

The Facts and Fallacies of Verilog Event Scheduling: Is the IEEE 1364 Standard
Right or Wrong?

Lee Tatistcheff, Charles Dawson, David Roberts, Rohit Rana
Cadence Design Systems, Inc

leet@cadence.com

Abstract

We examine both the ambiguities and inconsistencies
of the IEEE 1364 and the behavior of Verilog-XL in
order to understand the controversy surrounding the
precise scheduling behavior of tf_synchronize and
cbReadWriteSynch. We propose two new unambiguous
callback types to be added to the VPI library and we
demonstrate methods of using these callbacks both within
VPI and earlier TF/ACC PLI applications.

1. Introduction
As C modeling of hardware to interface with Verilog

simulators has become more and more widespread, the
requirements for the PLI interface have become better
defined. Many of the earlier interface routines did not
accommodate these requirements for precision, and some
of the later interface routines were insufficiently clear
about them. In this paper, we examine two specific
callback types, reason_synch and cbReadWriteSynch,
attempt to understand the origin of the ambiguity, and
demonstrate an appropriate solution.

Why would a C model need to synchronize to a write-
legal slot at the end of the time slice? Because the model
needs to know that its inputs have finished changing and
are stable before it calculates its response.

Why would a C model need to synchronize just before
the non-blocking assignments are updated? Because it
needs to capture the old values of certain registers and
save them before the new values appear.

The Verilog-XL and Cadence NC-Verilog
simulators execute callbacks for reason_synch at different
times: Verilog-XL executes them at some unspecified
time before the non-blocking assignment updates, and
NC-Verilog executes them just before the tool is about
to close the time slice down for writing (generally, just
before callbacks for reason_rosynch). There are many
who believe that NC-Verilog is violating the IEEE 1364
in this. We believe instead that Verilog-XL is incorrect
in its behavior – some of us were actively implementing

changes to this in the early 1990’s – and that the 1364
simply attempted to capture that incorrect behavior.

By contrast, both Verilog-XL and NC-Verilog
execute the newer VPI cbReadWriteSynch at the same
time, when the tool believes it is done with the time slice,
but before shutting down write capability. Some parties
have asserted that both tools are incorrect in this, and that
cbReadWriteSynch belongs before the non-blocking
assignment updates, not after. They are not correct. The
engineers who implemented VPI for both Verilog-XL
and NC-Verilog (Charles Dawson and David Roberts)
were members of the IEEE 1364-1995 and 1364-2000
task forces, as well as participating in the original
specification by OVI; the behavior of NC-Verilog and
Verilog-XL reflects both their intent and the needs of the
users at that time.

2. Specification history
In 1985, Gateway Design Automation introduced the

Verilog-XL simulator and its Programming Language
Interface (PLI). Both the Verilog and the PLI languages
were proprietary to Gateway, defined in the Verilog-XL
Language Reference Manual and the PLI Manual [1][2].
In 1989, after merging with Gateway, Cadence Design
Systems, Inc., released both Verilog and PLI to the public
domain.

The Open Verilog International (OVI) organization
formed in 1989, and released a specification for both
languages in 1993 [3][4][5]. This specification included
the first definition of second-generation PLI routines
(initially ACC routines, but finalized as VPI routines in
the IEEE 1364-1995) intending that these new routines
would supersede the earlier TF and ACC routines
completely.

In 1995, the IEEE general membership accepted the
Verilog Language Reference Manual as specification
1364; this included definitions of the TF/ACC routines
for backward compatibility, and definitions of the VPI
routines [7]. The stated purpose of the 1364 working
group was “not to spend a lot of time extending the

language, but […] to concentrate on clarifying the
language” [8]. The section on scheduling semantics
(Chapter 5) was first introduced in this version of the
language and was not reviewed by the PLI task force.

A new version of the 1364 was approved early in 2001
[9]. It contains corrections and clarifications for some
TF/ACC routines, but specifically excludes enhancements
to them. According to one working group member, “All
enhancements and new features in the Verilog PLI
standard will only be made in the VPI routines. The older
ACC and TF routines will continue to remain in the
standard to provide backward compatibility, but no new
ACC and TF routines will be added” [10].

