
Section 13
Clocking Domains

13.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the
interface, a key construct that encapsulates the communication between blocks, thereby enabling users to
easily change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a test-bench communicates with a device under
test. However, an interface does not explicitly specify any timing disciplines, synchronization
requirements, or clocking paradigms.

SystemVerilog adds the clocking construct that identifies clock signals, and captures the timing and
synchronization requirements of the blocks being modeled. A clocking domain assembles signals that are
synchronous to a particular clock, and makes their timing explicit. The clocking domain is a key element in
a cycle-based methodology, which enables users to write test-benches at a higher level of abstraction.
Rather than focusing on signals and transitions in time, the test can be defined in terms of cycles and
transactions. Depending on the environment, a test-bench may contain one or more clocking domains, each
containing its own clock plus an arbitrary number signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and
procedural elements of a test-bench. Thus, the timing for sampling and driving clocking domain signals is
implicit and relative to the clocking-domain’s clock. This enables a set of key operations to be written very
succinctly, without explicitly using clocks or specifying timing. These operations are:

— Synchronous Events
— Input Sampling
— Synchronous Drives

13.2 Clocking domain declaration

The syntax for the clocking construct is:

clocking_decl ::= [default] clocking [identifier] clocking_event ;
{ clocking_item }

endclocking

clocking_event ::= @ identifier
| @ (event_expression)

event_expression ::= // This item is already defined in the BNF

clocking_item := default default_skew;

| clocking_direction signal_or_assign_list ;

default_skew ::= input skew

| output skew
| input skew output skew

clocking_direction ::= input [skew]

| output [skew]
| input [skew] output [skew]
| inout

signal_or_assign_list ::= signal_or_assign { , signal_or_assign }

signal_or_assign ::= signal_identifier [= hierarchical_expression]

skew ::= edge [# delay_expression] // edge valid only if
| # delay_expression // clocking_event is simple edge

edge ::= posedge | negedge

delay_expression ::= unsigned_number | time_literal

The identifier specifies the name of the clocking domain being declared.

The delay_expression must be either a time literal or a constant expression that evaluates to a positive
integer value.

The signal_identfier identifies a port in the scope enclosing the clocking domain declaration, and declares
the name of a signal in the clocking domain. Unless a hierarchical_expression is used, both the port and the
interface signal will share the same name.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this
expression is either the posedge or negedge of a clocking signal. The timing of all the other signals
specified in a given clocking domain are governed by the clocking event. All input or inout signals
specified in the clocking domain are sampled when the corresponding clock event occurs. Likewise, all
output or inout signals in the clocking domain are driven when the corresponding clock event occurs.
Bi-directional signals (inout) are sampled as well as driven.

The skew parameters determine how many time units away from the clock event a signal is to be sampled
or driven. Input skews are implicitly negative, that is, they always refer to a time before the clock, whereas
output skews always refer to a time after the clock (see section 13.3). When the clocking event specifies a
simple edge, instead of a number, the skew may be specified as the opposite edge of the signal. A single
skew may be specified for the entire domain by using a default clocking item.

The hierarchical_name specifies that, instead of a local port, the signal to be associated with the clocking
domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @(posedge clock1);
default input #10ns output #2ns;
input data, ready, enable = top.mem1.enable;
output negedge ack;
input #1step addr;

endclocking

In the above example, the first line declares a clocking domain called bus that is to be clocked on the
positive edge of the signal clock1. The second line specifies that by default all signals in the domain will
use a 10ns input skew and a 2ns output skew. The next line adds three input signals to the domain: data,
ready, and enable; the last signal refers to the hierarchical signal top.mem1.enable. The fourth
line adds the signal ack to the domain, and overrides the default output skew so that ack is driven on the
negative edge of the clock. The last line adds the signal addr and overrides the default input skew so that
addr is sampled one step before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is 0.

A step is a special time unit defined to be the smallest possible delay throughout the simulation, that is, the
smallest global precision. Like all other time units, a step is not a keyword. A 1step input skew allows
input signals to sample their steady-state values immediately before the clock event (i.e., at read-only-

synchronize immediately before time advanced to the clock event). Unlike other time units, which
represent physical units, a step cannot be used to set or modify the either the precision or the timeunit.

13.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the
signal is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven
skew simulation time units after the corresponding clock event. Figure 13-1 shows the basic sample/drive
timing for a positive edge clock.

Figure 13-1—Sample and drive times including skew with respect to the positive edge of
the clock.

A skew must be a constant, and can be specified as a parameter. If the skew does not specify a time unit,
the current time unit is used. If a number is used, the skew is interpreted using the timescale of the current
scope.

clocking dram @(changed clk);
input #1ps address;
input #5 output #6 data;

endclocking

An input skew of 1step indicates that the signal is to be sampled at the end of the previous time step. That
is, the value sampled is always the signal’s last value immediately before the corresponding clock edge.

