specifies a non-blocking drive.

expression:

The expression can be any valid VeraLite expression.

These are some drive examples:

foo_bus.data[3:0] = 4’h5; // blocking drive
@1 foo_bus.data <= 8’hz; // non-blocking drive

Blocking and Non-Blocking Drives

There are two types of drives specified by the drive operator:
blocking and non-blocking.

 Part I 6-5

Signal Operations: Driving a signal

Blocking drives suspend execution until the statement completes.
Note that the clock edge (NHOLD or PHOLD) that the drive signal is
associated with is used for counting the HDL cycles during
suspension. Once the statement completes, execution resumes.

Non-blocking drives schedule the drive at a future cycle and
execution continues. When the specified cycle occurs, the drive is
executed.

These are examples of blocking and non-blocking drives:

@3 ram_bus.data = 1; // blocking drive
a = b;

@3 ram_bus.data <= 1; // non-blocking drive
a = b;

The first block is a blocking drive. Three cycles must pass before
both lines are executed. The second block is a non-blocking drive.
The first line is scheduled to be executed 3 cycles in the future, then
the second line is executed.

ram_bus.data = 1
a=b

a=b ram_bus.data = 1

6-6 Part I

Signal Operations: Sampling a Signal

Drives

A given signal should only be driven by a single drive at any given
time. Multiple drives at the same time result in conflicting drives.
Conflicting drives drive the signal to X and result in a simulation error.

Sampling a Signal

Sample assigns the value of a signal to a variable.

The syntax is:

variable = signal_name;

The signal_name is an interface signal. It must be an input or
inout signal. It is sampled at the next sampling point (specified in the
interface definition) and the value is assigned to the variable. The
delay attribute (@ in drive signals) cannot be used. Also remember
that you can sample subfields within the signal by specifying a
specific subfield in the signal width.

Note:
When sampling a signal in an expression, it is done immediately
(i.e., asynchronously). Output interface signals cannot be used in
any right hand side part of the expression since it cannot be
sampled. In particular cannot be used in sscanf(), fprintf(),
sprintf() or printf().

 Part I 6-7

Signal Operations: Implicit Synchronization

Implicit Synchronization

The drive, sample, and expect primitives perform implicit
synchronization to the interface CLOCK. That means that the clock
is advanced only when it is necessary to perform the next signal
operation.

Consider the following interface definition as an example:

interface foobus
{

output reset_l NHOLD;
input strobe_l PSAMPLE;
output ack_l NHOLD;
inout data PSAMPLE NHOLD;
input clock CLOCK;

}

In this interface, output signals are driven at the negative edge of the
interface clock, and input signals are sampled at the positive edge of
the interface clock. Thus, the following code advances the simulation
cycle a half cycle per statement even though a delay is not specified.

Consider these examples:

• The first signal is driven on the negative clock edge:

foobus.reset_l = 1’b1;

• The second signal is sampled on the positive clock edge:

foobus.strobe_l == 1’b1;

• The third signal is driven on the negative clock edge:

foobus.ack_l = 1’b0;

• The fourth signal is sampled on the positive clock edge:

foobus.strobe_l == 1’b0;

6-8 Part I

Signal Operations: Asynchronous Signal Operations

The description gets more complicated when delay values are used
to generate proper timing with respect to different edges. To avoid
this, use the same edge for inputs and outputs, with appropriate
output skews.

For example:

interface foobus
{

output reset_l PHOLD #2;
input strobe_l PSAMPLE;
output ack_l PHOLD #2;
inout data PSAMPLE PHOLD #2;
input clock CLOCK;

}

Asynchronous Signal Operations

By default, drives, samples, and expects are relative to a clock edge
(specified in the interface specification). However, the HDL side of
the simulation may be using very detailed timing constructs. VeraLite
provides the async and delay constructs to allow detailed timing
down to the HDL timestep.

async Modifier

The async optional modifier specifies that the operation happen
immediately, without waiting for the edge specified in the interface. It
can be used with synchronization operators, drives, samples, and
expects.

 Part I 6-9

Signal Operations: Sub-Cycle Delays

The syntax for the async modifier is:

The synchronization construct allows you to act exactly on the
current edge rather than waiting for the corresponding sampling
edge.

The drive, sample, and expect constructs force the operation
immediately instead of waiting for the edge specified in the interface.

