
Analysis of Analysis of the “Alternate Proposal on Class
Declaration”
Jay Lawrence
Cadence Design Systems, Inc.
3/14/2003

Rather than attempt to respond point-by point to Arturo’s analysis I will simply comment on the
requirements he extracted and the conclusions he drew to clarify my position for anyone who may be
confused. I’ve left my original in blue and Arturo’s comments in red.

_ Requirement 1: Explicit indication that a class object is dynamic.
Agreed

_ Requirement 2: Allow dynamic allocation of structures.
_ Requirement 3: Allow static allocation of classes.

Allow FUTURE dynamic allocation of structures and static allocation of classes. The intent of this proposal
was not to add these at this time. The original proposal gave some suggestions on how this might be done
but was not intended as a complete specification, this is way beyond what we have time for in SV 3.1.

_ Requirement 4: Enable simple orthogonal extensions of SystemVerilog data types in the future.
The current adding of all new data types as keywords has made this requirement almost impossible anyway
so this is stronger than what I am trying to accomplish. I simply want a syntactic difference between
dynamically allocated and statically allocated objects. The extensions of string, associative array, etc that
exist in 3.1 are static objects of a dynamic size.

(underlining added in following paragraph)

It’s clear from the requirements that the proposal does not attempt to solve a deficiency in the language, nor
does it establish that a problem exists that couldn’t be solved with the existing class paradigm. Moreover,
the proposal doesn’t add any additional semantic power to the language. As we will show later, everything
that can be done with the alternative proposal can be done with the current language, but with a lot less
typing and confusion. The proposal’s goal is simply an academic exercise that seeks to create “a regular
type s ystem” that will enable “simple orthogonal extensions in the future”. Whether one agrees with these
goals is irrelevant, what really matters is what additional semantic power the proposal provides to end
users, and at what cost. It is our contention that the proposal adds nothing in terms of semantic capabilities,
and the immediate cost is a much more complex and verbose language.

No attempt was made to solve a deficiency in the semantics of the language, the addition of the capabilities
of classes and dynamic memory is clearly needed. However, we do not believe that allowing for future
extension of the language is NOT irrelevant. If someone had told me 3 years ago that we would be
extending Verilog to this extent I would never have believed it. I am unwilling to gaze into a crystal ball at
this time and hold that these other extensions will not be needed.

Conclusion
The addition of classes is a powerful addition to SystemVerilog 3.1. The default dynamic nature of class
declarations optimizes the most common use model and leads to a simpler and easier to use language. The
type system regularity espoused by the alternate proposal comes at the expense of a much more verbose
and complex language.

Only 2 core changes are required, using ref() to pass a static object by reference, and declaring a ref
typedef for your classes and using it instead of the class typedef. The first (ref()) could event be eliminated
if the tools were allowed to do it implicitly as they do it today, but I would not recommend that. The
semantics of pass-by-reference are sufficiently different that I think this is advisable. I don’t think this
constitutes “much more verbose and complex”. I would call it explicit and clear.

 Finally, as mentioned at the start, the alternate proposal does not attempt to solve a semantic deficiency in
the language, nor does it state a problem that cannot be solved with the current class mechanism. It merely
attempts to unify several constructs that we feel are best as they are, otherwise ease-of use, performance,
and robustness will all be adversely affected.

The proposal as it stands has minimal impact on ease-of-use (change the typedef you use), there is no
impact on performance or robustness because the semantics have not been changed, only the syntax.

