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SystemVerilog 3.1

1 Introduction
VeraLite is a subset of verification constructs from the Vera language that has been
submitted to the Accellera committee to become part of the test-bench extensions of
SystemVerilog (3.1).  Vera was initially designed as a set of enhancements to Verilog 1.0
(1995), thus, the lexical and syntactical elements of both languages are the same.  While
many of the test-bench constructs are unique to Vera, the semantics of the constructs
common to both languages, including data-types and operators, remain largely the same.
This makes VeraLite an ideal candidate for inclusion into SystemVerilog.  Nonetheless,
Vera, since  its inception, has evolved as a separate language.  Verilog too has evolved,
first into the Verilog –2001 standard and more recently into SystemVerilog 3.0.  As such,
VeraLite and SystemVerilog exhibit several conflicts and areas of functional overlap.
The purpose of this document is to identify areas of conflict between SystemVerilog and
VeraLite, offer resolution to those conflicts, and suggest improvements that will simplify
the resulting language.  Since VeraLite is based largely on Verilog-1995, the first set of
conflicts is resolved by updating Vera to be compatible with Verilog-2001.  This will
allow VeraLite to become a natural extension to SystemVerilog, an important point that
is not stated in the donation.

1.1 Document Format
The following section provides a high level overview of the two languages, VeraLite and
SystemVerilog.  The rest of this document is organized in the same order as the VeraLite
donation to Accellera.  It is intended to be read as a companion to the original donation.
We chose this format so that this document can be added to the original donation as an
appendix, rather than as a re-write.  This document provides a set of brief clarifications
and recommendations in the spirit of cooperation with the committee in order to expedite
the task before them.  This document doesn’t address or attempt to solve every
inconsistency or problem.  It merely resolves the most salient problems, leaving the more
detailed issues to be worked out by the committee.
Some of  the issues addressed by this document arise because the donation was derived
from an earlier version of the VeraLite manual that was not in strict LRM form, and
contains mistakes, omissions, and incomplete semantic detail.  The donation is also
missing several sections that were clearly intended to be included.  This document
addresses the confusion caused by references to missing items in the original donation by
attaching the relevant sections. At the end of each section heading, a cross-reference to
the corresponding pages in the donation is enclosed in parentheses.
Missing sections that have been attached are shown with a right-hand side bar, like this.
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2 Languages Overview

2.1 SystemVerilog 3.0
SystemVerilog enhances Verilog for designers in the following broad areas:
� Interfaces: High level abstractions for module connections.
� Enhanced Hierarchy:  Global declarations and statements (implicit top-level $root),

nested modules for better encapsulation, and unnamed blocks with data declarations.
� Enhanced Time Unit and Precision: Physical time units (ns, ps,..) and precision can

be specified in any module.
� Abstract Data Types: Predefined 2-state and 4-state data-types for easier modeling.

� char, int, shortint, longint, byte, bit, logic, and shortreal
� Type casting
� User Defined Types:  

� typedef  of user defined types
� enum,  struct, and union

� Enhanced Arrays: Packed and unpacked multidimensional arrays.
� Dynamic Processes: Enables multithreaded process creation
� Enhanced Sequential Flow Control: C-like loops and jump statements

� break, continue, return, do …while
� Additional C-like compound operators: ++, --, +=, -=, /=, *=, %=, …

� New Procedures: Procedures that explicitly indicate the intent of the logic
� always_comb, always_ff, always_latch

2.2 VeraLite
VeraLite enhances SystemVerilog in the following important areas:
� Test-bench Functions:  Reusable, reactive test-bench data-types and functions.
� Synchronization: Mechanisms for process creation, control, and inter-process

communication.
� Classes:  Object-Oriented mechanism that provides abstraction, encapsulation, and

safe pointer capabilities. 
� Dynamic Memory: Automatic memory management in a re-entrant environment

using a garbage collection mechanism that frees users from explicit de-allocation.
� Cycle-Based Functionality: Clocking domains and cycle-based attributes that help

reduce development, ease maintainability, and promote reusability.

In addition, VeraLite provides the following aspects useful for test-benches:
� Predefined abstract data-types: string, event
� User defined data-types: enum, class, associative-array
� Enhanced Dynamic Process: fork … join {all|any|none}
� Process Synchronization: Semaphore, Mailbox, wait_var(), wait_child()
� Clocking domains and Associated Signal Drives and Expects
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Note that VeraLite constructs are applicable only in the behavioral context. The usage of
VeraLite makes sense and should be allowed only in initial or always blocks.

3 VeraLite: The Language

3.1 Lexical Elements
VeraLite lexical conventions are the same as in SystemVerilog. There are no known
conflicts. 

3.2 VeraLite Keywords (1-2)

Clarification: VeraLite recognizes the keywords shown in the table below. Keywords
unique to VeraLite (not in SystemVerilog) are shown in boldface.  Keywords that
conflict with SystemVerilog are shown in boldface and underlined.

all 
any 
async
begin
bit
break
case
casex
casez
class
CLOCK
continue
default
else

end
endclass
endprogram
enum 
event
extends
extern
for
fork
function
if
inout
input
integer

interface
join
local 
negedge
new
none
null
or
output
posedge
program
protected
public
reg

repeat
return
static
string
super
task
this
typedef
var
void
virtual
while

3.2.1 VeraLite Predefined Constants
VeraLite introduces several predefined constants.  The table below lists the predefined
constant identifiers.

ALL
ANY
CHECK
COPY_NO_WAIT
COPY_WAIT

DELETE
FIRST
HAND_SHAKE
MAILBOX
NEXT

NO_WAIT
OFF
ON
ONE_BLAST
ONE_SHOT

ORDER
SEMAPHORE
WAIT

These predefined constants are defined using the following enumerated types:

  enum TriggerModes { OFF, ON, ONE_SHOT, ONE_BLAST, HAND_SHAKE };
  enum CheckMode { CHECK = 0 };
  enum SyncModes { ALL = 1, ANY, ORDER };
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  enum AssocIdxModes { FIRST = 1, NEXT, DELETE };
  enum MailboxModes { NO_WAIT, WAIT, COPY_NO_WAIT, COPY_WAIT };
  enum AllocTypes { SEMAPHORE, MAILBOX };

3.2.2 VeraLite Predefined Clocking Identifiers
VeraLite recognizes four signal clocking identifiers.  These are neither keywords nor
predefined constants, but constant identifiers recognized only within the parsing context
of a clocking-domain (see Section 7.1).  The predefined clocking identifiers are:

NHOLD NSAMPLE PHOLD PSAMPLE

3.3 Statement Blocks (1-3)
Conflict: VeraLite uses braces ‘{‘ and ‘}’ to denote the start and end of a block.  This
includes execute blocks as well as declaration blocks (class, interface, end enum).1
SystemVerilog uses begin and end for execute blocks, and some declarations have an
implicit begin and a specialized end: module … endmodule, task … endtask, etc….
Resolution: VeraLite will adopt begin and end for execute blocks, and SystemVerilog
syntax for task and function declarations.  In addition, the syntax for class and program
declarations will be changed in a manner consistent with SystemVerilog, as shown in the
table below2:

Old Syntax New Syntax
 class name { . . . }  class name . . . endclass

 program name { . . . }  program name . . . endprogram

Braces will continue to be used, but only for those constructs in which their use is
consistent with SystemVerilog, these are: the concatenation and replication operators,
array initialization, declaration of enumerated data-types, and declaration of clocking
domains.

3.4 Strings (1-4)
In SystemVerilog string literals (character strings enclosed by double quotes) behave like
packed arrays (of a width that is a multiple of 8 bits).  In VeraLite a string literal behaves
the same way. Unlike SystemVerilog, however, VeraLite also has the string data type to
which a string literal can be assigned.  In SystemVerilog, a string literal assigned to a
packed array is truncated to the size of the array, whereas in VeraLite, the strings can be
of arbitrary length and no truncation occurs.  This does not represent a conflict, but, the
donation doesn’t differentiate between string (a VeraLite data-type) and string literal.  

                                                
1 By allowing braces ‘{‘ and ‘}’ to denote blocks VeraLite creates a syntactical conflict with Verilog: The
left-hand-side concatenation operator is ambiguous with the start of a block and was thus renamed `{}.

2 The additional keywords needed for this change are already included in the table of Section 3.2.
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Clarification: string literals behave exactly as in SystemVerilog, except that they are
implicitly converted to the string type when assigned to a string type or used in an
expression involving string type operands (see Section 3.18).

Limitation: VeraLite only accepts the ‘C’ notation ‘\ddd’ to denote an ascii character
(where d is any octal digit).  SystemVerilog also allows the notation ‘\xhh’ to denote an
ascii character (where h is a hexadecimal digit).
Resolution: VeraLite will accept both character notations.

3.5 Numbers (1-5)
Limitation: In SystemVerilog, a numerical constant that doesn’t specify the size extends
the leftmost digit to fill the variable it is assigned to (bit [2:0] = ‘1 is extended to 3’b111).
VeraLite doesn’t handle this type of extension.
Resolution: Remove this limitation.  VeraLite will extend un-sized constants to the size
of the left-hand side operand.

3.6 Data Types and Variable Declaration (1-6)

Clarification: The donation lists virtual port as one of the user-defined types.  This is an
error, the virtual port is not supported by VeraLite.  Please disregard the section 3.6 of the
VeraLite donation.

3.7 Standard Data Types

3.7.1 Integer (1-7)

Correction: The donation states “The upper limit for integer sizes is dependent on the
host machine…”.  That statement is incorrect.  integer is a 32-bit signed data-type on all
implementations.  This is the same as SystemVerilog.
Clarification: The donation doesn’t specify the default value for an uninitialized integer.
The default value is all X’s, i.e., 32’bX
Conflict: A VeraLite integer does not allow setting individual bits to X or Z. Assigning
any one bit to X or Z causes the entire integer to become X.  SystemVerilog does allow
setting individual bits of an integer to X or Z.
Resolution: VeraLite integer will behave exactly like a SystemVerilog integer.

3.7.2 bit (1-7)
Conflict: In VeraLite bit is a 4-state data-type for vectors of user-defined size.  In
SystemVerilog, bit  is a 2-state data-type for vectors of user-defined size.  VeraLite’s bit
data-type is equivalent to a SystemVerilog reg data-type.
Resolution: VeraLite will use reg instead of bit.
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In addition, VeraLite will accept all the SystemVerilog types (char, shortint, int,  byte,
longint, bit, logic) plus the 2 Verilog-2001 types already supported (reg and integer).
The remainder of the VeraLite documentation shall be amended to consider bit as reg.

Limitation: VeraLite (like Verilog-1995) only allows one-dimensional bit vectors while
SystemVerilog allows multi-dimensional bit-vectors (packed arrays).
Resolution: Remove this limitation.  VeraLite will support multidimensional packed
arrays.  Note that anywhere VeraLite accepts a numerical value, it will also accept a
multi-dimensional packed array.

Limitation: Packed arrays in SystemVerilog can be specified using arbitrary indices, as
in: reg [MSB:LSB].  VeraLite bit-vectors can only be specified as reg [MSB:0] (LSB
must be 0).
Proposal: Remove this limitation.  VeraLite will accept arbitrary indices.