3. Synchronization PLI

3.1. TF synchronization
The tf_synchronize() routine was introduced (some

time before the language was made public) mainly for the
purpose of modeling certain hardware units in C. The
intent of these routines was to permit the model to be
called at the end of a time slice, but still be permitted to
modify values in the current time slice. This way the
model can decide what values to place on its outputs
based on the final values of its inputs or other criteria.

This in sharp contrast with the tf_rosynchronize()
routine which is called after no more modifications to the
current time slice are permitted; tf_rosynchronize is
intended for monitoring functions, e.g., waveform tools or
response checkers.

The PLI Reference Manual from 1989 describes these
two routines as follows [11]: “Purpose: synchronize to
end of simulation time unit … the routines tf_synchronize
and tf_isynchronize allow the processing of parameters to
be delayed until the end of the current simulation time
slot. This is useful when the user wants to synchronize
all parameter value changes and process them after all
that will change at a particular time have changed.”
“Purpose: synchronize to end of simulation time slot …
the routines tf_rosynchronize and tf_irosynchronize allow
certain processing to be delayed until the end of the
current simulation time.” The language referring to when
in the time slice these callbacks execute is consistent,
referring only to the end of the time period, not some
intermediate phase. This is consistent with the
understanding of other members of the IEEE PLI Task
Force, as well [12].

The IEEE 1364-1995 introduced a different
interpretation of the time for reason_synch, however.
These routines are discussed in several places. In chapter
21, where the TF details are described, it says: “The
routine tf_synchronize() shall call the associated misctf
application at the end of the current simulation time step

with reason_synch […] The routine tf_rosynchronize()
shall call the associated misctf at the end of the current
simulation time step with reason_rosynch […]” [emphasis
added]. Note that the language for when in the time slice
each routine will be called is identical and vague, very
similar to that used in the original Verilog-XL PLI
manual.

In chapter 20, where the overview of TF routine usage
is presented, the language is much less vague, but makes
reference to terms introduced in the new chapter 5: the
active, inactive, and non-blocking assignment update
sections of the stratified queue: “The misctf can be called
at the end of the current time step or at some future time
step. The tf_synchronize() routine shall place the
callback at the end of the inactive event queue for the
current time step. The tf_rosynchronize() callback shall
occur after all active, inactive, and nonblocking assign
events for a time step have been processed.” Note that
the first sentence conflicts with the second: the “end of
the current time step” is not the same thing as “the end of
the inactive event queue for the current time step”.

The new chapter 5 of the 1364-1995 (which attempts
to capture the behavior of Verilog-XL , not modify it)
mentions PLI synchronization in one place: “The callback
procedures scheduled with PLI routines such as
tf_synchronize() […] shall be treated as inactive events.”

In the balloting process for the IEEE 1364-2000
proposal PTF-37 clarifying the language here was
rejected. It would have said in section 5.3: “PLI
callbacks scheduled with PLI routines tf_synchronize()
[…] shall create synchronize events. A software
implementation may process synchronize events either
before or after nonblocking assign update events.” The
discussion noted that neither Verilog-XL nor NC-
Verilog behaved as the 1364-1995 described, but that it
correctly described the behavior of the VCS simulator
from Synopsys.

3.2. VPI synchronization
The OVI PLI 2.0 specification introduced callbacks at

defined points in the time slice, not just for defined
reasons, including: cbAtStartOfSimTime, cbReadWrite-
Synch, cbReadOnlySynch, cbNextSimTime, and cbAfter-
Delay. The callbacks most of interest to us are defined as
follows: cbReadWriteSynch “occurs after execution of
events for a specified time” and cbReadOnlySynch “Same
as cbReadWriteSynch, but writing values or scheduling
events before the next scheduled event is disabled”
[emphasis added] [6]. The IEEE 1364-1995 modified the
language somewhat, substituting “shall occur” for
“occurs”, etc. Another author of this specification has
described his intent for this callback quite clearly [13],

also pointing to the end of the time slice, after non-
blocking assignment updates.

This language conflicts with that of IEEE 1364-1995
section 5.3: “The callback procedures scheduled with PLI
routines such as […] vpi_register_cb(cb_readwrite) [sic]
shall be treated as inactive events.”

