
Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH101

EC-CH80

EC-CH80

EC-CH46
Section 13
Clocking Domains

13.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-

face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily

change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a test-bench communicates with a device under test.

However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or

clocking paradigms.

SystemVerilog adds the clocking construct that identifies clock signals, and captures the timing and synchro-

nization requirements of the blocks being modeled. A clocking domain assembles signals that are synchronous

to a particular clock, and makes their timing explicit. The clocking domain is a key element in a cycle-based

methodology, which enables users to write test-benches at a higher level of abstraction. Rather than focusing

on signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the

environment, a test-bench may contain one or more clocking domains, each containing its own clock plus an

arbitrary number signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and pro-

cedural elements of a test-bench. Thus, the timing for sampling and driving clocking domain signals is implicit

and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly,

without explicitly using clocks or specifying timing. These operations are:

— Synchronous Events

— Input Sampling

— Synchronous Drives

13.2 Clocking domain declaration

The syntax for the clocking construct is:

clocking_decl ::= [default] clocking [identifier] clocking_event ;
{ clocking_item }

endclocking

clocking_event ::= @ identifier
 | @ (event_expression)

event_expression ::= // this item is already defined in the BNF

clocking_item := default default_skew;
| clocking_direction signal_or_assign_list ;

default_skew ::= input skew
 | output skew
 | input skew output skew

clocking_direction ::= input [skew]
| output [skew]
| input [skew] output [skew]
| inout

signal_or_assign_list ::= signal_or_assign { , signal_or_assign }
Copyright 2003 Accellera. All rights reserved. 103

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH80

EC-CH80

EC-CH46

EC-CH81
signal_or_assign ::= signal_identifier [= hierarchical_expression]

skew ::= edge [# delay_expression] // edge valid only if
| # delay_expression // clocking_event is simple edge

edge ::= posedge | negedge

delay_expression ::= unsigned_number | time_literal

The delay_expression must be either a time literal or a constant expression that evaluates to a positive integer

value.

The identifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a port in the scope enclosing the clocking domain declaration, and declares the

name of a signal in the clocking domain. Unless a hierarchical_expression is used, both the port and the inter-

face signal will share the same name.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this

expression is either the posedge or negedge of a clocking signal. The timing of all the other signals specified

in a given clocking domain are governed by the clocking event. All input or inout signals specified in the

clocking domain are sampled when the corresponding clock event occurs. Likewise, all output or inout sig-

nals in the clocking domain are driven when the corresponding clock event occurs. Bidirectional signals

(inout) are sampled as well as driven.

The skew parameters determine how many time units away from the clock event a signal is to be sampled or

driven. Input skews are implicitly negative, that is, they always refer to a time before the clock, whereas output

skews always refer to a time after the clock (see section 13.3). When the clocking event specifies a simple

edge, instead of a number, the skew may be specified as the opposite edge of the signal. A single skew may be

specified for the entire domain by using a default clocking item.

The hierarchical_name specifies that, instead of a local port, the signal to be associated with the clocking

domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @(posedge clock1);
default input #10ns output #2ns;
input data, ready, enable = top.mem1.enable;
output negedge ack;
input #1step addr;

endclocking

In the above example, the first line declares a clocking domain called bus that is to be clocked on the positive

edge of the signal clock1. The second line specifies that by default all signals in the domain will use a 10ns
input skew and a 2ns output skew. The next line adds three input signals to the domain: data, ready, and

enable; the last signal refers to the hierarchical signal top.mem1.enable. The fourth line adds the signal

ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the

clock. The last line adds the signal addr and overrides the default input skew so that addr is sampled one

step before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is 0. A step is a

special time unit whose value is defined in Section 17.6.. A 1step input skew allows input signals to sample

their steady-state values immediately before the clock event (i.e., at read-only-synchronize immediately before

time advanced to the clock event). Unlike other time units, which represent physical units, a step cannot be

Editor’s Note: Update preceding BNF excerpt with new BNF, once available.
104 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH47

EC-CH48

EC-CH84
used to set or modify the either the precision or the timeunit.