3.7.3 String (1-8)

Clarification: The donation doesn’t specify the default value for an uninitialized string.
The default value is the special constant null, which denotes an uninitialized string.
Note that null is not the same as “”, which is a zero-length string or empty string.

3.8 User-Defined Data Types

3.8.1 Enumerated types (1-10)

Conflict: The VeraLite syntax for declaring an enum is different from SystemVerilog’s.
VeraLite uses

enum name{ … };
which always creates an enum type called name, whereas SystemVerilog uses

enum { … } vname;
and only creates a type when used with a typedef  construct:

typedef  enum { … } name;
Resolution:  VeraLite will support the SystemVerilog syntax.  Also allow the VeraLite
syntax as a shorthand for the SystemVerilog typedef form, in the same manner as C++
extends C. This enhancement requires the compiler to distinguish a new type name from
an exiting type or size specification (see next point).

Conflict: In VeraLite all enumerated values are represented by 2-state integer values
(like in C/C++).   SystemVerilog allows the size and type (2-state/4-state) to be specified.
Resolution: Remove this limitation.  VeraLite will support SystemVerilog enums.  For
unspecified enumerated types, the default is the same (2-state integer).
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Conflict: VeraLite defines the ++, --, +=, and -= operators to iterate over the
enumerated values, SystemVerilog doesn’t specify what thoee operators do when applied
to an enum.
Resolution: SystemVerilog should adopt the VeraLite operator semantics.
VeraLite enumerated types are strongly typed, thus, a variable of type enum cannot  be
assigned a value that lies outside the enumeration set.  This is a powerful type-checking
aid that prevents users from accidentally assigning nonexistent values to variables of an
enumerate type. This restriction only applies to an enumeration that is explicitly declared
as a type. The enumeration values can still be used as constants in expressions, and the
results can be assigned to any variable of a compatible integral type.  For example:

typedef enum { RED, GREEN, BLUE } Color;
Color   co;
int     i;

co = RED;

co = RED + 3; // not allowed
i = RED +3; // allowed
if ( i > BLUE ) begin $display( “error” ); end // allowed

Since enum types are strongly typed, the only two options available are to either disallow
the ++ and -- operators (as in C++), or to attach a semantic meaning that is consistent
with a strongly-typed enum type.  VeraLite opts for the latter, providing a useful feature
to iterate over the enumeration values.

Clarification: The donation doesn’t specify the default value for an uninitialized enum.
The default value is the value of the first element in the enumeration.

3.8.2 Arrays (1-11)

Correction: The examples list an array of port_name .  This is an error.  Please
disregard.

Conflict: VeraLite abides by Verilog-1995 rules and hence explicitly disallows slicing of
an array element (donation example showing memory[42][3:2]).  SystemVerilog allows
slicing of array elements.
Resolution: Remove this limitation. Allow VeraLite to slice array elements.

Conflict: SystemVerilog allows unpacked arrays to be sliced by any arbitrary number of
dimensions.  VeraLite does not allow unpacked array slices:

integer a_arr[10:0], b_arr[1:0];
b_arr = a_arr[2:1];

Resolution: Remove this limitation. VeraLite will support both array slicing, and allow
arrays to be used on the left-hand-side of assignments (L-values).
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3.8.3 Array Initialization (1-12)

Conflict: VeraLite does not allow concatenation or replication in array initialization.  For
example, the following is not allowed:

integer a[2][2] = {1,2, {2'b10,2'h01}, 3 };
This restriction arises because in VeraLite (like in C/C++) the braces used to group the
elements of a dimension are optional. For example, the following are all valid in
VeraLite: 

integer a[2][2] = {1, 2, 3, 4 };
integer a[2][2] = {{1, 2}, 3, 4 }; 
integer a[2][2] = {{1, 2}, {3, 4} }; 

Since the braces are optional, they become ambiguous in this context; they can either be a
concatenation or a new array dimension. Basically, this grammar construct is not context-
free and the compiler cannot parse this grammar, thus it’s disallowed in VeraLite. 
In SystemVerilog all the dimensional braces are required, which does not remove the
grammatical ambiguity, but does allow the compiler to distinguish concatenation from
dimensional brackets.
Resolution: Remove this limitation .  VeraLite will require that all dimensional braces be
specified, like in SystemVerilog.  This will remove the ambiguity and allow replication
or concatenation as part of array initialization.

Correction: The donation states that “you cannot initialize an array in the declaration”.
This is an error.  It is allowed.

3.8.4 Multi-dimensional Arrays (1-13)

Conflict: In VeraLite, array dimensions are specified like in ‘C’, with a single number
denoting the number of elements in a given dimension.  SystemVerilog uses the more
general indexing notation [msb:lsb] that is also used for packed arrays (bit fields).
Resolution: Remove this limitation.  VeraLite will accept the SystemVerilog syntax for
both packed and unpacked arrays.  Also, SystemVerilog should accept VeraLite’s array
declaration as a shorthand notation, that is: [size] becomes the same as [size – 1:0]. 
For example:

int  Array[8][32];    is the same as:    int  Array[7:0][31:0];

Conflict: VeraLite does not allow slicing of (unpacked) arrays.  SystemVerilog does.
Resolution: Enhance VeraLite to allow slicing of multi-dimensional arrays, both packed
and unpacked.

Clarification: VeraLite will allow packed arrays of the same types as SystemVerilog, but
it won’t support packed arrays of additional types that are not part of SystemVerilog 3.0.
This explicitly excludes strings, events, associative arrays, and objects.
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3.8.5 Array Initialization (1-15)

See the correction in Section 3.8.3.  The same corrections apply to multi-dimensional
arrays.

3.9 Associative Arrays (1-16)

Correction: The examples incorrectly list an array of port_name.  Please disregard.

Correction: The donation states that an associative array index “is an unsigned number
with a maximum value of 2^64-2”.  This is incorrect.  Associative arrays can be
declared with a specific index type or with no index type.  Associative arrays that do not
specify an index type have the following properties:
� unspecified index type: type array_name[];

� The array can be indexed by any integral data type, including integers, bit-vectors
of arbitrary length, and string literals.  Since the indices can be of different sizes,
the same numerical value may have multiple representations, each of a different
size.  VeraLite resolves this ambiguity by detecting the number of leading zeros
and computing a unique length and representation for every value.

� Indices are unsigned.
� Indexing expressions are self-determined: signed indices are not sign extended.
� 4-state indices containing X or Z result in a run-time error (see conflict below).
� A string literal index is auto-cast to an equal size bit-vector.
� The traversal order is numerical (smallest to largest).

An associative array that specifies an index type restricts the indexing expressions to a
particular type.  Currently, VeraLite only supports the following index types:
� string index: type array_name[string];

� Indices can be strings or string literals of any length.  Other types result in a
compiler error.

� A null index result in a run-time error.
� The traversal order is lexicographical (lesser to greater).

� object index: type array_name[some_Class];
� Indices can be objets of that particular type or derived from that type.  Any other

type results in a compiler error.
� The traversal order is arbitrary.
� A null index is valid and will be smaller than all other objects (for traversal).

� integer index: type array_name[integer];
� Indices can be any integral expression.
� Indices are signed.
� Indices smaller that integer are sign extended to 32 bits.
� Indices larger than integer are truncated to 32 bits.
� Indices containing an X or Z result in a run-time error (see conflict below).
� The traversal order is numerical.
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Limitation:  Associative arrays do not support arbitrary user-defined numerical types,
such as reg[21:2].
Resolution: VeraLite will support any arbitrary user-defined numerical type, provided
that the type has been previously defined via a typedef.  For example:

typedef bit [3:0] nibble;
integer arr[ nibble ]; // associative  array of integer indexed by bit[3:0]

Conflict: In SystemVerilog an index expression containing X or Z values does not result
in a run-time error, instead, the result depends on the operation and the array type. If the
array is of a 4-state type, a read returns X; for a 2-state array a read returns a 0 and issues
a warning.  A write always causes a warning to be issued and the operation is ignored.
Resolution: VeraLite associative arrays will be compatible with SystemVerilog arrays.
When the index expression contains an X or Z, a read will return the default value for the
corresponding array type (i.e., null for string or class).  In addition, a write operation or a
read operation from an associative array that is not a 4-state type will result in a warning.

3.10  Dynamic Arrays
Dynamic arrays complement static and associative arrays, the description is missing in
the donation, and attached below.

3.10.1 Dynamic Arrays
Dynamic arrays are one-dimensional arrays whose size is set or changed at runtime.  The
space for a dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare a dynamic array is:

data_type array_name[*];

data_type
The data type of the array elements. Dynamic arrays support the same types as fixed-
size arrays.

For example:
bit[3:0] nibble[*];    // Dynamic array of 4-bit vectors
integer mem[*]; // Dynamic array of integers

To set or change the size of the array, use the new[] operator. To get the current size of
the array, use the get_array_size() function.

3.10.2 new[]
The syntax to set or change the size of a dynamic array is:

array_name = new[size] [(src_array)];

size
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The number of elements in the array. Must be a non-negative integral expression.
src_array

Optional. The name of an array with which to initialize the new array. If src_array is
not specified, the elements of array_name are left uninitialized.  src_array must be a
dynamic array of the same data type as array_name, but it doesn’t have to be of the
same size. If the size of src_array is less than size, the extra elements of array_name
are left uninitialized. If the size of src_array is greater than size, the additional
elements of src_array are ignored.
This parameter is very useful when growing or shrinking an existing array.  In this
situation, src_array is array_name so the previous values of the array elements are
preserved. For example:

integer addr[*]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array .
...

// Double the array size, preserving previous values.
addr = new[200] (addr);

3.10.3 get_array_size()
The syntax for the get_array_size() function is:

function integer get_array_size(array_name);
The function returns the current size of a dynamic array, or zero if the array has not been
created.

3.11  Enumerated Types in Numerical Expressions (1-20)

Clarification: The donation seems to imply that it is not possible to assign a numerical
value to an enumerated type.  This is not true, enum variables can be assigned numerical
values (arbitrary expressions) using the run-time cast _assign system function.  That part
of the manual was omitted from the donation.  The relevant portion is attached below.

Assigning Values to Variables
VeraLite provides the cast_assign() system function to assign values to variables that
might not ordinarily be valid because of differing data type.
The syntax for cast_assign() is:

function integer cast_assign(scalar dest_var,
scalar source_exp [, CHECK]);

dest_var:
The dest_var is the variable to which the assignment is made.  It can be any scalar
(non-array) type (bit, integer, string, enumerated type, event, and object handle).

source_exp:
The source_exp is the expression that is to be assigned to the destination variable.

CHECK:
The pre-defined constant, CHECK, is optional. Its use determines how the
function handles invalid assignments.
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When the cast_assign() system function is called without CHECK, the function assigns
the source expression to the destination variable. If the assignment is illegal, a fatal
runtime error occurs.
When the cast_assign() system function is called with null specified, the function makes
the assignment and returns a 1 if the casting is successful. If the casting is unsuccessful,
the function does not make the assignment and returns a 0.  In the latter case, no runtime
error occurs, and the destination variable is set to its corresponding uninitialized value,
depending on the data type.
Note:

The compiler only checks that the destination variable and source expression are
scalars. Otherwise, no type checking is done at compile time.