An input skew of #0 forces a skew of zero. Inputs with zero skew are sampled at the same time as their
corresponding clocking event, but to avoid races, they are sampled at the start of the verification phase
(after processing nonblocking assignments). Likewise, outputs with zero output skew are driven at the same
time as their specified clocking event, but at the end of the verification phase. A detailed explanation for
this event ordering is covered in Section 15.7.

13.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described
above, a hierarchical expression is introduced by appending an equal sign (=) followed by the hierarchical
expression:

clocking cd1 @(posedge phi1);

input #1step state = top.cpu.state;
endclocking

However, hierarchical expressions are not limited to simple names or signals in other scopes. They can be
used to declare slices, concatenations, or combinations of signals in other scopes or in the current scope.

clocking mem @(changed clock);
input instruction = { opcode, regA, regB[3:1] };

endclocking

13.5 Signals in multiple clocking domains

The same signals --- clock, inputs, or outputs --- may appear in more than one clocking domain. Clocking
domains that use the same clock (or clocking expression) will share the same synchronization event, in the
same manner as several latches can be controlled by the same clock. Input semantics are described in
Section 13.13, and output semantics are described in Section 13.14.

13.6 Clocking domain scope and lifetime

A clocking construct is both a declaration and an instance of that declaration. A separate instantiation
step is not necessary, instead, one copy is created for each instance of the block containing the declaration
(like an always block). Once declared, the clocking signals are available via the clock-domain name and
the dot (.) operator:

dom.sig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global
($root) level. Clocking domains can only be declared inside a module, interface, or a program (see section
15).

Clocking domains have static lifetime and scope local to their enclosing module, interface, or program.

13.7 Multiple clocking domain example

In this example, a simple test module includes two clocking domains. The program construct used in this
example is discussed in section 15. In this example, it can be considered a module.

program test(input phi1, input [15:0] data, output write,
 input phi2, inout [8:1] cmd, input enable

);

clocking cd1 @(posedge phi1);

input data;
output write;
input state = top.cpu.state;

endclocking

clocking cd2 @(posedge phi2);

input #2 output #4ps cmd;
input enable;

endclocking

// program begins here
...
// user can access cd1.data , cd2.cmd , etc…

endprogram

The test module can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phi1, phi2;
test main(phi1, data, write, phi2, cmd, enable);
cpu cpu1(phi1, data, write);
mem

endmodule
mem1(phi2, cmd, enable);

13.8 Interfaces and clocking domains

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking
domain using a SystemVerilog interface can significantly reduce the amount of code needed to connect
the testbench. Furthermore, since the signal directions in the clocking domain within the test-bench are with
respect to the test-bench, and not the design under test, a modport declaration can appropriately describe
either direction. Conceptually, one can envision a test-bench program as being contained within a program
module, and whose ports are interfaces that correspond to the signals declared in each clocking domain.
The interface’s wires will have the same direction as specified in the clocking domain when viewed from
the test-bench side (i.e., modport test), and reversed when viewed from the device under test (i.e.,
modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus_A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);
modport dut (output data, input write);

endinterface

interface bus_B (input clk);

wire [8:1] cmd;
wire enable;
modport test (input enable);
modport dut (output enable);

endinterface

program test(bus_A.test a, bus_B.test b);

clocking cd1 @(posedge a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedge b.clk);

input #2 output #4ps b.cmd;
input b.enable;

endclocking

// program begins here
...
// user can access cd1.a.data , cd2.b.cmd , etc…

endprogram

The test module can be instantiated and connected as before:

module top;
logic phi1, phi2;

bus_A a(phi1);
bus_B b(phi2);

test main(a, b);

cpu cpu1(a);
mem mem1(b);

endmodule

Alternatively, the clocking domain can be written using both interfaces and hierarchical expressions as:

clocking cd1 @(posedge a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedge b.clk);

input #2 output #4ps cmd = b.cmd;
input enable = b.enable;

endclocking

This would allow using the shorter names (cd1.data, cd2.cmd, …) instead of the longer interface
syntax (cd1.a.data, cd2.b.cmd,…).

13.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name,
regardless of the actual clocking event used to declare the clocking domain.

For example.

clocking dram @(posedge phi1);
inout data;
output negedge #1 address;

endclocking

The clocking event of the dram domain can be used to wait for that particular event:

@(dram);

The above statement is equivalent to @(posedge phi1).

13.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

[expression];

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

What represents a cycle is determined by the default clocking in effect (see Section 13.11). If no default
clocking has been specified for the current module, interface, or program then the compiler will issue an
error.

Example:

[5]; // wait 5 cycles using the default clocking
[j + 1]; // wait j+1 cycles using the default clocking

13.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, interface,
or program.