These are examples of async statements:

@(posedge main_bus.request async);
memsys.data[3:0] = 4’b1010 async;
data[2:0] = main_bus.data[2:0] async;
main_bus.data[7:4] == 4’b0101 async;

Sub-Cycle Delays

VeraLite provides the delay() system task to block the VeraLite side
of the simulation while a specified amount of time elapses on the
HDL side of the simulation.

The syntax for the delay() system task is:

task delay(integer time);

time:

The time specifies the length of the delay. It is in the same
timing units being used by the HDL.

synchronization @(signal_name async);

Drive signal_name range drive_operator expression async;

Sample variable = signal_name async;

Expect expect_list async;

6-10 Part I

Signal Operations: Sub-Cycle Delays

This is an example of the delay() system task:

@(posedge CLOCK);
delay(5);
function1();
...

This example synchronizes to the positive edge of CLOCK. Then it
advances the simulation time 5 time ticks. Function1 executes 5 time
ticks after the clock edge.

 Part I 7-1

Class and Methods: Classes and Objects

7
Class and Methods 7

This chapter discusses the VeraLite implementation of Object
Oriented Programming. OOP forms the basis of the data structures,
encapsulation.

Classes and Objects

A class is a collection of data and a set of subroutines that operate
on that data. A class’s data is referred to as properties, subroutines
are called methods, and we will refer to both as members of the
class. The properties and methods, taken together, usually define
the contents and capabilities of some kind of object.

For example, a packet is an object. It might have a command field,
an address, a sequence number, a time stamp, and a packet
payload. In addition, there are various things we can do with a
packet: initializing the packet, setting the command, reading the

7-2 Part I

Class and Methods: Classes and Objects

packet’s status, checking the sequence number. Each Packet is
different, but as a class, packets have certain intrinsic properties
that we can capture in a definition.

class Packet
{

bit [3:0] command; // data portion
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

task new() / initialization
{

command = IDLE;
address = 41’b0;
master_id = 5’bx;

task clean()
{

command = 0; address = 0; master_id = 5’bx;
}

// public access entry points

task issue_request(integer delay)
{

// send request to bus
// ...

}

function integer current_status()
{

current_status = status;
}

}

Note that a common convention is to capitalize the first letter of the
class name, so that it is easy to recognize class declarations.

 Part I 7-3

Class and Methods: Objects and Instance of Classes

Objects and Instance of Classes

So far, we only have the definition of the class Packet. We have
created a new, complex data type but we can’t do anything with the
class itself. We need to create an instance of the class, a single
Packet object. The first step is to create a variable that can hold an
object’s name (or handle):

Packet p;

Nothing has been created yet. We have just declared that p is a
variable that can hold the handle of a Packet object. In VeraLite, for
p to refer to something, we need to explicitly create an instance of
the class using the new keyword.

Packet p;
p = new;

You can detect uninitialized object handles by comparing them with
null.

 For example:

class obj_example
{

...
}

task task1 (integer a, (obj_example myexample = null))
{

if (myexample == null) myexample = new;
}

This example checks if myexample is initialized. If it is not, it
initializes it with the new command.

7-4 Part I

Class and Methods: Accessing Object Properties

Accessing Object Properties

Now that we have created an object, we can use its data fields by
qualifying property names with an instance name. Looking at the
earlier example, we can use the commands for our Packet p as
follows:

Packet p = new;
p.command = INIT;

time = p.time_requested;

Using Object Methods

To access an object’s methods, we use the same syntax we used to
access properties:

Packet p = new;
status = p.current_status();

Note that we did not say:

status = current_status(p);

The focus in object-oriented programming is the object, in this case
the packet, not the function call. Also, objects are self-contained,
with their own methods for manipulating their own properties. So we
don’t have to pass arguments to current_status(). The properties of
a class are freely and broadly available to the methods of the class,
but each method only accesses the properties associated with its
object, its instance.

 Part I 7-5

Class and Methods: Constructors

Constructors

VeraLite does not require the complex memory allocation and
de-allocation of C++. Construction of an object is straightforward and
garbage collection, as in Java, is implicit and automatic. There can
be no memory leaks or other subtle behavior that is so often the bane
of C++ programmers.