Although “same as cbReadWriteSynch” could lead to
other confusion, this much of the authors’ intent is clear:
cbReadWriteSynch is called when the simulator believes
it has completed the time slice but PLI is still permitted to
put values in the current time, and cbReadOnlySynch is
called under the same conditions but putting values in the
current time is disabled.

4. Discussion
The reason for the ambiguity in the original

descriptions of reason_synch is that the Verilog simulator
that provided the first definition of the routines, Verilog-
XL, executed these callbacks at a variety of points in the
time slice.

Consider the example in section 7.1 of this paper: no
pair of the command lines listed actually produces the
same results for both calltf and callback for reason_synch.
Note that this example does not conform – in numerous
ways – to the description of the event queue in Chapter 5
of the IEEE 1364-1995. Note also that in this case,
Verilog-XL does execute the synch callback some time
before the next non-blocking assignment updates, even
though our desire was to execute them at the end of the
time slice.

Over time, Cadence has received numerous requests
for clarification of precisely when the callbacks will
occur, as well as requests for corrections when the user
believes that the callback is occurring at the wrong time
or not being called when it should [14][15][16][17][18].
Both our customers and we ourselves considered the fact
that Verilog-XL executed the reason_synch callback
before the non-blocking assignment updates to be a bug.

Indeed, until 1995, the scheduling of these callbacks
was actively being modified, to get the behavior in-line
with our original intent of having the reason_synch
callback fire only when Verilog-XL believed it had
finished with the time slice, but before it had closed that
slice down (just as NC-Verilog has always done).

We still consider any other behavior a bug, despite the
fact that it has been captured in the IEEE 1364, but have
had to acknowledge that significant modifications to the
scheduling behavior of Verilog-XL are no longer
acceptable to the user community, and abandoned that
effort in 1995.

For several years, NC-Verilog and Verilog-XL were
the only commercial simulators that had implemented the

VPI routines, and since they behaved the same way, the
imprecise language in the IEEE 1364-1995 did not
matter. Now that the other major commercial Verilog
simulators have or are introducing VPI implementations,
the discussion over when precisely cbReadWriteSynch
should be called is beginning to be as heated as the
discussion of reason_synch.

The solution most often proposed to Cadence is
“change the behavior to <something>”. The problem is
that some of the requestors want the callback moved to
the end of the time queue, and others want it moved to
just before the non-blocking assignment updates. The
NC-Verilog product even has a run-time switch, -
nbasync, which forces tf_synchronize callbacks to occur
just before the non-blocking assignment updates. Using
that switch, however, breaks models that were designed
to run with NC-Verilog in its default operation.
Thousands of existing VPI applications have functioned
as intended in NC-Verilog and Verilog-XL for years;
modification of their behavior at this late date is entirely
unacceptable to our users.

5. New callbacks
Although we do believe our interpretation of the

existing callback times is correct, we also believe that
correctness here is irrelevant. We are confident both
needs are real – our users have demonstrated that need
repeatedly – and so PLI needs to accommodate both of
them. PLI cannot do that with a single callback reason.
We propose two new VPI callback reasons, cbNBASynch
and cbAtEndOfSimTime. Once we have finalized
discussion with the other major simulation providers (in
progress), these will be proposed to the IEEE 1364 for
inclusion in the next revision of the specification.

The complete definition of these callbacks cannot be
contained within this paper, but we will describe here our
intent, as clearly as possible. This proposal is still being
debated, and is subject to change before implementation
in NC-Verilog or submission to the IEEE.

The callback, cbAtEndOfSimTime, will fire when the
simulator believes that only “monitor” events remain to
be performed in the current time. Examples of monitor
events include, but are not limited to: callbacks for reason
cbReadOnlySynch, $strobe, $monitor. Our intention here
is that this callback occurs when the simulator has no
events that can alter simulation values in the current time
slice.

The callback, cbNBASynch, will fire when the next
event is either the non-blocking assignment updates or
when it is the callback for reason cbAtEndOfSimTime,
whichever comes first. This callback will fire as if it were
the first of the non-blocking assignment updates in an
associated non-blocking assignment update queue. This

means that if the application modifies any values without
delays (e.g., vpi_put_value with vpiNoDelay,
acc_set_value with accNoDelay), then the values are
modified immediately, but propagated when the event
processing for the time slice resumes, after completion of
the associated non-blocking assignment update queue.
All delayed modifications for the current time (e.g.,
vpi_put_value with a delay of zero) will occur and be
propagated after completion of the associated non-
blocking assignment update queue.