13.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal

is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-

lation time units after the corresponding clock event. Figure 13-1 shows the basic sample/drive timing for a

positive edge clock.

Figure 13-1—Sample and drive times including skew
with respect to the positive edge of the clock.

A skew must be a constant expression, and can be specified as a parameter. If the skew does not specify a time

unit, the current time unit is used. If a number is used, the skew is interpreted using the timescale of the current

scope.

clocking dram @(clk);
input #1ps address;
input #5 output #6 data;

endclocking

An input skew of 1step indicates that the signal is to be sampled at the end of the previous time step. That is,

the value sampled is always the signal’s last value immediately before the corresponding clock edge.

An input skew of #0 forces a skew of zero. Inputls with zero skew are sampled at the same time as their corre-

sponding clocking event, but to avoid races, they are sampled in the Observe region. Likewise, outputs with

zero skew are driven at the same time as their specified clocking event, as nonblocking assignments (in the

NBA region).

13.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described

above, a hierarchical expression is introduced by appending an equal sign (=) followed by the hierarchical

expression:

clocking cd1 @(posedge phi1);
input #1step state = top.cpu.state;

Editor’s Note: Figure still needs to be recreated.
Copyright 2003 Accellera. All rights reserved. 105

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH85

EC-CH86

EC-CH49

EC-CH49
endclocking

However, hierarchical expressions are not limited to simple names or signals in other scopes. They can be used

to declare slices, concatenations, or combinations of signals in other scopes or in the current scope.

clocking mem @(clock);
input instruction = { opcode, regA, regB[3:1] };

endclocking

13.5 Signals in multiple clocking domains

.The same signals—clock, inputs, inouts, or outputs—may appear in more than one clocking domain. Clock-

ing domains that use the same clock (or clocking expression) will share the same synchronization event, in the

same manner as several latches can be controlled by the same clock. Input semantics are described in section

13.13, and output semantics are described in section 13.14.

13.6 Clocking domain scope and lifetime

A clocking construct is both a declaration and an instance of that declaration. A separate instantiation step is

not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an

always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.)

operator:

dom.sig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global

($root) level. Clocking domains can only be declared inside a module, interface or a program (see section

15).

Clocking domains have static lifetime and scope local to their enclosing module, interface or program.

13.7 Multiple clocking domain example

In this example, a simple test module includes two clocking domains. The program construct used in this

example is discussed in section 15.

program test(input phi1, input [15:0] data, output write,
input phi2, inout [8:1] cmd, input enable

);

clocking cd1 @(posedge phi1);
input data;
output write;
input state = top.cpu.state;

endclocking

clocking cd2 @(posedge phi2);
input #2 output #4ps cmd;
input enable;

endclocking

// program begins here
...
// user can access cd1.data , cd2.cmd , etc…

endprogram
106 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
The test module can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phi1, phi2;

test main(phi1, data, write, phi2, cmd, enable);
cpu cpu1(phi1, data, write);
mem mem1(phi2, cmd, enable);

endmodule

13.8 Interfaces and clocking domains

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking domain

using a SystemVerilog interface can significantly reduce the amount of code needed to connect the test-

bench. Furthermore, since the signal directions in the clocking domain within the test-bench are with respect to

the test-bench, and not the design under test, a modport declaration can appropriately describe either direc-

tion. A test-bench can be contained within a program and its ports can be interfaces that correspond to the sig-

nals declared in each clocking domain. The interface’s wires will have the same direction as specified in the

clocking domain when viewed from the test-bench side (i.e., modport test), and reversed when viewed

from the device under test (i.e., modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus_A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);
modport dut (output data, input write);

endinterface

interface bus_B (input clk);
wire [8:1] cmd;
wire enable;
modport test (input enable);
modport dut (output enable);

endinterface

program test(bus_A.test a, bus_B.test b);

clocking cd1 @(posedge a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedge b.clk);
input #2 output #4ps b.cmd;
input b.enable;

endclocking

// program begins here
...
// user can access cd1.a.data , cd2.b.cmd , etc…

endprogram

The test module can be instantiated and connected as before:
Copyright 2003 Accellera. All rights reserved. 107