VeraLite provides a mechanism for initializing an instance at the time
the object is created. When you create an object, for example

Packet p = new;

The system executes the new task associated with the class:

class Packet
{

integer command;

task new()
{

command = IDLE;
}

Note that new is now being used in two very different contexts with
very different semantics. The variable declaration creates an object
of class Packet. In the course of creating this instance, the new
subroutine is invoked, if it exists, allowing you to do any initialization
or start-up functions you require. The new task is also called the
constructor of a class.

It is also possible to pass arguments to the constructor, to allow for
run-time customization of the object:

Packet p = new(STARTUP, get_time(LO));

where the new initialization task in Packet might now look like

7-6 Part I

Class and Methods: Class Properties

task new (integer in_command=IDLE, bit[40:0] in_address=0, integer
time_stamp=0)
{

command = in_command; address = in_address;
time_requested = time_stamp;

}

The conventions for arguments are the same as for subroutine calls,
including the use of default arguments.

Class Properties

So far, we have only declared instance properties. Each instance of
the class, each Packet, has its own copy of each of its six variables.
There are also cases where we only want one copy of the variable,
to be shared by all instances. These class properties are created
using the static keyword. Thus, for example, in a case where all
instances of a class need access to a semaphore id, we might have

class Packet
{

static integer semId = alloc(SEMAPHORE, 0, 1, 1);

Now, semId will be created and initialized the first time an object of
the Packet class is created. Thereafter, every packet object can
access the semaphore in the usual way:

Packet p;
semaphore_get(WAIT, p.semId);

 Part I 7-7

Class and Methods: this

this

There are times when you need to unambiguously refer to properties
or methods in the current instance. For example, the following
declaration is a common, clean way to write an initialization routine:

class Demo
{

integer x;

task new (integer x)
{

this.x = x;
}

The x is now both a property of the class and an argument to the
task new. In the task new, an unqualified reference to x will be
resolved by looking at the innermost scope, in this case the
subroutine argument declaration. To access the instance property,
we qualify it with this to refer to the current instance.

Note that in writing methods, you can always qualify members with
this to refer to the current instance, but it is usually unnecessary.

Assignment, Re-naming and Copying

When we declare a class variable, we have only created a name for
an object.

Thus

Packet p1;

7-8 Part I

Class and Methods: Assignment, Re-naming and Copying

creates a variable, p1, that can hold the handle of an object of class
Packet, but the initial value of p1 is null. It is not until we create an
instance of type Packet that the object exists, and that p1 contains
an actual handle.

p1 = new;

Thus, if we create another variable

Packet p2;

and assign p1 to p2

p2 = p1;

then we still have only one object, which we can refer to with either
the name p1 or p2. Note, we have only executed new once, so we
have only created one object.

If we rewrite the last expression slightly differently, however, we
make a copy of p1:

p2 = new p1;

Now we have executed new twice, so we have created two objects.
With this syntax, however, p2 will be a copy of p1, but it will be what
is known as a shallow copy. All of the variables are copied across:
integers, strings, instance handles, etc. Objects, however, are not
copied, only their handles; as before, we have created two names for
the same object. This is true even if the class declaration includes
the instantiation operator new:

class A
{

integer j = 5;
}

class B
{

integer i = 1;

 Part I 7-9

Class and Methods: Assignment, Re-naming and Copying

A a = new;
}

program test
{

integer test;
B b1 = new; // Create an object of class B
B b2 = new b1; // Create an object that is a copy of b1
b2.i = 10; // i is changed in b2, but not in b1
b2.a.j = 50; // change object a, shared by both b1 and b2
test = b1.i; // test will be set to 1 (b1.i has not changed)
test = b1.a.j; // test will be set to 50 (a.j has changed)

Note several things. We can initialize properties and instantiate
objects directly in a class declaration. Second, the shallow copy
does not copy objects. Third, we can chain instance qualifications as
needed to reach into objects or to reach through objects:

b1.a.j // reaches into a, which is a property of b1
p.next.next.next.next.val /* would chain through a sequence of

 handles to get to val.*/

To do a full (deep) copy, where everything (including nested objects)
are copied, you need to write custom code. Thus, we might have

Packet p1 = new;
Packet p2 = new;
p2.copy(p1);

where copy(Packet p) is a method written to copy the object
specified as its argument into its instance.

7-10 Part I

Class and Methods: Out of Block Declarations

Out of Block Declarations

It is generally good coding practice to keep the class declaration to
about a page. This makes the class easy to understand and to
remember; declarations that go on for pages are hard to follow, and
it is easy to miss short methods buried among the multi-page
declarations.