Like cbReadWriteSynch, these two callbacks are “one-
shots”, which is to say, they will execute once per
registration (even though both of these callbacks can
occur more than once in any given time slot). If the
application wants to be called each time these callbacks
fire, the application will need to re-register the routine.
Similarly, registering a callback for either of these
reasons creates new events. For example, if an
application executing for reason cbAtEndOfSimTime
registers a callback for reason cbAtEndOfSimTime, that
will create a new callback event; this must be used with
care, to avoid infinite loops. The final definition of these
callbacks must also consider VPI time queue objects,
IEEE 1364-2000 section 26.6.40.

This description is intended to accommodate other
simulators, which may have implemented callbacks for
reason cbReadWriteSynch to occur just before the non-
blocking assignment updates, as well as those who, like
Cadence, implemented them to occur at the end of the
time slice. For both situations, cbNBASynch will occur
before cbReadWriteSynch, and cbAtEndOfSimTime will
occur after cbNBASynch. This permits simple insertion
of the new callbacks, without requiring any simulator to
modify its implementation of the existing callbacks. We
believe the overarching need of our users is predictable,
consistent results, regardless of simulation provider, and
that these new callback types will provide that.

For users who have not transitioned their applications
to use VPI routines, we demonstrate how to use these
callbacks instead of tf_synchronize in a TF/ACC
application in section 7.2 of this paper.

6. Conclusions
We have examined the definition of reason_synch and

cbReadWriteSynch from their origins through the current
day specification, demonstrating where we believe
incorrect language was inserted in the IEEE 1364. We
believe that users have articulated a strong need for two
callbacks types, and so have proposed a cbNBASynch
and cbAtEndOfSimTime to supplement the specification;
an illustration of how to use these callbacks within a
TF/ACC application was provided. We encourage our
users to take advantage of these new callbacks when
writing their applications, and we encourage other

simulation providers to implement these callback types in
their VPI libraries.

7. Examples

7.1. Verilog-XL and tf_synchronize
module test;
reg a;
initial begin
 a = 1’b0;
 #2;
 a = 1’b1;
 #2;
 end
dut someinst(a);
endmodule

module dut(myin);
input myin;
wire myin;

reg bb;
wire aa, cc, dd, ee;
wire dummy = 1’b1;

assign cc = myin;
always @ (aa) bb <= aa;

not (aa,cc);
tranif1 (dd,aa,dummy);
nmos(ee,dd,dummy);

always @(myin)
 #0 $sync_call(myin,aa,bb,cc,dd,ee);
always @(aa)
 $display(“VLOG: aa fired %b”,aa);
always @(bb)
 $display(“VLOG: bb fired %b”,bb);
endmodule

#include “veriuser.h”

int sync_call(){
 myprint(“CALL”);
 tf_synchronize();
 return(0);
}

int sync_misc(int user_data, int
reason){
 if (reason == REASON_SYNCH)
 myprint(“SYNC”);
 return(0);
}

static int myprint(char *where){
 io_printf(“%s: myin+abcde =
“,where);

 io_printf(“%s, “,tf_strgetp(1,’b’));
 io_printf(“%s, “,tf_strgetp(2,’b’));
 io_printf(“%s, “,tf_strgetp(3,’b’));
 io_printf(“%s, “,tf_strgetp(4,’b’));
 io_printf(“%s, “,tf_strgetp(5,’b’));
 io_printf(“%s\n“,tf_strgetp(6,’b’));
 return(0);
}

If this test case is run in Verilog-XL with the
following options, it gets wildly different results, due to
the different scheduling variations:
verilog test.v
verilog test.v +noxl
verilog test.v +turbo+3
verilog test.v +caxl
verilog test.v +switchxl

7.2. Using VPI callbacks with TF/ACC
applications

VPI callbacks are not associated with a particular
system task or function. Therefore, they do not call a
misctf routine. Instead, you must setup a new routine to
call, and as part of the setup of the callback provide the
system task or function instance. The easiest way to do
this is to put it in the user_data field. Then all PLI1.0
calls that rely on there being a current system task or
function instance need to be changed to their instance
specific equivalent (tf_ routines become tf_i routines).
To get the prototypes and typedefs for VPI, include the
vpi_user.h and vpi_user_cds.h files.