The syntax for the default cycle specification statement is:

default clocking_decl ; // clocking declaration

or

default clocking clocking_name ; // existing clocking

The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default
clocking more than once in the same program or module will result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the statement as well as any nested modules or
interfaces. It does not include other instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

program test(input bit clk, input reg [15:0] data)
default clocking bus @(posedge clk);

inout data;
endclocking

if (bus.data == 10)

[5];

1;
else

...
endprogram

Example 2. Assigning an existing clocking to be the default:

 module … processor

clocking busA @(posedge clk1); ... endclocking
clocking busB @(negedge clk2); ... endclocking
module cpu(interface y)

default clocking busA ;
initial begin

[5]; // use busA => (posedge clk1)
...

end
endmodule

endmodule

13.12 Synchronous Events

The syntax for the synchronization operator is:

event_control ::=

@ event_identifier
| @ (event_expression)
| @*
| @ (*)

event_expression ::=

 expression [iff expression]
| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

Excerpt from Annex A.6.5.

The expression can denote clocking-domain input, or a slice thereof. Slices can include dynamic indices,
which are evaluated once, when the @ expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clock domain ram_bus

@(ram_bus.ack_l);

— Wait for the next clocking event in clock-domain ram_bus

@(ram_bus);

— Wait for the positive edge of the signal ram_bus.enable

@(posedge ram_bus.enable);

— Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is evaluated
at runtime.

@(negedge dom.sign[a]);

— Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever
happens first.

@(posedge dom.sig1 or dom.sig2);

— Wait for the either the negative edge of dom.sig1 or the positive edge of dom.sig2, whichever
happens first.

@(negedge dom.sig1 or posedge dom.sig2);

The values used by the synchronization event control are the synchronous values, that is, the values
sampled at the corresponding clocking event.

13.13 Input sampling

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the
input skew is non-zero then the value sampled corresponds to the signal value at read-only-sync
[ROSYNC] of the time step skew time-units prior to the clocking event (see figure 13-1 in section 13.3). If
the input skew is zero then the value sampled corresponds to the signal value at the start of the verification
phase.

Samples happen immediately (the calling process does not block). When a signal appears in an expression,
it is replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking domains, the semantics are straightforward; each
clocking domain samples the corresponding signal with its own clocking event.

13.14 Synchronous drives

Clocking domain outputs (output or inout) are used to drive values onto their corresponding signals,
but at a specified time. That is, the corresponding signal changes value at the indicated clocking event as
modified by the output skew.

The syntax to specify a synchronous drive is similar to an assignment:

[## event_count] clockvar_expression = expression;
or

clockvar_expression = [## event_count] expression;

The clockvar_expression is either or a bit-select, slice, or the entire clocking domain output whose
corresponding signal is to be driven (concatenation is not allowed):

dom.sig // entire clockvar
dom.sig[2] // bit-select
dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the
corresponding signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e.
cycles) that must pass before the statement executes. Specifying a non-zero event_count blocks the current
process until the specified number of clocking events have elapsed otherwise the statement executes at the
current time. The event_count uses a syntax similar to the cycle-delay operator (see Section 13.10),
however, the synchronous drive uses the clocking domain of the signal being driven and not the default
clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment event-
count specification also delays execution of the statement, but the right-hand side expression is evaluated
before the process blocks, instead of after.

Examples:

bus.data[3:0] = 4’h5;// drive in current cycle
##1 bus.data = 8’hz; // wait 1 (bus) cycle and then drive
##[2]; bus.data = 2; // wait 2 default clocking cycles, then drive
bus.data = ##2 r; // sample r, wait 2 (bus) cycles, the drive

Regardless of when the drive statement executes (due to event-count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.

13.14.1 Drives and non-blocking assignments

Synchronous signal drives are queued and processed at the end of the verification phase, like non-blocking
assignments, that is, they are propagated in one fell swoop without process execution in between drives.

A key feature of inout clocking domain variables and synchronous drives is that a driven signal value does
not change the clock domain input. This is because reading the input always yields the last sampled value,
and not the current signal value. In this respect, an inout clocking domain variable resembles non-blocking
assignments since reading the variable immediately after it has been assigned will yield the previous value,
not the assigned value.

 // bus.data is a clock domain inout, y is a variable

if(bus.data == 5) if(y == 5)
 bus.data = 0; y <= 0;
$display(bus.data); $display(y); // both display 5

13.14.2 Drive value resolution

When more than one synchronous drive is applied to the same clocking domain output at the same
simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runtime
error is issued, and each conflicting bit is driven to X (or 0 for a 2-state port).

When the same variable is an output from multiple clocking domains, the last drive determines the value of
the variable. This allows a single module to model multi-rate devices, such as a DDR memory, using a
different clocking domain to model each active edge. Naturally, clock-domain outputs driving a net (i.e.,
through different ports) cause the net to be driven to its resolved signal value.