To make this practical, it is best to move long method definitions out
of the body of the class declaration. You do this in two steps. Within
the class body, you declare the method prototype - whether it is a
function or task, any attributes (protected, public, and/or virtual), and
the full specification of its arguments. Then, outside of the class, you
declare the full method - including the prototype but without the
attributes - and, to tie the method back to its class, you qualify the
method name with the class name and a pair of colons:

class Packet
{

Packet next;
function Packet get_next() // single line
{

get_next = next;
}
protected virtual function integer send (integer value);

}
function integer Packet::send(integer value)
{ // dropped protected virtual, added Packet::

// body of method
...

}

The first lines of each part of the method declaration are nearly
identical, except for the attributes and class-reference fields.

 Part I 7-11

Class and Methods: External Classes

External Classes

As with subroutines, the class declaration can be in a separate file
from the code that instantiates and invokes the class; you need to
provide an external declaration of the class to support the tight
type-checking required by VeraLite.

The attributes and the method prototypes need to be re-declared:

extern class packet
{

bit [3:0] command;
bit [40:0] address;
bit [4:0] master_id;
task issue_request(integer delay);
function integer current_status();

}

An extern class declaration only requires the inclusion of class
properties and methods referenced in the files that include the
declaration.

Typedef

Sometimes you need to declare a class variable before the class
itself has been declared. For example, two classes may each need
a handle to the other. When, in the course of processing the
declaration for the first class, the compiler encounters the reference
to the second class, that reference is undefined and the compiler
flags it as an error.

The way around this is to use typedef to provide an interim
declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1

7-12 Part I

Class and Methods: Typedef

{
C2 c;

}
class C2
{

C1 c;
}

So, C2 is of type class, a fact that is re-enforced later in the source
code.

 Part I 8-1

Linked Lists:

8
Linked Lists 8

VeraLite supports any type of list (for example, integer, string, and
class object), with the exception of bit vectors. To use a particular
type of linked list, you must create it before the main program and
before any list declarations:

MakeVeraList (data_type)

Note:
There are no terminating semi-colons. You should only enable a
particular type of linked list one time, regardless of the of lists you
use. You must enable a list type before you declare or use a list
of that type.

To use linked lists in VeraLiteVeraLite testbenches containing
multiple source files, you must:

• call MakeVeraList(type) .

8-2 Part I

Linked Lists: List Definitions

• include the VeraListProgram.vrh file only in your source code
containing main/program.

• call ExternVeraList(type) if you want to use a list created in
some other file.

In addition to including the file ListMacros.vrh in the files where
VeraLite linked lists are used, you must include the file
VeraListProgram.vrh in the main program:

#include <VeraListProgram.vrh>
#include <ListMacros.vrh>

If you want to use lists across multiple files, call the VeraLite list
macro, ExternVeraList(type), in the file where you want to use the
list.

Multiple includes of ListMacros.vrh are allowed.

The values TRUE and FALSE used with linked lists have been
redefined as _VERA_TRUE and _VERA_FALSE respectively.

List Definitions

list - A list is a doubly linked list, where every element has a
predecessor and successor. It is a sequence that supports both
forward and backward traversal, as well as amortized constant time
insertion and removal of elements at the beginning, end, or middle.

container - A container is a collection of objects of the same type
(for example, a container of network packets, a container of
microprocessor instructions, etc.). Containers are objects that
contain and manage other objects and provide iterators that allow
the contained objects (elements) to be addressed. A container has

 Part I 8-3

Linked Lists: List Definitions

methods for accessing its elements. Every container has an
associated iterator type that can be used to iterate through the
container’s elements.

iterator - Iterators provide the interface to containers. They also
provide a means to traverse the container elements. Iterators are
pointers to nodes within a list. If an iterator points to an object in a
range of objects and the iterator is incremented, the iterator then
points to the next object in the range.

List Declaration

Linked lists are supported via a package that is shipped with
VeraLite. Alternatively, users can write their own linked list package.
To use the VeraLite linked list package, you must:

• enable the list type,

• declare the lists,

• declare the iterators

• include the ListMacros.vrh header file in the file using the list:

#include <ListMacros.vrh>

• include the file VeraListProgram.vrh in the main program:

#include <VeraListProgram.vrh>

Creating Lists

VeraLite supports any type of list (for example, integer, string, and
packet). To use a particular type of linked list, you must create it
before the main program and before any list declarations:

MakeVeraList(data_type)

8-4 Part I

Linked Lists: List Definitions

Note that there are no terminating semi-colons. You should only
enable a particular type of linked list one time, regardless of the of
lists you use. You must enable a list type before you declare or use
a list of that type.