This is an example of the cast_assign() system function:
cast_assign(enum_var, 12*7);

This example assigns the expression to the enumerated type. Without cast_assign(), this
assignment is not allowed because of strong typing of enumerated types.

Resolution: Include the cast_asssign functionality in the donation.
Alternatively, users could specify this operation using a SystemVerilog cast operation:

EnumType  enum_var = EnumType’(12 * 7 )
However, SystemVerilog casts are all compile-time casts, whereas cast_assign is a run-
time operation. Also, SystemVerilog casts do not provide for error checking (the CHECK
variant of cast_assign), nor for the possibility of a run-time error due to a cast.

Note: cast_assign is similar to the dynamic_cast function available in C++, however,
cast_assign allows users to check if the operation will succeed, whereas dynamic_cast
always raises a C++ exception.

3.12 Operators (1-22)

Clarification: All VeraLite operators that are also defined in Verilog have the same
semantics as described in SystemVerilog. Any extensions of these semantics for VeraLite
data types not in Verilog 2001 are described in the corresponding section for that data
type in this document. All the VeraLite operators are shown in the table below.
Operators that do not exist in SystemVerilog or behave different are shown in boldface.

Operator Description Semantics
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{} RHS numeric concatenation Same as System Verilog
`{} LHS numeric concatenation Same as LHS {} in

SystemVerilog3

{{}} Numeric Replication Same as SystemVerilog
{} String concatenation Not in SystemVerilog4

{{}} String replication Not in SystemVerilog
+ - * / Arithmetic Same as SystemVerilog 
% Modulus Same as SystemVerilog
++ -- Increment/Decrement (post) Same as SystemVerilog5

++ -- Increment/Decrement (pre) Same as SystemVerilog
+= -= *= /= %=
<<= >>= &= |= ^=
~&= ~|= ~^=

Compound assignment Same as SystemVerilog

= Simple Assignment Same as Verilog 2001
< <= > >= Relational Same as Verilog 2001
! && || == != Logical operators Same as Verilog 2001
=== !== Case equality, inequality Same as Verilog 2001
=?= !?= Wild equality, inequality Not in SystemVerilog
~ Bit-wise negation Same as Verilog 2001
& | ^ ^~ Bit-wise binary operators Same as Verilog 2001
&~ |~ Bit-wise NAND, NOR Not in SysytemVerilog
& | ^ ~& ~| ~^ Reduction operators Same as SystemVerilog
<< >> Shift Same as SystemVerilog
?: Conditional Unlike SystemVerilog6

VeraLite Operators

Clarification: The bitwise NAND (&~) and bitwise NOR (|~) have these meaning:

a &~ b is equivalent to: ~(a & b)
a |~ b is equivalent to: ~(a | b)

Conflict: Introducing the &+ and |~ operators changes the meaning of existing Verilog
expressions that contain the & or | operators followed by ~ without any space in between.
For example, the expression:

a = b &~ c;
Is interpreted as:

SystemVerilog: a = b & (~c); // b AND (NOT c)
VeraLite: a = b &~ c; // b NAND c

The situation is similar to the ambiguity involving the SystemVerilog xnor (^~ ) operator:
a ^~ b is different from a ^ ~b, which means a ^(~b)

Resolution: Remove these operators from the donation.  They exist only for the sake of
completeness, but are not vital.

                                                
3 This was addressed before (see Statement Blocks (1-3)): Will be changed to use SystemVerilog’s {}.
4 These operators don’t exist in SystemVerilog when applied to string variables (see 3.18).
5 The behavior of ++ and -- is incompletely specified in SystemVerilog (see 3.17).
6 The behavior of this operator is different as explained below (see Conditional Operator (1-27)).
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Clarification: The donation doesn’t specify the data types allowed by the wild equality
=?= and wild inequality !?= operators.  These operators accept any integral expression,
that is, bit, integer, or enumerated type.

Limitation: The operators in the table below exist in SystemVerilog, but not in VeraLite.
Operator Description Semantics
<<< >>> arithmetic shift sign preserving shift
<<<= >>>= Compound assignment arithmetic shift assign 

** power exponentiation

Resolution: Remove this limitation. VeraLite will support all SystemVerilog operators.

3.13  Operator Precedence (1-23)
Clarification: The donation doesn’t explicitly list operator associativity, as well as
distinguish clearly between unary and binary operators.  The following table lists the
precedence and associativity of all VeraLite operators.  Highest precedence operators are
listed first.

Operator Associativity
() [] .   left
Unary   ! ~ ++ -- & ~& | ~| ^ ~^ right
*  /  % left
+  - left
<<  >> left
<  <=  >  >= left
==  !=  ===  !==  =?=  !?= left
&  &~ left
^  ~^ left
|  |~ left
&& left
|| left
?  : right
= += != *= /= %= &= |= ^= <<= >>= none

3.14  Arithmetic Operators (1-24)

Clarification: The donations states “If an operand has any bit with a value of x, the
entire result is x.”.  That statement is incomplete.  It should say “If an operand has any bit
with a value of x or z, the entire result is x.”
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3.15  Bitwise Operators (1-26)

Clarification: The donation does not include the table for the bitwise NAND (&~) and
bitwise NOR (|~) operators.  These are included below.

&~ 0 1 x z |~ 0 1 x z
0 1 1 1 1 0 1 0 x x
1 1 0 x x 1 0 0 0 0
x 1 x x x x x 0 x x

3.16  Conditional Operator (1-27)

Clarification: The donation incorrectly describes the semantics of the conditional
operator.  The correct description is: 

expression1 ? expression2 : expression3

If expression1 evaluates to true (known value other than 0) then expression2 is evaluated
and used as the result.  If expression1 evaluates to false (0) then expression3 is evaluated
and used as the result.  If expression1 evaluates to X or Z, it is treated as false.

The behavior of this operator was modified to behave as in ‘C’ in order to avoid having
to evaluate both expressions (as stated in the donation).  This is because expression2 or
expression3 (or both) may contain side effects that require that only one of them should
be evaluated.  Consider the following examples:

a = (b) ? d++ : e++; // increment d or e but not both!
x = (p == null) ? –1 : p.value; // do not dereference null handle

Conflict: The conditional operator is not compliant with SystemVerilog when the
conditional expression evaluates to an ambiguous value (X or Z).  In that case,
SystemVerilog evaluates both expression2 and expression3 and the results are combined
bit by bit (expanding the shorter operand by zero-filling).  VeraLite considers an
ambiguous value the same as a false and evaluates expression3 only.
Resolution: VeraLite will support SystemVerilog semantics.  It may be desirable to
introduce another conditional operator (perhaps ??) that behaves like C.

3.17  Side effecting operators: Increment and Decrement
The behavior of the pre/post increment/decrement operators is not completely defined in
SystemVerilog.  This can lead to unexpected behavior when a single statement modifies
the same variable more than once.  For C/C++, the ANSI-C standard states that the
behavior is undefined so every compiler is free to do it differently, and indeed they do.
For example, the following C/Vera code fragment produces the output shown below:
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int i = 1;
printf( "%d  %d  %d  %d  %d  %d\n", i++, i++, ++i, --i, i--, i-- );

 
vera 1  2  4  3  3  2 gcc -g 1  2  4  3  3  2
cc (solaris) 1  2  1  1  3  2 gcc -O2 1  2  1  1  3  2
cc (dec) 1  1  2  1  1  1 cc (linux) 0  -1  -1  -2  0  1

Vera defines the semantics for computing all arguments and operands. Arguments with
the same precedence are evaluated in strict left-to-right order.  In addition, the pre and
post increment operators operate on their corresponding variable as they are evaluated.
Thus, the semantics of  post and pre increment (++) is roughly equivalent to the code
shown below  (decrement is analogous).

function integer pre_inc (var integer a); begin // ++a
a += 1;
pre_inc = a;

end
endfunction

function integer post_inc (var integer a); begin // a++
post_inc = a;
a += 1;

end
endfunction

Clarification: The above section does not represent a conflict.  It merely states a possible
semantic definition for the ++ and -- operators. VeraLite’s semantics are compatible with
Verilog operators, which are also left to right associative, and may have side-effects.  For
example: 

$display( f( a ) + g( b ) );
If functions f() and g() have side effects on a or b, Verilog must enforce the left-to-right
semantics to avoid the ambiguous results.

3.18  Operators for manipulating strings (1-28)

In VeraLite a string literal is implicitly converted to string type when it is assigned to a
string type variable or is used in an expression involving string type operands. A string
literal and a concatentation or replication of string literals are the only types of regs that
are allowed to be assigned to a string type variable.

For example:
reg [15:0] r;
integer i = 1; 
string a = {“Hi”, b};
string b = “”;
r = a; // valid
b = r; // Error
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b = “Hi”; // valid
b = {5{“Hi”}}; // valid
a = {i{“Hi”}}; // valid
r = {i{“Hi”}}; // invalid in Verilog
a = {i{b}}; // valid
a = {a,b}; // valid
a = {“Hi”,b}; // valid

The basic operators defined on the string data type are listed in the following table.

Operator Meaning

Str1 == Str2

Checks if the two strings are equal. Result is 1 if they are equal
and 0 if they are not. Both strings may be of type string. Or one
of them may be a string literal. Note that if both are string
literals, the expression is the same Verilog equality operator for
numeric types.

Str1 != Str2 Logical Negation of  ==

{Str1,Str2,...,Strn}

Each Stri may be of type string or may be a string literal (it will
be implicitly converted to string). If at least one Stri is of type
string, then the expression evaluates to the concatenated string
and is of type string. Note that if all the Stri are string literals,
then the expression behaves like Verilog concatenation for
numeric types (if the result is used in another expression
involving string types, it is implicitly converted to string type).

{multiplier{Str}}

Str may be of type string or may be a string literal. Multiplier is
of numeric type and can be non-constant. If Str is a literal and
the multiplier is constant, the expression behaves like numeric
replication in Verilog (if the result is used in another expression
involving string types, it is implicitly converted to string type). 

Str.method(...)
The dot (.) operator is used to invoke a specified method on
strings. See Section 3.18.1 for detailed descriptions of the
various string methods available

3.18.1 Methods on String (1-28)

Clarification: This section was omitted from the donation.  It is attached below.
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VeraLite supports the following methods on the string data type:

function integer len()
� str.len() returns the number of  characters in the string excluding any terminating

null character
� str.len() returns 0, if str is null

task putc(integer i, string s)
task putc(integer i, integer c)

� str.putc(i, c) replaces the ith character in str with the given value.
� str.putc(i, s) replaces the ith character in str with the first character in s. s can be

any expression that can be assigned to a string.
� str.putc leaves str unchanged, if i < 0 or i >= str.len()

function integer getc(integer i)
� str.getc(i) returns the ASCII code of the ith character in str
� str.getc(i) returns 0, if i < 0 or i >= str.len()

function string toupper()
function string tolower()

� str.tolower() and str.toupper() return strings with characters in str converted to
lowercase and uppercase respectively. str is unchanged.

function compare(string s)
function icompare(string s)

� str.compare(s) compares str and s character by character and returns the difference
between the ASCII codes of the first character in which they differ; returns 0 if
the string are equal. str.icompare(s) behaves similarly but the comparison is case
insensitive

function string substr(integer i, integer j)
� str.substr(i, j) returns a sub string formed by characters in position i through j of

str if 0 <= i <= j < str.len(); returns “” (not null), otherwise

function integer atoi()
function integer atohex()
function integer atooct()
function integer atobin()

� str.atoi() returns the integer corresponding to the ASCII decimal representation in
str. Example. str = “123”; i = str.atoi() assigns 123 to i. The string is converted to
the first non-digit. atohex, atooct and atobin are similar except that instead of
decimal the string is interpreted as hexadecimal, octal and binary respectively.

task itoa(integer i)
� str.itoa(i) writes the ASCII decimal representation of i into str.
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Limitation: The donations doesn’t list support for parsing real numbers.
Resolution: The following string function will be added:

function real atoreal()

3.19  Concatenation (1-29)

Clarification: The donation does not explicitly state that the arguments to the replication
operator can be concatenations, as in SystemVerilog.  They can, as shown in the second
example of the donation:  {4 {addr,data}}.