This example illustrates how this would be done for
the functions shown in section 7.1. The Verilog remains
unchanged, and the new sync.c file looks as follows:

#include “veriuser.h”

#include “vpi_user.h”

#include “vpi_user_cds.h”

int sync_callback(p_cb_data cback_p) {

 imyprint(“VPCB”,cback_p->user_data);

 return(0);

}

int sync_call() {

s_cb_data cback;

s_vpi_time mytime;

vpiHandle cbhdl;

char *tfinst;

 tfinst = tf_getinstance();

 imyprint(“CALL”, tfinst);

 cback.reason = cbNBASynch;

 cback.user_data = (char *)tfinst;

 cback.cb_rtn = sync_callback;

 mytime.low = 0;

 mytime.high = 0;

 mytime.type = vpiSimTime;

 cback.time = &mytime;

 cbhdl = vpi_register_cb(&cback);

 vpi_free_object(cbhdl);

 return(0);

}

int sync_misc(int user_data, int
reason) {

 return(0);

}

static int imyprint(char *where, char
*tfinst) {

 io_printf(“%s: myin+abcde =
“,where);

 io_printf(“%s, “,tf_istrgetp(1, ’b’,
 tfinst));

 io_printf(“%s, “,tf_istrgetp(2, ’b’,
 tfinst));

 io_printf(“%s, “,tf_istrgetp(3, ’b’,
 tfinst));

 io_printf(“%s, “,tf_istrgetp(4, ’b’,
 tfinst));

 io_printf(“%s, “,tf_istrgetp(5, ’b’,
 tfinst));

 io_printf(“%s\n“,tf_istrgetp(6, ’b’,
 tfinst));

 return(0);

}

8. References

[1] Verilog-XL Reference Manual, Version 1.6, Cadence
Design Systems, Inc., USA, 1991.

[2] Programming Language Interface Reference Manual,
Version 1.5, Cadence Design Systems, Inc., Lowell, MA,
December 1989.

[3] Verilog Hardware Description Language Reference
Manual (LRM), Version 2.0, Open Verilog International,
Los Gatos, CA, March 1993.

[4] Programming Language Interface (PLI) Manual, Version
1.0, Open Verilog International, Los Gatos, CA, February
1991.

[5] Programming Language Interface (PLI) Manual, Version
2.0, Open Verilog International, Los Gatos, CA, February
1993.

[6] Ibid. p 217.

[7] IEEE Standard Hardware Description Language Based on
the Verilog Hardware Description Language, IEEE Std
1364-1995, Institute of Electrical and Electronics
Engineers, Inc., New York, NY, 1996.

[8] Ibid. p iii.

[9] IEEE Standard Hardware Description Language Based on
the Verilog Hardware Description Language, IEEE Std
1364-2000, Institute of Electrical and Electronics
Engineers, Inc., New York, NY, 2001.

[10] Sutherland, S., The Verilog PLI Handbook, Kluwer
Academic Publishers, Massachusetts, 1999, p 5.

[11] Programming Language Interface Reference Manual,
Version 1.5, Cadence Design Systems, Inc., Lowell, MA,
December 1989, pp 3-19, 3-20.

[12] Sutherland, S., The Verilog PLI Handbook, Kluwer
Academic Publishers, Massachusetts, 1999, pp 397-98.

[13] Ibid, pp 208-209.

[14] Customer Support Case 30001327, Cadence Design
Systems, Inc., January 1996.

[15] Customer Support Case 30011194, Cadence Design
Systems, Inc., June 1996.

[16] Customer Support Case 30024357, Cadence Design
Systems, Inc., January 1997.

[17] Product Change Request 59567, Cadence Design Systems,
Inc., May 1992.

[18] Product Change Request 234414, Cadence Design
Systems, Inc., October 1998.

	Introduction
	Specification history
	Synchronization PLI
	TF synchronization
	VPI synchronization

	Discussion
	New callbacks
	Conclusions
	Examples
	Verilog-XL(and tf_synchronize
	Using VPI callbacks with TF/ACC applications

	References