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH18

EC-CH51
module top;
logic phi1, phi2;

bus_A a(phi1);
bus_B b(phi2);

test main(a, b);
cpu cpu1(a);
mem mem1(b);

endmodule

Alternatively, the clocking domain can be written using both interfaces and hierarchical expressions as:

clocking cd1 @(posedge a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedge b.clk);
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;

endclocking

This would allow using the shorter names (cd1.data, cd2.cmd, …) instead of the longer interface syntax

(cd1.a.data, cd2.b.cmd,…).

13.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name, regardless of

the actual clocking event used to declare the clocking domain.

For example.

clocking dram @(posedge phi1);
inout data;
output negedge #1 address;

endclocking

The clocking event of the dram domain can be used to wait for that particular event:

@(dram);

The above statement is equivalent to @(posedge phi1).

13.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

[expression];

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

Editor’s Note: Update preceding syntax with BNF excerpt, once available.
108 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH52

EC-CH50

EC-CH53

EC-CH54

EC-CH55

EC-CH54
What constitutes a cycle is determined by the default clocking in effect (see section 13.11). If no default clock-

ing has been specified for the current module, interface, or program then the compiler will issue an error.

Example:

[5]; // wait 5 cycles using the default clocking

[j + 1]; // wait j+1 cycles using the default clocking

13.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, interface, or

program.

The syntax for the default cycle specification statement is:

default clocking_decl ; // clocking declaration

or

default clocking clocking_name ; // existing clocking

The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking

more than once in the same program or module shall result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope

includes the module, interface, or program that contains the declaration as well as any nested modules or inter-

faces. It does not include other instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

program test(input bit clk, input reg [15:0] data)
default clocking bus @(posedge clk);

inout data;
endclocking
[5];
if (bus.data == 10)

[1];
else

...
endprogram

Example 2. Assigning an existing clocking to be the default:

clocking busA @(posedge clk1); ... endclocking
clocking busB @(negedge clk2); ... endclocking
module processor ...

module cpu(interface y)
default clocking busA ;
initial begin

[5]; // use busA => (posedge clk1)
...

end
endmodule

Editor’s Note: Update preceding syntax with BNF excerpt, once available.
Copyright 2003 Accellera. All rights reserved. 109

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH95

EC-CH93

EC-CH94

EC-CH58

EC-CH95

EC-CH60
endmodule

13.12 Synchronous events

Explicit synchronization is done via the event control operator, @, which allows a process to wait for a particu-

lar signal value change, or a clocking event (see section 13.9).

The syntax for the synchronization operator is given in Section 8,.9

The expression used with the event control can denote clocking-domain input (input or inout), or a slice

thereof. Slices can include dynamic indices, which are evaluated once, when the @ expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clock domain ram_bus

@(ram_bus.ack_l);

— Wait for the next clocking event in clock-domain ram_bus

@(ram_bus);

— Wait for the positive edge of the signal ram_bus.enable

@(posedge ram_bus.enable);

— Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is evaluated at

runtime.

@(negedge dom.sign[a]);

— Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever happens

first.

@(posedge dom.sig1 or dom.sig2);

— Wait for the either the negative edge of dom.sig1 or the positive edge of dom.sig2, whichever happens

first.

@(negedge dom.sig1 or posedge dom.sig2);

The values used by the synchronization event control are the synchronous values, that is, the values sampled at

the corresponding clocking event.

13.13 lInput sampling

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the input skew

is non-zero then the value sampled corresponds to the signal value at the Postponed region of the time step

skew time-units prior to the clocking event (see figure 13-1 in section 13.3). If the input skew is zero then the

value sampled corresponds to the signal value in the Observe region.