3.20  variable Assignment (1-31)

Conflict: VeraLite does not support assignment recursion:
a = b = c;  

This form is not supported by SystemVerilog either, but it does support a modified form
that uses parenthesis in order to avoid common mistakes:

a = (b = c);
Likewise, assignments within conditionals are not allowed by VeraLite:

if( a = b ) a = c + d;
but SystemVerilog does allow the modified form:

if( (a = b) ) a = c + d;
Resolution: VeraLite will accept SystemVerilog’s form.

Clarification: In the presence of side-effecting operators, SystemVerilog is not specific
as to what the result should be.  For example:

a = 1;
a = (b = a++);

What is the value a?  1 or 2 ?  (see Section 3.17 for more puzzlers).

3.21  Expressions and Operators (General)

Clarification: In SystemVerilog, the type and size of all expressions is determined at
compile time.  This allows the compiler to compute the size of all expression temporaries
and apply strict rules regarding extension, truncation, and sign extension. The same rules
apply to VeraLite. Although, the VeraLite donation does not state so explicitly, the
arguments to the concatenation, replication, and slicing operators must be constants.  If
that were not so, it would not be possible to compute all expression sizes at compile time.

Limitation: SystemVerilog provides a syntax for specifying fixed-size, variable position
slices: [position +: size]  and [position -: size].  VeraLite does not
support these operators.
Resolution: Remove this limitation.  VeraLite will support the +: and -: slicing operators.
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3.22  Signed vs. Unsigned
Conflict: VeraLite does not follow the SystemVerilog sign extension rule.  Instead, it 
follows the Verilog-1995 rule: zero fills when converting a signed number (i.e. integer) to
a number of higher precision (i.e., reg[64:0]).  SystemVerilog requires that the sign be
extended.
Resolution: Perform sign extension according to SystemVerilog.

4 Programming Overview

4.1 Program Block (2-3)

Clarification: A typical VeraLite test-bench contains type definitions, data declarations,
subroutines, connections to the design via VeraLite-interfaces (not to be confused with
SystemVerilog interfaces), and a program block.  The program block serves two basic
purposes:

1. It provides an entry point where the test-bench begins execution.
2. It creates a scope that encapsulates program-wide (global) data.

A SystemVerilog module provides both of these functions: it creates a new scope, and
can include an initial block to serve as the test-bench entry point.  Thus, a module is 
a natural choice for modeling the program block.  However, such a “test-bench module”
differs from a regular SystemVerilog module in several ways.  First, the communication
between the test-bench and the design takes place via special ports that in addition to
type, direction, and size, can also specify a clocking scheme (see section 7.1).  Second,
VeraLite provides for execution using cycle semantics as well as event semantics.  The
program construct serves as a clear separator between the design and the test-bench, and,
more importantly, it indicates the special nature of the test-bench module, which allows a
compiler to enable the cycle semantics for all elements within the program.  Finally, the
program block contains a single implicit initial block, and no always blocks or other
programs (unlike modules, programs can’t be nested).

Simplification: In the donation, a program block is shown as containing no arguments.
Unlike SystemVerilog, in which ports are explicitly declared in a module declaration, a
program connects to the design through an implicit set of ports that are derived from a
series of VeraLite interface declarations.  Implicit port declarations can be confusing,
error prone, and, in a fluid design environment, hard to maintain.  Without loosing any
generality, the connection between design and test-bench can be significantly simplified
by using the same paradigm used by SystemVerilog to specify port connections.  This
simple change makes the program block much more consistent with SystemVerilog.  The
syntax for the program block then becomes:
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program program_name ( list_of_ports );
program_declarartions
program_code

endprogram

For example:
program test (input clk, input [16:1] addr, inout [7:0] data);

. . .
endprogram

The list_of_ports allowed by a program shall be the same as the one allowed for
any SystemVerilog module.  A more complete example is included in Section 7.

Clarification: Although the program construct is new to SystemVerilog, its inclusion
does not represent a conflict, but a natural extension.  The program construct should be
considered the declaration of a special type of module (i.e., a module with a test-bench
attribute).  Once the program block has been declared, it can be instantiated in the proper
hierarchical location (typically at the top level) and its ports can be connected in the same
manner as any other module.

Limitation: Some VeraLite constructs and data-types cannot be used in declarative
contexts such as module ports, gates, or continuos assignments. These constructs will
need a formal definition (possibly via BNF) and additional semantic restrictions that limit
their use within the procedural (test-bench) environment.  Note that this limitation is not
new to VeraLite, it simply extends the rules set forth by SystemVerilog, which disallows
automatic variables from triggering event expressions or be written using non-blocking
assignments.

4.1.1 Static Data Initialization
In SystemVerilog, setting the initial value of a static variable as part of the variable
declaration requires that the initialization occurs before any initial or always blocks are
started.  Likewise, VeraLite allows static data (including static class members) to specify
an initial value as part of their declaration, and, like SystemVerilog, VeraLite requires
that all such data be initialized before the program (see section 4.1) starts executing. It is
important to note that VeraLite initial values are not constrained to simple constants, but
may include run-time expressions, including dynamic memory allocation.  For example, a
static class can be initialized via its new method, or a Semaphore may be initialized by
calling its alloc function.  While this does not represent a conflict with SystemVerilog, it
may require a special pre-initial pass at run-time, which may need changes to the initial
SystemVerilog simulation cycle.

4.1.2 Scope Rules
In the donation, the following VeraLite language constructs are always defined in global
scope, sharing the global name space so no two of them can have the same name:

� Type declarations: Classes and Enumerated Types
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� Elements of each enumerated type
� Subroutines: Tasks and Functions
� VeraLite Interfaces (see Section 7.1)
� Program block
� Data declared in the outermost block of the program block
� Data declared outside any block, in the global scope

Conflict: VeraLite does not allow type declarations (class or enums), tasks, or functions
inside the program block (i.e. the test-bench module).  This is inconsistent with
SystemVerilog scope rules.
Resolution: Allow VeraLite type declarations, tasks, and functions inside the program
block (in the scope of the test-bench module).  All such definitions can be encapsulated in
a manner consistent with SystemVerilog scope rules. Data declared within the program
will be local in scope (local to the program block) and will have static lifetime.
Global declarations (outside the program block or any other module) will reside in $root
and have static lifetime.

Clarification: The following VeraLite constructs create a new scope:
� A class definition
� A task or function definition
� A block statement

o A fork-join does not create a scope unless it contains a block statement.

Subroutines (tasks and functions) cannot be nested within themselves, but they can
contain block statements that do create a scope.  Block statements do not have to be
named to create a new scope.

The declaration in the closest enclosing scope is matched: A scope nested inside another
scope has visibility of (and may reference) all elements visible or declared in its parent
scope.  A name declared inside a scope hides all elements with the same name that are
visible or declared in the parent scope.  All these rules are consistent with SystemVerilog.

Limitation: VeraLite does not allow explicit references to global data, only to global
data that is visible within a given scope.  If a locally declared element shares the same
name as a global element, the global element is not visible and cannot be referenced.
SystemVerilog allows references to a global name via explicit use of  $root.name.
Resolution: Remove this limitation and allow explicit references to global data.

4.1.3 Multiple Programs
Clarification: The donation does not mention the possibility of having multiple test-
bench programs, however, it is completely compatible with both SystemVerilog and
VeraLite to have any arbitrary number of program definitions or instances.  The programs
can be fully independent (without inter-program communication), or cooperative.  Users
can control the degree of communication by choosing to share data via $root or making
the data private by declaring it inside the corresponding program block.
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Clarification: The VeraLite constructs simplify the creation and maintenance of test-
benches.  Furthermore, since modeling the environment can be a significant part of a test-
bench, the same set of VeraLite constructs can be effectively used for writing models at a
higher abstraction level than currently provided by SystemVerilog.  The ability to
instantiate and individually connect each instance of a program enables their use as
generalized models.

4.2 Preprocessor Directives (2-4)

Conflict: VeraLite uses # for preprocessor directives (like C), but SystemVerilog uses `.
Resolution: VeraLite will use the same preprocessor directives as SystemVerilog.

4.3 Subroutines (2-5)

Conflict: VeraLite allows blocking functions, SystemVerilog does not.
Resolution: VeraLite will disallow blocking functions.
Also, functions will be restricted to disallow passing arguments of type event.

Conflict: In VeraLite the default lifetime for tasks and functions is automatic.  In
SystemVerilog the default lifetime is static.
Resolution: VeraLite will Adopt the SystemVerilog default.
In addition, we propose an optional module attribute that specifies the default lifetime of
all tasks and functions declared within the module.  The lifetime attribute can be set  to
automatic or static. The default is static for regular modules, and automatic for the
program block.  This enhancement allows existing VeraLite code to execute unchanged.
Also, class methods are by default automatic, regardless of the lifetime attribute of the
module in which they are declared.

4.4 Discarding Function Return Values (2-8)

Conflict: Both VeraLite and SystemVerilog have a void keyword.  In SystemVerilog
void is a type, whereas in VeraLite it is a special syntactical value that can used (1) to
discard function values, and (2) in special operations such as void drives.
In VeraLite, void is strictly a compiler scheme.  For example:

void = some_function();
instructs the compiler to ignore the return value from the function.

In SystemVerilog the same can be done using a cast:
void’(some_function());
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Resolution: Adopt SystemVerilog’s cast operator to discard return values.  Propose using
the VeraLite form ‘void =’ as an alternative since it shows the intent more clearly than
a cast, and doesn’t force users to use an extra set of parenthesis.

4.5 Tasks (2-9)

Clarification: The section describes the syntax for declaring a local task, a task with file
scope. In SystemVerilog subroutines can have global or module scope, not file scope, so
a local task declaration is unnecessary, thus deprecated.

