
Final Blocks – proposal

Replace section 8.1
OLD:
Procedural statements are introduced by one of:

initial // do this statement once
always, always_comb, always_latch, always_ff // loop forever (see
section 9 on processes)
task // do these statements whenever the task is called
function // do these statements whenever the function is called and return a
value

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps
— Task and function calls
— Sequential and parallel blocks
— Timing control

Verilog procedural statements are in initial or always blocks, tasks or functions.

With:
NEW:

Procedural statements are introduced by one of the following:

initial // do this statement once at the beginning of simulation
final // do this statement once at the end of simulation
always, always_comb, always_latch, always_ff // loop forever (see
section 9 on processes)
task // do these statements whenever the task is called
function // do these statements whenever the function is called and return a
value

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps
— Task and function calls
— Sequential and parallel blocks
— Timing control

Verilog procedural statements are in initial or always blocks, tasks or functions.
SystemVerilog adds a final block that executes at the end simulation

ADD as a new section before section 8.6

Final Blocks

The final block is like an initial block, defining a procedural block of statements, except
that it occurs at the end of simulation time. A final block is typically used to display

statistical information, such as functional coverage reports, about the simulation. Like
Verilog functions, final blocks execute in zero time, but without delay or event controls.

final_construct ::= final function_statement

Final blocks execute after one of the following occurs:

— The event queue is emptied
— Execution of $finish
— Termination of all program blocks. See section 15.9.1 $exit
— PLI execution of $tf_dofinish or similar routines.

An occurrence of one of the above while executing a final block will disable the current
and all remaining final blocks.
Final blocks execute before any PLI callbacks indicating the end of simulation.

It shall be an error

final
 begin
 $display(“Number of cycles executed %d”,$time/period);
 $display(“Final PC = %h”,PC);
 end

ADD after the last paragraph of section 9.1 – Processes

Since final blocks cannot have any delay, they execute as a single thread .The ordering of
execution of multiple final blocks is deterministic, but arbitrary.