Declaring Lists

You must declare all lists before using them via the VeraList
construct:

VeraList_data_type list1, list2, ..., listN;

The VeraList construct declares lists of the indicated type. List
declaration must occur before the main VeraLite program and after
the list enabling statements. Data stored in the list elements must be
of the same type as the list declaration.

Declaring List Iterators

You must declare all list iterators before using them via the
VeraListIterator construct:

VeraListIterator_data_type iterator1, iterator2, ..., iteratorN;

The VeraListIterator construct declares list iterators of the indicated
type. You must declare iterators as you would any other variable
declaration.

Size Methods

This section describes the list methods that analyze list sizes.

size()

The size() method returns the of elements in the list container:

 Part I 8-5

Linked Lists: List Definitions

list1.size();

empty()

The empty() method returns 1 if the elements in the list container is
0:

list1.empty();

Element Access Methods

This section describes the list methods used to access list elements.

front()

The front() method returns the first element in the list:

list1.front();

back()

The back() method returns the last element in the list:

list1.back();

Iteration Methods

This section describes the list methods used for iteration.

start()

The start() method returns an iterator pointing to the first element in
the list:

list1.start();

8-6 Part I

Linked Lists: List Definitions

finish()

The finish() method returns an iterator pointing to the very end of the
list, (i.e. past the end value(last element) of the list). To access the
last element in the list, use list.finish() followed by iterator.prev().

Modifying Methods

This section describes the list methods used to modify list
containers.

assign()

list1.assign(start_iterator, finish_iterator);

The assign() method assigns elements of one list to another:

The method assigns the elements between the two iterators to list1.
If the finish iterator points to an element before the start iterator, the
range wraps around the end of the list.

The range iterators must be valid list iterators. If either points to a
non-existent element or if they point to different lists, an error is
generated.

swap()

The swap() method swaps the contents of two lists.

list1.swap(list2);

The method assigns the elements of list1 to list2, and vice versa.
Swapping a list with itself has no effect. Swapping lists of different
sizes generates an error.

 Part I 8-7

Linked Lists: List Definitions

clear()

The clear() method removes all the elements of the specified list and
releases all the memory allocated for the list (except for the list
header).

list1.clear();

purge()

The purge() method removes all the elements of the specified list,
and releases all the memory allocated for the list (including the list
header), therefore avoiding possible memory leaks.

list1.purge();

To use a list that has been purged, you must new() the list. This
creates a new list header.

Both the purge() and clear() methods delete all the elements in the
list. However, the purge() method deletes the list header as well.
Since the clear() method does not delete the list header,
subsequent list addition methods such as push_back() will work
without having to do a new() on the list. If you intend to use the same
list again, use list1.clear(). If the list is being deleted forever, never
to be used gain, list1.purge() is recommended.

erase()

The erase() method removes the indicated element:

new_iterator = list1.erase(position_iterator);

8-8 Part I

Linked Lists: List Definitions

The element in the indicated position of list1 is removed from the list.
After the element is removed, subsequent elements are moved up
(there is no resultant empty element). When you call the erase()
method, the position iterator is made invalid and the method returns
a new iterator.

The position iterator must be a valid list iterator. If it points to a
non-existent element, or an element from another list, an error is
generated.

erase_ra0nge()

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the indicated
range:

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the range from
list1. Note that the elements from start up to, but not including, finish
are removed. After the elements are removed, subsequent elements
are moved up (there is no resultant empty element). If the finish
iterator points to an element before the start iterator, the range wraps
around the end of the list. Any iterators pointing to elements within
the range are made invalid.

The range iterators must be valid list iterators. If either points to a
non-existent element or if they point to different lists, an error is
generated.

push_back()

The push_back() method inserts data at the end of the list:

 Part I 8-9

Linked Lists: List Definitions

list1.push_back(data);

The data is added as another element at the end of list1. If the list
already has the maximum allowed elements, the element is not
added and an overflow error is generated.

The data must be of type integer, packet, or string, depending on the
VeraList type.

push_front()

The push_front() method inserts data at the front of the list:

list1.push_front(data);

The data is added as another element at the end of list1. If the list
already has the maximum allowed elements, the element is not
added and an overflow error is generated.