4.6 return Statement (2-10)

Conflict: SystemVerilog allows the return statement from a function to include an
expression, whereas VeraLite doesn’t.
Resolution: Allow the more general SystemVerilog form.  This can be done by a simple
translation:

function int foo() begin function int foo() begin
return expression; => foo = expression;

end return;
end

4.7 External Declarations (2-13)

Conflict: The VeraLite extern keyword is used to support separate compilation, in a
manner similar to C.  This collides with SystemVerilog’s use of extern, which is used by
a SystemVerilog interface to declare tasks external to the interface.
Resolution: VeraLite extern declarations have no effect and can be ignored.  The use of
extern is deprecated by VeraLite.
Alternatively, the compiler could be instructed to allow the extern modifier, and ignore it.

5 Sequential Control

5.1 case Statements (3-3)

Limitation: VeraLite does not support SystemVerilog’s unique and priority qualifiers
for if-else, case, casez and casex statements.
Resolution: VeraLite will support the unique and priority qualifiers for if-else, case,
casez and casex statements.  This qualifiers do not represent a conflict.

5.2 for loops (3-6)
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Limitation: VeraLite only allows data declarations at the start of a block, however,
SystemVerilog allows a loop variable to be declared following the for keyword. For
example:

for(integer j = 0; j < n; j++) begin $display(j); end
The scope of the variable is the loop itself.
Resolution: Remove this limitation.  VeraLite will allow loop variables to be declared
within the loop.
 

5.3 break and continue (3-8)

Clarifications: Both break and continue, although not in Verilog-1995, have the same
semantics in both VeraLite and SystemVerilog.

6 Concurrency Control

6.1 fork and join (4-2)

VeraLite and SystemVerilog have similar functionality for starting dynamic processes:
the ability to fork threads without a join that forces the parent process to block.  VeraLite
uses the fork .. join none construct, while SystemVerilog uses the process qualifier.  In
addition, VeraLite supports the existing fork .. join (same as join all), and one more
variant: fork ... join any, in which the parent process blocks until at least one of its
children terminate.
Overlap: VeraLite’s fork/join constructs do not represent a conflict, but fork .. join any
does overlap with SystemVerilog’s process qualifier.
Resolution: While both forms can coexist, they may lead to confusion.  We propose
deprecation of process and adoption of the fork .. join any construct, which is more
natural to existing Verilog (and Vera) users.

6.2 wait_var() (4-8)

Correction: The donation incorrectly states the data-types allowed as arguments to the
wait_var() system task.  The document should state:

variable_list
The variable_list consists of one or more variables (separated by commas)
of type integer, bit (i.e., reg), bit[], enum, or string.  Each variable may be either
a simple variable, or a var parameter (variable passed by reference), or a member
of an array, associative-array, or object (class).  Object handles are not allowed.
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Clarification: Arguments to wait_var() can be an array subscript expressions, in which
case the index expression is evaluated only once when wait_var() is executed.

Clarification: This is a system task and should use the appropriate syntax: $wait_var().

6.3 terminate (4-9)

Clarification: SystemVerilog supports the disable construct, which will end a process
when applied to the block being executed by the process.  However, terminate differs
from disable in that terminate considers the dynamic parent-child relationship of the
processes, whereas disable uses the static syntactical information of the disabled block.
Thus, disable will end all processes executing a particular block, whether the processes
were forked by the calling thread or not, while terminate will end only those processes
that were spawned by the calling thread.

Clarification: This is a system task and should use the appropriate syntax: $terminate().

6.4 suspend_thread (4-10)

Clarification: Calling suspend_thread() is conceptually similar to a 0 delay statement:
#0 ;

Clarification: This is a system task and should use the appropriate syntax:
$suspend_thread().

6.5 Maximum Threads (4-11)
This feature is deprecated and is not supported by VeraLite.  Please disregard.
 

6.6 Events (1-9)
Section 1-9 of the donation briefly describes VeraLite events, but the section describing
event operations in detail is missing.  The missing sections are attached below.

6.6.1 Synchronizing concurrent processes with event variables
Events are variables that synchronize concurrent processes. When a sync is called, a
process blocks until another process sends a trigger to unblock it. Events act as the go-
between for triggers and syncs.
This subsection includes:

� sync System Task
� trigger System Task
� event Variables
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6.6.2 sync System Task or Function
The sync() system task synchronizes statement execution to one or more triggers. sync
can be used as either a task or a function.
The syntax to call the sync() task is:
     task sync(ALL | ANY | ORDER, event event_name1, ..., event_nameN);
     function integer sync(CHECK, event event_name1, ..., event_nameN);

event_name:
The event_name is the event variable name on which the sync is activated.

Predefined Macros:

ALL
The ALL sync type suspends the process until all of the specified events are
triggered.  For example:

sync(ALL, event_a, event_b, event_c);
This example suspends the thread until each of the events are triggered. Once they
are triggered, the statement immediately following the sync() call is executed.

ANY
The ANY sync type suspends the process until any of the specified events is
triggered.  For example:

sync(ANY, event_a, event_b, event_c);
This example suspends the thread until any of the specified events is triggered.
Once one of the events is triggered, the statement immediately following the
sync() call is executed.

ORDER
sync(ORDER, event_a, event_b, event_c);

This example suspends the thread until all of the specified events are triggered. As
soon as an event is received out of order, the process unblocks and a simulation
error occurs. Also, only the first event can be in the ON state when the sync is
called. If both event_a and event_b are ON when the call is made, a simulation
error occurs.
Note: Events set to null are treated as if they were received in the correct order.

CHECK
The CHECK sync type is called as a function. It does not suspend the thread. It
returns a 1 if the trigger is ON and a 0 if it is not. This sync type can only be used
with ON and OFF trigger types.  For example:

if (sync(CHECK, event_a) )
printf("The event is ON.\n");

If the event is on, this sync() call returns a 1 the message is printed. If the event is
OFF, sync() returns a 0.

6.6.3 trigger System Task
Triggers are used to turn events ON or OFF. By default, all events are OFF.
The syntax to call a trigger is:
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task trigger(ONE_SHOT | ONE_BLAST | HAND_SHAKE | ON | OFF,
event event_name1 , ... , event_nameN);

event_name:
The event_name is the event variable name on which the sync is activated.

Predefined Macros:

ONE_SHOT
The ONE_SHOT trigger turns on the vent momentarily, causing all currently
waiting syncs to unblock; subsequent syncs will not unblock.  If there are no
processes waiting for the trigger, the trigger is discarded.  Note that in order for a
trigger to activate a sync, the sync must execute before the trigger.

ONE_BLAST
ONE_BLAST triggers are similar to ONE_SHOT triggers with one exception:
the ON condition persists until simulation time advances.  Thus, ONE_BLAST
triggers will unblock any sync that executes before or at the same simulation time
as the trigger.
VeraLite does not yet support ONE_BLAST, but it’s included here for
completeness.  Also, it easy to implement and it can be useful.

HAND_SHAKE
A HAND_SHAKE trigger unblocks only one sync, even if multiple syncs are
waiting for triggers.  If a sync has been called and is waiting for a trigger then the
HAND_SHAKE trigger will unblock the sync.  If no sync has been called when
the trigger executes, the HAND_SHAKE trigger is stored.  When a sync is
eventually called, the sync is immediately unblocked and the trigger is removed.
Vera uses LIFO scheduling for events, but that is inconsistent with all other
synchronization primitives.  VeraLite proposes using FIFO.  We may choose to
document that here or leave it open.

ON
The ON trigger turns the event on, causing all currently waiting as well as
subsequent syncs on that event to unblock.  This condition will persist until there
is a trigger (OFF) call.

OFF
The OFF trigger turns an event OFF,  causing subsequent  syncs on that evebnnt
to block.

6.6.4 Event Variables
Event variables serve as the link between triggers and syncs. They are a unique data type
with several important properties.

Bidirectional Event Variables
Event variables are bidirectional variables when used as arguments in syncs and triggers.
The same event variable can be used to pass and receive triggers.  For example:

task T1 (event trigger_a)
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{
printf("\nT1 syncing" );
sync(ALL, trigger_a); // Blocked: proceed after receiving

//trigger
printf("\nT1 event trigger_a received");
repeat (7) @(posedge CLOCK);
printf("\nT1 triggering trigger_a");
trigger(ONE_SHOT, trigger_a);

}

program trigger_play
{

event trigger1;

// top block code starts here

fork
T1(trigger1); // start T1 and go on

join none
repeat(8) @(posedge CLOCK); // blocks waiting for trigger

fork
{

printf("\nPROGRAM triggering trigger1");
printf("\nPROGRAM This unblocks T1");
trigger(ONE_SHOT, trigger1); // unblock the waiting

T1
}
{

repeat (5) @(posedge CLOCK);
printf("\nPROGRAM syncing\n\n");
sync (ALL, trigger1); // wait for T1 to unblock me

}
join
wait_child();
printf("\nTrigger play done!");

}

This example declares the task T1, which is called in the main program. Then T1 is called
in a thread forked off from the main program. The program continues without waiting for
the child thread to complete. Because T1 contains a sync within its definition, the child
thread blocks, waiting for a trigger. Then another fork is used to fork off a trigger, which
unblocks the suspended T1. A second thread in that fork then calls a sync. This sync
occurs as T1 is unblocked.  T1 then continues its execution, which includes the execution
of the trigger that unblocks the final child thread.



Clarification to Testbench Donation  Page 30 of 54

September 4, 2002 30

6.6.5 Disabling Events
If an event variable is assigned a null value, the event is ignored in subsequent sync()
calls that may be waiting for a trigger on the event variable. That is, when the event is set
to null, any blocking sync becomes non-blocking. There is no way to make it block again.

For example:
event E1 = null;
sync(ALL, E1);

The sync is immediately satisfied because of the null value assigned to E1.

6.6.6 Merging Events
When an event is assigned to another event, the two are merged, which causes triggers on
either one to affect both.

For example:
event E1, E2, E3;
E1 = E2;
trigger(ON, E3);
trigger(ON, E1); // this will trigger E2, as well
trigger(ON, E2); // this will trigger E1, as well
E1 = E3;
E2 = E1;
trigger(ON, E1); // this will trigger E2 and E3, as well
trigger(ON, E2); // this will trigger E1 and E3, as well
trigger(ON, E3); // this will trigger E1 and E2, as well

However, use caution when merging events. The assignment only affects subsequent
triggers and syncs. For example, if a process is blocked waiting for event1 when you
assign another event to event1, the sync will never unblock.  For example:

fork
{

while (1) {sync (ALL, E2);}
}
{

while (1) {sync (ALL, E1);}
}
{

E2 = E1;
while (1) {trigger(ON, E2);}

}
join

This example forks off three concurrent threads. Each starts at the same time in the
simulation. So, at the same time that threads 1 and 2 are blocked, thread 3 assigns the
event E1 to E2. This means that thread 1 can never unblock, because the event E2 is now
E1. To unblock both threads 1 and 2, the merger of E2 and E1 must take place before the
fork.
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Conflict: VeraLite’s event data-type collides with SystemVerilog’s named events.  In
SystemVerilog, named events are triggered via the -> operator, and processes can wait
for events using an @ operation.
A SystemVerilog event is analogous to a VeraLite event that uses a ONE_SHOT trigger.
However, VeraLite events are much more general than SystemVerilog events.  The most
salient semantic difference is that SystemVerilog named events do not have a value nor a
duration, whereas VeraLite events have a value (ON, OFF) and a persistency that can be
controlled via the trigger options.  Also, VeraLite events are handles to synchronization
objects, thus, they can be passed as arguments to tasks, and they can be dynamically
allocated and reclaimed, whereas named events are static and cannot be passed as
arguments.  Rather than a basic data type, VeraLite events behave more like object
handles; they can be assigned to one another, they can be assigned the value null, they
can be arguments to tasks, and they are dynamically allocated and reclaimed.