Samples happen immediately (the calling process does not block). When a signal appears in an expression, it is

replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.
110 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH60

EC-CH95

EC-CH96

EC-CH98
When the same signal is an input to multiple clocking domains, the semantics are straightforward; each clock-

ing domain samples the corresponding signal with its own clocking event.

13.14 Synchronous drives

Clocking domain outputs (output or inout) are used to drive values onto their corresponding signals, but at a

specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by

the output skew.

The syntax to specify a synchronous drive is similar to an assignment:

[## event_count] clockvar_expression <= expression;

or

clockvar_expression <= [## event_count] expression;

The clockvar_expression is either a bit-select, slice, or the entire clocking domain output whose corresponding

signal is to be driven (concatenation is not allowed):

dom.sig // entire clockvar

dom.sig[2] // bit-select

dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding

signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles)

that must pass before the statement executes. Specifying a non-zero event_count blocks the current process

until the specified number of clocking events have elapsed, otherwise the statement executes at the current

time. The event_count uses syntax similar to the cycle-delay operator (see section 13.10), however, the syn-

chronous drive uses the clocking domain of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment event-count

specification also delays execution of the statement, but the right-hand side expression is evaluated before the

process blocks, instead of after.

Examples:

bus.data[3:0] <= 4’h5; // drive in current cycle

##1 bus.data <= 8’hz; // wait 1 (bus) cycle and then drive

##[2]; bus.data <= 2; // wait 2 default clocking cycles, then drive

bus.data <= ##2 r; // sample r, wait 2 (bus) cycles, the drive

Regardless of when the drive statement executes (due to event-count delays), the driven value is assigned to

the corresponding signal only at the time specified by the output skew.

Synchronous signal drives are processed as non-blocking assignments

A key feature of inout clocking domain variables and synchronous drives is that a drive does not change the

clock domain input. This is because reading the input always yields the last sampled value, and not the current

Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.
Copyright 2003 Accellera. All rights reserved. 111

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH99

EC-CH97
driven value.

13.14.1 Drive value resolution

When more than one synchronous drive is applied to the same clocking domain output (or inout) at the

same simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runt-

ime error is issued, and each conflicting bit is driven to X (or 0 for a 2-state port).

For example:

clocking pe @(posedge clk);
output nibble; // four bit output

endclocking

pe.nibble <= 4’b0101;
pe.nibble <= 4’b0011;

The driven value of nibble is 4’b0xx1, regardless of whether nibble is a reg or a wire.

When the same variable is an output from multiple clocking domains, the last drive determines the value of the

variable. This allows a single module to model multi-rate devices, such as a DDR memory, using a different

clocking domain to model each active edge. For example:

reg j;

clocking pe @(posedge clk);
output j;

endclocking

clocking ne @(negedge clk);
output j;

endclocking

The variable j is an output to two clocking domains using different clocking events (posedge vs. negedge).

When driven, the variable j will take on the value most recently assigned by either clocking domain.

Clock-domain outputs driving a net (i.e. through different ports) cause the net to be driven to its resolved sig-

nal value. When a clock-domain output corresponds to a wire a driver for that wire is created that is updated as

if by a continuous assignment from a register inside the clock-domain that is updated as a non-blocking assign-

ment.
112 Copyright 2003 Accellera. All rights reserved.

	Section 13 Clocking Domains
	13.1 Introduction (informative)
	13.2 Clocking domain declaration
	13.3 Input and output skews
	Figure 13�1— Sample and drive times including skew with respect to the positive edge of the clock.

	13.4 Hierarchical expressions
	13.5 Signals in multiple clocking domains
	13.6 Clocking domain scope and lifetime
	13.7 Multiple clocking domain example
	13.8 Interfaces and clocking domains
	13.9 Clocking domain events
	13.10 Cycle delay: ##
	13.11 Default clocking
	13.12 Synchronous events
	13.13 lInput sampling
	13.14 Synchronous drives
	13.14.1 Drive value resolution