The data must be must be of type integer, packet, or string,
depending on the VeraList type.

pop_front()

The pop_front() method removes the first element of the list:

list1.pop_front();

The first element of list1 is removed. If list1 is empty, an error
message is generated.

pop_back()

The pop_back() method removes the last element of the list:

list1.pop_back();

8-10 Part I

Linked Lists: List Definitions

The last element of list1 is removed. If list1 is empty, an error
message is generated.

insert()

The insert() method inserts data before the indicated position:

list1.insert(position_iterator, data);

The method inserts the given data before the indicated position.
Subsequent elements are moved backward. The position iterator
must point to an element in the call list.

The data must be of type integer, packet, or string, depending on the
VeraList type.

insert_range()

The insert_range() method inserts elements in a given range before
the indicated position:

list1.insert_range(position_iterator, start_iterator, finish_iterator);

The method inserts the elements in the range between start and
finish before the position indicated by position. Note that the
elements from start up to, but not including, finish are inserted. If the
finish iterator points to an element before the start iterator, the range
wraps around the end of the list. The range iterators can specify a
range in another list or a range in list1.

 Part I 8-11

Linked Lists: List Definitions

The position iterator must point to an element in the calling list. the
range iterators must be valid list iterators. If either points to a
non-existent element or if they point to different lists, an error is
generated.

Iterator Methods

This section describes the methods used by iterators.

next()

The next() method moves the iterator so that it points to the next item
in the list:

I1.next();

prev()

The prev() method moves the iterator so that it points to the previous
item in the list:

I1.prev();

eq()

The eq() method compares two iterators:

I1.eq(I2);

The method returns 1 if both iterators point to the same location in
the same list. Otherwise, it returns 0.

neq()

The neq() method compares two iterators:

I1.neq(I2)

8-12 Part I

Linked Lists: List Definitions

The method returns 1 if the iterators point to different locations
(either different locations in the same list or any location in different
lists). Otherwise, it returns 0.

data()

The data() method returns the data stored at a particular location:

I1.data();

The method returns the data stored at the location pointed to by
iterator I1. The data type is of the same type used in
MakeVeraList(type).

	VeraLite: The Language
	Lexical Elements
	White Space
	Comments
	Statement Blocks
	Identifiers
	Strings
	Numbers

	Data Types and Variable Declaration
	Standard Data Types
	User-Defined Data Types

	Arrays
	Fixed-size Arrays
	Multi-dimensional Arrays
	Associative Arrays

	Enumerated Types
	Enumerated Types in Numerical Expressions
	Increment and Decrement Operations on Enumerated Types

	Operators
	Operators for manipulating strings
	Concatenation

	Variable Assignment

	Programming Overview
	Overview
	Program Block
	Top level constructs
	Preprocessor Directives
	Referencing Variables

	Subroutines
	Functions
	Discarding Function Return Values
	Tasks
	return Statement
	Static Variables
	Subroutine Arguments
	Default Arguments
	External Declarations

	Sequential Control
	if-else Statements
	case Statements
	repeat loops
	for loops
	while loops
	break and continue
	break
	continue

	Concurrency Control
	fork and join
	fork and join Control

	Semaphores
	Conceptual Overview
	Allocating a Semaphore
	Checking Key Availability
	Returning Keys

	Mailboxes
	Conceptual Overview
	Allocating a Mailbox
	Sending Data to the Mailbox
	Returning Data

	Timeout Limit

	Interfacing to the Device Under Test
	Interface Declaration
	Interface Signal Declarations
	Port-connected Interface Signals
	Direct-connect Interface Signals
	Interface Signal of type CLOCK

	Signal Operations
	Synchronization
	Driving a signal
	Sampling a Signal
	Implicit Synchronization
	Asynchronous Signal Operations
	async Modifier

	Sub-Cycle Delays

	Class and Methods
	Classes and Objects
	Objects and Instance of Classes
	Accessing Object Properties
	Using Object Methods
	Constructors
	Class Properties
	this
	Assignment, Re-naming and Copying
	Out of Block Declarations
	External Classes
	Typedef

	Linked Lists
	List Definitions
	List Declaration
	Size Methods
	Element Access Methods
	Iteration Methods
	Modifying Methods
	Iterator Methods