Resolution: Extend SystemVerilog event to encompass the VeraLite functionality.  The
new event data-type will continue to support the old Verilog operations and semantics,
which are completely backward compatible.  Thus, an event that is triggered via the ->
operator, and that is used in @ expression, will continue to behave exactly as it does now.
The backward compatible declarative operations (@ and ->) will be restricted to events
with static lifetime.  In addition, the event data-type will be extended to support the new
VeraLite operations and semantics.

Clarification: Events incorporate a set of system tasks and should use the appropriate
syntax: $sync(), and $trigger().

6.7 Semaphores

6.7.1 Allocating a Semaphore (4-12)

Clarification: The prototype for the alloc() function is shown as:

function integer alloc(SEMAPHORE, integer semaphore_id, 
   integer semaphore_count, integer key_count);

VeraLite imposes the following restrictions:
� semaphore_id must be 0.
� semaphore_count must be 1.

Proposal: This function should be simplified to:
function integer alloc(SEMAPHORE, integer key_count);
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6.8 Mailboxes

6.8.1 Allocating a Mailbox (4-16)

Clarification: The prototype for the alloc() function is shown as:

function integer alloc(MAILBOX, integer mailbox_id, 
   integer mailbox_count);

VeraLite imposes the following restrictions:
� mailbox_id must be 0.
� mailbox_count must be 1.

Proposal: This function should be simplified to:
function integer alloc(MAILBOX);

6.8.2 Returning Data: mailbox_get() (4-17)

Clarification: Mailboxes are type-less, that is, a single mailbox can send and receive any
type of data.  Thus, in addition to the data being transmitted (i.e., the message), mailbox
implementations must maintain the message data type placed by mailbox_put.  This is
required in order to enable run-time type checking.
 
Clarification: Semaphore and Mailbox incorporate a set of system tasks and should use
the appropriate syntax: $alloc(), $mailbox_get(), $mailbox_put(), etc.

6.9 Timeout Limit (4-20)

Clarification: VeraLite does not support timeout limits.  Please disregard this section.

7 Interfacing to the Device Under Test

7.1 Interface Declaration
VeraLite interfaces specify how a VeraLite test-bench communicates with the device
under test (i.e., the Verilog design). A test-bench may contain one or more interfaces.
Each interface contains an arbitrary number signals (with designated size, and input,
output, or inout direction), and at most one of the signals that is designated as the clock.
A VeraLite interface serves two functions.  First, it itemizes and describes the signals
(nets) through which the test-bench will interact with the design being tested.  Thus, the
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signals that comprise the interfaces denote the boundary between the design and the test7.
Second, and most importantly, an interface groups together signals that are synchronous
to a particular clock, that is, it defines a clocking domain. The clocking domain is the
core element in a cycle-based methodology.  This methodology enables users to write
test-benches at a higher level of abstraction.  Rather than focusing on signals and
transitions in time, the test can be defined in terms of cycles and transactions.

Conflict: VeraLite uses an interface to connect the test-bench to the device under test.
The keyword interface collides with SystemVerilog’s interface.
Resolution: As described above, the key function of a the VeraLite interface is to enable
the clocking domain abstraction.  Therefore, a more appropriate name for this construct is
clocking_domain.  The term clocking_domain not only eliminates the conflict with
SystemVerilog, but also elucidates this construct’s main function.
As proposed in Section 4.1, the signals through which the program interacts with the rest
of the design are specified via the program ports, while the clocking_domain specifies
the synchronization or communication paradigm used by those signals.  Thus, using this
simplified and more general approach, the clocking_domain applies only to a particular
program and must be declared within the program, that is, a clocking_domain will have
program scope.

Simplification: A VeraLite interface requires that each one of its elements specify not
only the synchronization paradigm, but also its direction and size.  Since the direction and
size information and can be easily deduced from the synchronization constructs (PHOLD,
, …) or the program’s ports, this information becomes optional.  Note that it may still be
needed for cross-module references (see hdl-node in Section 7.4), but for regular ports,
this information can be omitted.

For example:

program test ( input phi1, input [15:0] data, output write,
input phi2, inout [8:1] cmd, input enable

);

clocking_domain cd1
{

phi1 CLOCK;
data PSAMPLE #-1;
write PHOLD #1;
input [2:0] state PSAMPLE #-1 hdl_node “top.cpu.state”;

}

clocking_domain cd2
{

phi2 CLOCK;
cmd NSAMPLE #-2ps NHOLD;
enable PSAMPLE #1;

}

                                                
7 In the newly proposed program declaration this boundary is specified in part by the program ports.
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// program begins here
. . .

// user can access cd1.data , cd2.cmd , etc…
endprogram

And, the test module can be instantiated and connected to the device under test.

module top;
logic phi1, phi2;

main_test( phi1, data, write, phi2, cmd, enable );
cpu( phi1, data, write );
mem( phi2, cmd, enable );

endmodule

Clarification: A clocking_domain encapsulates a set of signals that share a common
clock, therefore, specifying a clocking domain using a SystemVerilog interface can
significantly reduce the amount of code needed to connect the test-bench.  Furthermore,
since the signal directions in the clocking domain are with respect to the test-bench, and
not the design under test, a modport declaration can appropriately describe the direction.
Conceptually, one can envision a VeraLite program as being contained within a program
module, and whose ports are interfaces that correspond to the signals declared in each
clocking-domain.  The interface’s wires will have the same direction as specified in the
clocking-domain when viewed from the test-bench side (i.e., modport test), and reversed
when viewed from the device under test (i.e., modport dut).

For example, the previous example could be re-written as:

interface bus_A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);
modport dut (output data, input write);

endinterface

interface bus_B (input clk);
wire [8:1] cmd;
wire enable;
modport test (input enable);
modport dut (output enable);

endinterface

program test( bus_A.test a, bus_B.test b );

clocking_domain cd1
{

a.clk CLOCK;
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a.data PSAMPLE #-1;
a.write PHOLD #1;
input [2:0] state PSAMPLE #-1 hdl_node “top.cpu.state”;

}

clocking_domain cd2
{

b.clk CLOCK;
b.cmd NHOLD #-2ps NSAMPLE;
b.enable PSAMPLE;

}

// program begins here
. . .

// user can access cd1.a.data , cd2.b.cmd , etc…
endprogram

And, the test module can be instantiated and connected to the device under test.

module top;
logic phi1, phi2;

bus_A a(phi1);
bus_B b(phi2);

test( a, b );
cpu( a );
mem( b );

endmodule

Clarification: The signals names in the clocking domain must match the names of the
ports in the program block.  Thus, a signal can appear only once in a particular clocking
domain.  However, the same port can be included in multiple clocking domains.

7.1.1 Signals in Multiple Clocking Domains
The proposed organization for the program block and clocking domains,  does not
disallow using the same port in more than one clocking domain.  For input signals, the
semantics is clear; each clocking domain samples the signal using a different clock.
However, for output signals, there are two possibilities, the output port is either driven to
a resolved value or to the latest value assigned (as a procedural assignment).  Typically,
this is not an issue since signals in different clocking domains truly are separate signals
and each corresponds to a separate port.  But, sometimes a signal may be driven by more
than one clock edge, for example, dual-data-rate memories are driven on both the positive
and negative edges of a clock.  In those situations the procedural (last drive wins) is the
more useful choice.  Users can easily accomplish value resolution by using separate ports
for the same net.
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7.2 Interface Signal Declarations (5-2)
Correction: The donation includes the terms input_signal_type and output_signal_type,
but does not define them.
� input_signal_type: An input signal type consists of one the words NSAMPLE or

PSAMPLE plus an optional input skew, whose syntax is: #-skew_value.
� output_signal_type: An output signal type consists of one the words NHOLD or

PHOLD plus an optional output skew, whose syntax is: #skew_value.

Note that the input skew contains a minus sign (-),  whereas the output skew does not.

VeraLite samples input and inout signals at a specific edge (positive-edge for PSAMPLE
and negative-edge for NSAMPLE) of their corresponding clock. If the optional input
skew is specified in the signal declaration then the value of the signal sampled is the one
at skew simulation time units before the clock edge.
Similarly, an output signal that specifies an output skew is driven skew simulation time
units after  the corresponding clock edge.  The figure below depicts the sample and drive
times for a signal with respect to the positive edge of a clock.

Limitation: SystemVerilog allows physical time units to be specified, whereas VeraLite
accepts only time ticks to specify skews.
Resolution: Remove this limitation.  VeraLite will accept both time ticks as wells as
physical time units to specify skews.
For example:

input [16:0] data NSAMPLE -12ps;

Clarification: The input skew specification #-0 has a special meaning that specifies the
signal should be sampled an infinitesimal delta before the clock edge.  That is, the value
sampled is always the signal’s last value before the clock edge.

input skew output  skew

signal driven heresignal sampled here

Sample and drive times for a signal with optional input and output skews

clock
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Clarification: When signals in a clocking-domain do not specify a skew, VeraLite uses a
skew of zero, that is, no skew.  Signals with no input skew are sampled at the same time
as their specified clock edge.  Likewise, signals with no output skew are driven at the
same time as their specified clock edge.  Note that this type of zero-delay processing is a
typical source of non-determinism that often results in races, however, VeraLite avoids
both of these by means of two mechanisms.  First, by constraining VeraLite processes to
execute only at synchronize time (see Section 7.3), once all zero-delay transitions have
propagated through the design and the system has reached a steady state.  Second, by
queuing all outgoing signal drives until the end of the VeraLite execution cycle, and then
propagating all the drives as one event.  This is described in more detail in Section 8.2.
Supporting signals with zero (input or output) skew without races is an important feature
of the test-bench environment.  This is because test-benches with no timing information
are quite common, particularly during the early phases of a design, when designers are
mostly focused on functionality and not timing.

7.3 Cycle Behavior with SystemVerilog Event Queue 
There are two major sources of nondeterminism in SystemVerilog.  The first one is that
active events can be taken off the queue and processed in any arbitrary order.  The second
one is that statements without time-control constructs in behavioral blocks do not execute
as one event.  However, from the test-bench perspective, these effects are all unimportant
details.  The primary task of a test-bench is to generate valid input stimulus for the design
under test, and to verify that the device operates correctly.  Furthermore, test-benches that
use cycle abstractions are only concerned with the stable or steady state of the system for
both checking the current outputs and for computing stimuli for the next cycle.
To avoid the nondeterminsm and races inherent in Verilog’s event queue management,
VeraLite executes test-bench processes only after the system has settled to its steady
state.  Until now, this was done at synchronize time, but that was mostly due to PLI
limitations.  Recently, this behavior has been modified to execute after non-blocking
assignments, thus, treating all transitions towards the steady state in the same consistent
manner.  Accordingly, signals driven from the test bench with no delay are propagated
into the design as one event immediately before read-only synchronize time.  With this
behavior, the correct cycle semantics can be modeled without races, and make the test-
bench compatible with the various assertions mechanisms.
Proposal: In order to standardize the cycle behavior, the execution after non-blocking
assignments described above should be added to SystemVerilog’s event cycle.  This is
not a requirement unique to the test-bench.  Many other subsystems such as monitors,
checkers, waveform tools, and temporal assertions, have similar requirements.  However,
it is the test-bench that exacerbates this need because in addition to examining the current
state it must also react and provide new stimuli for the next cycle, which is often driven
with no delay.

