
Person Voting CH-17 CH-18 CH-20 CH_47 CH-53 CH-60 CH-83 CH-84 CH-85 CH-86 CH-93 CH-94 CH-95 CH-96 CH-97 CH-98 CH-99 CH-100 CH-101
Arturo Salz 1
Brad Pierce 1
Cliff Cummings 1
Dennis Brophy 1
Francoise Martinolle 1 1 -13 1 1 -13 1 -13 1 -13 1 1 1 -13 1 -13 1 -13 -13 -13
Jay Lawrence 1 1 -13 1 1 1 1 -13 1 -13 1 1 -13 -13 1 -13 -13 -13 -13 -13 -13
Mehdi Mohtashemi 1
Neil Korpusik 1
Stefen Boyd 1 1 -13 1 1 1 1 -13 1 -13 1 1 1 1 1 -13 -13 1 1 -13 1
Stu Sutherland 1
Totals 10 3 -39 3 3 -11 1 -39 3 -39 3 3 -11 -25 3 -39 -25 -25 -25 -39 -12

CH-17 Jay
Francoise

Stefen

CH-18 Stefen
CH-47 Francoise

CH-53 Francoise
CH-60 Jay

Francoise

Stefen

CH-84 Jay
Francoise
Stefen

CH-93 Jay
CH-94 Jay

Francoise
CH-96 Jay

Francoise
Stefen

CH-97 Jay
Stefen

CH-98 Jay
Francoise

CH-99 Jay
Francoise

CH-100 Jay
Francoise

Stefen

CH-101 Jay
Francoise

The bnf requires brackets around expression, but examples 1&2 show without. Need to be consistent. Fixed in CH-54.

We still don't know what the verification phase is yet, but assuming it resembles what we've seen, this would mean that zero skew would capture the DUT outputs *after* NBAs have propagated. This would
make sense if it was at the start of the design phase. Why does this matter? Your testbench sampling with zero delay won't work for both zero delay rtl and gate level sims! Any clk->q delay on flops in design
will mean sampling before vs after clock edge in gate vs rtl versions of dut. If we sampled at beginning of design phase, we're ok.

same reason as CH-60

The syntax doesn't look like it allows brackets like the ## cycle operator. There should be a sentence stating so explicitly, and presumably, there are restrictions on the kind of expression allowed? If '32-1' were
allowed then how would we deal with 'bus.data = ##2 -1-r;'?

If you look at the bnf for constant_expression A.8.3, a constant expression can be much more that what you allow for skew value. Specifically constant_expression contains string. Constant expression also
includes constant_primary and a constant_primary can be a concatenation, a function call, a genvar, a specparam, a parameter etc... I think that the sentence needs to be rewritten to say something like: it
must be a constant_expression of type unsigned int or time. What happen if skews are not specified? What are their default values?
Minor rewording: replaces statement with declaration. I believe that a default clocking is a declaration and not a statement. Fixed

Replaces "If the input skew is zero then the value sampled corresponds to the signal value at the start of the verification phase." with: "If the input skew is zero then the value sampled corresponds to the signal
value at the clock domain event"

Email Voting Status

add bnf for event_count. What about using non blocking drives? Do they disappear?

I like "wait fork;" but not exiting simulation when programs are done. I like "disable fork;" but there is still a bunch of text here about $terminate() does it belong?

The persistent nature of events is still up for debate.
I don't like the fact that persistent events are declared a different way (event bit) that regular events but the trigger operation is the same for persistent and regular events. There may be other ways of
accomplish this without creating a new type of events.

Definition or existance of "Verification phase" is TBD.

Leave as it was previously said.

This entire section needs to be integrated with Events and event control syntax
Larger issue than I want to give a quick Yes over email vote

As I mentioned in http://www.eda.org/sv-ec/hm/0698.html, http://www.eda.org/sv-ec/hm/0696.html. There are significant problems with the change proposed. Instead of creating a new "event" as the text
suggests, it really creates a new "bit" type. Needs to be fixed to really be an event type.

Definition or existance of "Verification phase" is TBD.

I just don't understand this.
The last sentence is unclear: "Naturally, clock-domain outputs driving a net (i.e., through different ports) cause the net to be driven to its resolved signal value." It's not clear if the resolved value is from the
winning assignment driven onto the net (no driver contention from multiple clocking domain outputs) or that each clocking domain acts like a driver on the net (which is what I think I remember from the verbal
explanation).

Definition or existance of "Verification phase" is TBD.

Much clearer but, Why aren't concatentations allowed? This still doesn't say when the drive occurs at that cycle (active event or NBA event). Is there an NBA equivalent to this drive?
Should refer to regular event control but not include it here.

Definition or existance of "Verification phase" is TBD.
Does it mean that we are merging 13 and 14?

If the the conflicting drives are only for net and not for variables, I would insert the additional proposed paragraph before instead of after.
How does this differ from CH_97?
What is the verification phase? In the example: isn't bus.data = 0 supposed to be bus.data <= 0? I thought we were only allowing 0 delay non blocking drives.

I suggest that we use: wait <block_name> so that if we just name the fork parallel block we can just use that name to wait for all the spawned processes to complete. Also use: disable <block_name> to disable
the fork. I don't understand the difference between $terminate and disable. I don't see the need for $suspend_thread if this is equivalent to a #0, just use #0.
Typo: "The disable form statement" should be "The disable fork statement" Still lots of references to $terminate in last paragraph of 9.9.2. This needs to be changed to use disable fork. Also shouldn't compare
against fork, but fork <label> form of fork. I'm also not sure that I like "disable fork" instead of $terminate() because it's not clear that it would kill all child processes. For example:
task setup;
 fork
 // start some background process of some sort (i.e. monitor)
 join_none
endtask

task foo;
 setup;
 fork
 // couple things started
 join_any
 disable fork; //$terminate();
endtask

It's more clear that $terminate would kill my monitor from task setup than 'disable fork'. Using disable is a good idea, though, but perhaps we should use the method notation we've started adopting:
 disable.child // same as $terminate
 disable.thread label // same as regular disable but on thread.

	Sheet1