7.3.1 Blocking Tasks in Cycle/Event mode
Calling functions in the program block from other modules and vice-versa is permitted
and needs no special handling.  Likewise, calling a blocking task in the program block
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from outside the program block presents no problem and can be treated like a regular task
call.  The blocking task will simply block using cycle semantics. However, calling a
blocking task outside the program block from inside the program (where cycle semantics
are observed) requires explicit synchronization upon return from the task.

7.4 hdl_path (5-6)

Clarification: An hdl_path stands for a hierarchical name, or cross-module reference.
VeraLite accepts any valid Verilog hierarchical expression.

Correction: Page 5-7 of the donation states that “the path always starts from the top level
HDL module”.  This is incorrect.  The path can specify any hierarchical path that can be
reached from the point of instantiation of the program module (see Section 4.1) according
to SystemVerilog’s scope search rules.

7.5 Interface Signal of type CLOCK (5-8)

Clarification: The note in the donation states that “.. the same signal can be associated
with multiple clocks via multiple interface definitions.  However, despite multiple
interfaces, a single signal cannot be driven to two values at the same time.”
That statement is misleading.  When each signal in an interface (i.e., clocking-domain)
represents a Verilog wire, each output signal has a register associated with the signal that
will hold the last value to which the signal is driven .  If the same net is an output from
more than one interface then that net has multiple drivers, and Verilog’s resolution
function will determine the net’s final value.  However, when the same output signal is
driven (from within VeraLite) more than once at the same time then VeraLite checks for
conflicting drives.  When conflicting drives are detected, VeraLite issues a simulation
error, and drives an X onto each conflicting bit.

8 Signal Operations (6-1)

The donation lists “The expect event” as one of the topics covered in the chapter.  That
section is not part of the donation.  Please disregard.

8.1 Synchronization (6-2)

8.1.1 Interface_signal (6-2)
The donation states  “… It can be any signal in an interface declaration or CLOCK.  The
interface signal can be any subfield of a signal as well.  If CLOCK is specified, the
synchronization operation is performed on SystemClock.



Clarification to Testbench Donation  Page 39 of 54

September 4, 2002 39

Clarification: SystemClock is not defined. SystemClock is a legacy concept based on
designs that were either single clocked or had a discernable master clock (or system
clock). Every VeraLite test-bench has an implicit clocking signal called SystemClock,
which serves two functions:
1. It us used as a clock so that messages are issued in terms of cycle numbers, such as:

“Error in program test1 (test1.vr, line 19, cycle 20)”.
2. It  allows use of @(CLOCK) as a shorthand for @(interface_name.clock_name).
In a true multi-clocking environment, System Clock can be confusing.
Resolution: Eliminate the need for SystemClock, and change the meaning of CLOCK in
this context to represent the clock signal within a particular clocking-domain.  This will
allow users to  specify @(interface_name.CLOCK) regardless of the name that was
given to the clock signal.
For example:

interface myIfc
{

input CLOCK clk;
...

}
Given the clocking-domain declaration above, users would be allowed to use myIfc.clk
or myIfc.CLOCK.  However, use of @(CLOCK) by itself is deprecated.
Error messages should be issued using simulation time.  If it is deemed important to have
cycle-based messages, users may be allowed to associate a clocking signal via a system
task, for example $set_system_cycle( clock_signal );

8.1.2 Synchronization (6-3)
Correction: The second synchronization example uses @(CLOCK).  This use should be
deprecated.  Instead, require explicit naming of the clocking-domain (see Section 8.1.1).
as in: @(ram_bus.CLOCK).

Correction: The last paragraph of the Synchronization section that section states “At
initialization, HDLs can create edges at time = 0 (for example, going from X to the
initialized value).  This means that synchronization conditions can be set before
initialization of the signal.”
That statement is incorrect.  VeraLite delays execution of a program’s initial statements
until all such activity has settled (see Section 7.3).
Also, this means that any clock edges at time 0 will not trigger a new cycle.  This avoids
races between the various initial blocks and the test-bench, and is more consistent with
SystemVerilog’s initialization rules.

8.2 Blocking and Non-Blocking Drives (6-5)

Clarification: The donation implies that blocking and non-blocking drives in VeraLite
are analogous to the Verilog operators by the same name.  That is not true.  In VeraLite
all drives are queued, regardless of whether they are blocking or non-blocking.  As long
as VeraLite has processes ready to execute at the current time, these drives will remain in
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the queue.  Then, at the end of all (VeraLite) process execution, all drives are propagated
into the design in one fell swoop.  Thus, in VeraLite a non-blocking drive simply means
that when the delay cycle count is not zero, the process that  executes the drive continues
to execute without blocking.  It does not mean that those drives will be propagated as a
Verilog non-blocking assignment (NBA)!  Likewise, VeraLite blocking drives seem to
imply that the driven value is propagated through the design immediately, perhaps
unblocking other processes that are sensitive to the driven signal.  As explained above,
this is not the case: All drives are queued until the end of  the VeraLite processing.

Conflict: VeraLite uses the same syntax as SystemVerilog for non-blocking drives, but
their semantic is very different.
Resolution: Eliminate the confusion by simplifying VeraLite to support only one type of
drive: the non-blocking drive (=).  If users wish to emulate the current Vera non-blocking
behavior, they can easily do so by means of an auxiliary thread:

ifc.sig <= value;      becomes     fork ifc.sig = value; join none;
If the non-blocking syntax is to be supported then it should behave as in SystemVerilog.

Clarification: The signal drive operator syntax may appear to be ambiguous with certain
event control expressions in SystemVerilog.  For example:

integer  j = 4;
@j a = b;

The last statement above has the same syntactical form as a signal drive.  But, it has two
different meanings: in SystemVerilog the process blocks until j changes value, whereas a
signal-drive causes the process to block for j cycles.
Nevertheless, the compiler can easily resolve the ambiguity by examining the type of
operand involved in the signal drive (a above).  If the operand is defined in a clocking
domain, the signal is synchronous and should be driven using cycle semantics via a signal
drive.  Otherwise, the statement is a regular event control assignment.

8.2.1 Drives (6-6)
Correction: The last line of the first paragraph states “Conflicting drives drive the signal
to X and result in a simulation error”.  That description is inaccurate, it should state:
“Conflicting drives drive the conflicting bits to X and result in a simulation error”.  Also
see Section 8.2 for an explanation of blocking vs. non-blocking VeraLite drives.

8.3 Sampling a Signal (6-6)

Correction: The note states that “when sampling a signal in an expression, it is done
immediately (i.e., asynchronously).” .  That is incorrect.  A synchronous VeraLite signal
always evaluates to the sampled value, i.e., the synchronous value.  That statement would
imply that the following code segments might yield different results:
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// expression // assignment
integer y = ifc.sig; integer y;

y = ifc.sig;

8.4 Implicit Synchronization (6-7)

Clarification: Please disregard the second example:
foobus.strobe_1 == 1’b1;

That operation is not part of the donation.

8.5 Asynchronous Signal Operations (6-8)

Limitation: The async modifier is not supported by VeraLite.  If a signal is truly
asynchronous, it should not be declared in a synchronous clocking-domain.
Resolution: To create an asynchronous clocking domain, simply omit the CLOCK signal
from the corresponding clocking-domain.  When a clocking domain has no clock
specification, VeraLite will consider all signals in the domain to be asynchronous: the
signals will not be sampled at any clock edge, instead their instantaneous value will be
used.

8.6 Sub-Cycle Delays (6-9)

Limitation: SystemVerilog allows physical time units to be specified, but the VeraLite
delay task accepts only time ticks to specify a time.
Resolution: Remove this limitation.  The delay task will accept both time ticks as well as
physical time units.

Clarification: Calling the delay task delay( n ) is analogous to a # n declaration.  The
only difference is that VeraLite always executes after non-blocking assignments (see
Section 7.3). whereas the # operator does not specify this behavior.  Also, delay( 0 ), is
simply ignored, to accomplish a delay(0) suspend_thread() (see Section 6.4).

9 Class and Methods

9.1 Objects and Instance of Classes (7-3)

Clarification:  The donation states that an instance of  a class is created using the new
keyword.  That should state using the new task.

Correction: The example lists task1 as:
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task task1 (integer a, (obj_example myexample = null) )
That notation is incorrect. The use of parenthesis to create optional arguments is not
supported by VeraLite.

9.2 Constructors (7-5)

Clarification: Event though the new operation is defined as a task, it is treated as a
function, that is, the new task may not block.  The VeraLite compiler will issue an error if
the new task is determined to be blocking.

Clarification: The donation doesn’t mention that every class has a default (built-in) new
method. That method first calls its parent class (super.new) and then proceeds to initialize
each member of the current object to its default value.

9.3 External Classes (7-11)
Resolution: This use of the extern keyword is deprecated.  See discussion in section 4.7

9.4 Typedef (7-11)

Overlap: The typedef keyword is used by SystemVerilog to define any arbitrary user-
defined type.  For example: typedef  bit [4:1] nibble.
VeraLite uses the typedef  keyword only for forward-referencing of class declarations in
order to satisfy the rule that a type must be declared before its use.
Resolution: Extend SystemVerilog’s typedef to allow forward references for classes.
The two uses do not represent a conflict and can coexist without problem.
Note that the class construct always creates a type, it does not require a typedef
declaration as in typedef class … .  This is the same as in C++.

9.5 Classes, Structs, and Unions

SystemVerilog includes structs and unions.  VeraLite supports the object-oriented class
construct.  On the surface, it might appear that class and struct provide equivalent
functionality, and only one of them is needed.  However, that is not true; classes differ
from structs in four fundamental ways:
1. SystemVerilog structs are strictly static objects; they are created either in a static

memory location (global or module scope) or on the stack of an automatic task.
Conversely, VeraLite objects (i.e., class instances) are exclusively dynamic, their
declaration doesn’t create the object; that is done by calling new.
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2. SystemVerilog structs are type compatible so long as their bit sizes are the same, thus
copying structs of different composition but equal sizes is allowed.  In contrast,
VeraLite objects are strictly strongly-typed.  Copying an object of one type onto an
object of another is not allowed.

3. VeraLite objects are implemented using handles, thereby providing C-like pointer
functionality.  But, VeraLite disallows casting handles onto other data types, thus,
unlike C, VeraLite handles are guaranteed to be safe (no memory crashes).

4. VeraLite objects form the basis of an Object-Oriented framework that provides true
polymorphism.  Class inheritance, abstract classes, and dynamic casting are powerful
mechanisms that go way beyond the mere encapsulation mechanism provided by
structs.

9.6 Automatic Memory Management
The memory used by VeraLite objects and strings is allocated dynamically.  When
objects are created, VeraLite allocates more memory.  When an object is not needed
anymore, VeraLite automatically reclaims the memory, making available for re-use.  The
automatic memory management system is an integral part of VeraLite.  One might be
tempted to think that a manual memory management system, such as the one provided by
C’s malloc and free, might be sufficient.  However, VeraLite’s (and SystemVerilog’s)
multi-threaded, re-entrant environment create many opportunities for users to shoot
themselves in the foot.  For example, consider the following example:

myClass  obj = new;
fork

task1( obj );
task2( obj );

join none

In this example, the main process (the one that forks off the two tasks) doesn’t know
when the two processes might be done using the object obj.  Similarly, neither task1 nor
task2 knows when any of the other processes will no longer be using the object obj.  It is
evident from this simple example that no single process has enough information to
determine when it is safe to free the object.  The only two options available to the user
are (1) play it safe and never reclaim the object, or (2) add some form of reference count
that can be used to determine when it might be safe to reclaim the object.  Adopting the
first option will cause the system to quickly run out of memory.  The second option
places a large burden on the users, who in addition to managing their test-bench, must
also manage the memory using less than ideal schemes.  To avoid these shortcomings,
VeraLite manages all dynamic memory automatically. Users no longer need to worry
about dangling references, premature memory free’s, or memory leaks.  The system will
automatically reclaim any object that is no longer being used.  In the example above, all
that users do is assign null to the handle obj when they no longer need it.
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9.7 Inheritance
The donation briefly refers to Object-Orientated Programming, but the section describing
class inheritance is missing.  The missing sections are attached below.
Inheritance introduces several new keywords (these have already been accounted for in
Section 3.2).  Those keywords are:

� extends
� local
� protected
� super
� virtual

9.7.1 Subclasses and Inheritance
In the previous section we have defined a class called Packet. Assume we want to extend
this class so the packets can be chained together into a list. One solution would be to
create a new class called LinkedPacket that contains a variable of type Packet.
Whenever we refer to a property of Packet, we need to reference the variable packet.

class LinkedPacket
{

Packet packet;
LinkedPacket next;

function LinkedPacket get_next()
{

get_next = next;
}

}

Since LinkedPacket is a specialization of Packet, a more elegant solution is to extend the
class creating a new subclass that inherits the members of the parent class. Thus, for
example, we could have:

class LinkedPacket extends Packet
{

LinkedPacket next;
function LinkedPacket get_next()
{

get_next = next;
}

}

Now, all of the methods and properties of Packet are part of LinkedPacket - as if they
were defined in LinkedPacket – and LinkedPacket has additional properties and methods.
We can also override the parent’s methods, changing their definitions.
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9.7.2 Overriden Members
Subclass objects are also legal representative objects of their parent classes. For example,
every LinkedPacket object is a perfectly legal Packet object.
We can assign the handle of a LinkedPacket object to a Packet variable:

LinkedPacket lp = new;
Packet p = lp;

In this case, references to p access the methods and properties of the Packet class. So, for
example, if you have overridden properties and methods in LinkedPacket, when you
reference these overridden members through p you get the original members in the
Packet class. From p, new and all overridden members in LinkedPacket are hidden from
you.

class Packet
{

integer i = 1;
function integer get()
{

get = i;
}

}
class LinkedPacket extends Packet
{

integer i = 2;
function integer get()
{

get = -i;
}

}

LinkedPacket lp = new;
Packet p = lp;
j = p.i;  // j = 1, not 2
j = p.get();  // j = 1, not -1 or –2

Note that this is different from the semantics of, for example, Java. In Java, you would
get the original properties, but you would get the overridden methods of the child class.
In VERA, to get the overridden method, the parent method needs to be declared virtual
(see below).

9.7.3 super 
The super keyword is used from within a derived class to refer to properties of the parent
class. It is necessary to use super when the property of the derived class has been
overridden, and cannot be accessed directly.

class Packet //parent class
{

integer value;
function integer delay()
{

delay = value * value;
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}
}

class LinkedPacket extends Packet //derived class
{

integer value;
function integer delay()
{

delay = super.delay()+value * super.value;
}

}
super.value;
super.delay();

The property may be a member declared a level up or a member inherited by the class
one level up.  There is no way to reach higher (for example, super.super.count is not
allowed).
Subclasses are classes that are extensions of the current class.  Whereas super-classes are
classes that the “current” class is extended from, beginning with the original base class.

Note:
When using the super within new, it must be the first statement in the constructor.

9.7.4 Casting
It is always legal to assign subclass variable to a variable of superclass higher in the
inheritance tree. It is never legal to directly assign a superclass variable to a variable of
one of its subclasses.  However, it may be legal to place the contents of the superclass
handle in a subclass variable.

To check if the assignment will be legal, use the cast_assign() function.

The basic syntax for cast_assign() is:

function integer cast_assign(var destination_handle
source_handle);

This function checks the hierarchy tree (super and subclasses) of the source_handle to see
if it contains the class destination_handle. If it does, cast_assign() does the assignment; if
it is not, cast_assign() generates an error and terminates.

A second version of this function allows you to check the results without generating an
error:

cast_assign(destination_handle, source_handle, CHECK);

does the assignment and returns a 1 if the assignment is valid.  Otherwise, it sets the
destination handle to null and returns a 0.



Clarification to Testbench Donation  Page 47 of 54

September 4, 2002 47

9.7.5 Chaining Constructors
When a subclass is instantiated, one of the system’s first actions is to invoke the class
method new().  The first, implicit action new() takes is to invoke the new() method of its
superclass, and so on up the inheritance hierarchy.  Thus, all the constructors are called,
in the proper order, beginning with the base class and ending with the current class.
If the initialization method of the super-class requires arguments, you have two choices.
If you want to always supply the same arguments, you can specify them at the time you
extend the class:

class EtherPacket extends Packet(5) {

This will pass 5 to the new routine associated with Packet.

A more general approach is to use the super keyword, to call the superclass constructor:

task new() {
super.new(5);

If you use this approach then this must be the first executable statement in new.

9.7.6 Data Hiding and Encapsulation
So far, we have made all of our properties and methods available to the outside world
without restriction. However, for most data (and most subroutines) we want to hide them
away from the outside world, “seal them away in the capsule” of the class. This keeps
other programmers from relying on your specific implementation - so you can safely
modify it later - and it also protects against accidental modifications to properties that are
internal to the class. When all data becomes hidden - being accessed only by public
methods - testing and maintenance of the code becomes much easier.
Unlabeled properties and methods are public, available to anyone who has access to the
object’s name.
A member identified as local is available only to methods inside the class. Further, these
local members are not visible even to subclasses and cannot be inherited. Of course, non-
local methods that access local properties or methods can be inherited, and work properly
as methods of the subclass.
A protected property or method has all of the characteristics of a local member, except
that it can be inherited; it is visible to subclasses.
Note that within the class, we can reference a local method or property of our class, even
if it is in a different instance. For example

class Packet
{

local integer i;
function integer compare (Packet other)
{

compare = (this.i == other.i);
}

}
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A strict interpretation of encapsulation might say that other.i should not be visible inside
of this packet, since it is a local property being referenced from outside its instance.
Within the same class, however, these references are allowed. In this case, this.i will be
compared to other.i and the result of the logical comparison will be returned.

In summary:
� Wherever possible, use local members. Hide members that the outside world doesn’t

need to know about.
� Use protected members if the outside world doesn’t have a need to know, but

subclasses might.
� Public access should only be allowed when it is absolutely necessary, and the access

should be limited as much as possible. Generally, don’t provide direct access to
properties but rather provide access methods - provide, for example, only read access
if a variable should never be written. This provides an extra level of protection and
preserves flexibility for future changes.

9.7.7 Abstract Classes and Virtual Methods
Often we create a set of classes that can be viewed as all derived from a common base
class. For example, we might start with a common base class of type BasePacket that sets
out the structure of packets but is incomplete; we would never want to instantiate it.
From this base class, though, we might derive a number of useful subclasses: Ethernet
packets, token ring packets, GPSS packets, satellite packets. Each of these packets might
look very similar, all needing the same set of methods, but they could vary significantly
in terms of their internal details.
We start by creating the base class that sets out the prototype for these subclasses. Since
we don’t need to instantiate the base class, we declare it to be abstract by declaring the
class to be virtual:

virtual class BasePacket {

By themselves, abstract classes are not tremendously interesting, but abstract classes can
also have virtual methods. Virtual methods provide prototypes for subroutines, all of the
information generally found on the first line of a method declaration: the encapsulation
criteria, the type and number of arguments, and the return type if it is needed. Later, when
subclasses override virtual methods, they must follow the prototype exactly. Thus, all
versions of the virtual method will look identical in all subclasses:

virtual class BasePacket
{

virtual protected function integer send(bit[31:0] data);
}
class EtherPacket extends BasePacket
{

protected function integer send(bit[31:0] data)
{

// body of the function
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...
}

EtherPacket is now a class we can instantiate. In general, if an abstract class has several
virtual methods, all of the methods must be overridden for the subclass to be instantiated.
If all of the methods are not overridden, the subclass needs to be abstract.
Methods of normal classes can also be declared virtual. In this case, the method must
have a body. If the method does have a body, then the class can be instantiated, as can its
subclasses. However, if the subclass overrides the virtual method, then the new method
must exactly match the superclass’s prototype.

9.7.8 Polymorphism: Dynamic Method Lookup
Polymorphism allows us to use superclass variables to hold subclass objects, and to
reference the methods of those subclasses directly from the superclass variable. As an
example, consider the base class for our packet objects, BasePacket. Assume that it
defines, as virtual functions, all of the public methods that are to be generally used by its
subclasses, methods such as send, receive, print, etc. Even though BasePacket is abstract,
we can still use it to declare a variable:

BasePacket packets[100];

We can now create instances of various packet objects, and we can put these into the
array we just created:

EtherPacket ep = new;
TokenPacket tp = new;
GPSSPacket gp = new;
packets[0] = ep; packets[1] = tp; packets[2] = gp;

If our data types were, for example, integers, bits and strings, we couldn’t store all of
these types into a single array, but with polymorphism we can with objects. In this
example, since the methods were declared as virtual, we can access the appropriate
subclass methods from the superclass variable even though the compiler didn’t know - at
compile time - what was going to be loaded into, for example, packets[1]:

packets[1].send();

will invoke the send method associated with the TokenPacket class.  At run-time, the
system correctly binds the method from the appropriate class.
This is a typical example of polymorphism at work, providing capabilities that are far
more powerful than what is found in a non-object-oriented language.

10 Linked Lists (8-1)

Clarification: The donation doesn’t mention this, but, the Linked List package is
analogous to the C++ STL (Standard Template Library) List container, that is popular
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with C++ programmers.  Note, however, that VeraLite doesn’t support C++ templates.
Instead, the generic code is accomplished via macros.

10.1 List Macros (8-2)
Correction: The only necessary macro is MakeVeraList(type).  The second macro
mentioned in the donation, ExternVeraList  is unnecessary.  Also, unnecessary is the
inclusion of any header file other than ListMacros.vrh.  In particular, the file
VeraListProgram.vrh is deprecated and unnecessary.
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