LRM-49

SV-EC

A.2.2.1

Editor’s Note: Singular is listed as anything but unpacked structs, unpacked arrays, and handle type. Either the text should simply let the singular_type bnf explain or should deal with other exceptions: union, void, dynamic arrays
SV-BC Responds:
SV-EC has added this. They split the packed and unpacked unions.
Therefore, we are moving this issues back to EC. Stefen: Need the description in the LRM (3.9) to be cleaned up and make sure that BNF matches.

SUGGESTION:

Singular should not become a BNF construct. Singular is defined only to refer to non-aggregate types in the text of the LRM. Some system tasks and built-in methods will need semantic checks to restrict their use to singular types, but that is best handled semantically and not via BNF.

LRM-55

SV-EC

A.2.7

Editor’s Note: Looks like the new definition disallows “output signed [3:0] foo” (same for inout). I took the liberty of adding it.
SV-BC Responds:
It looks OK, but it should be moved back to EC because it was changed by them.

RESPONSE:

The BNF needs to allow for the optional signed on all task/function arguments, regardless of their direction (input, output, or inout). This is needed for backward compatibility with V2K.

For the same reason, the implicit “reg” type must be supported. Hence, “output signed [3:0] foo” is valid.

LRM-216

SV-EC

A.1.8 A.2.6 A.2.7

Make sure that static task foo and task static foo are supported in a class in the BNF per Francoise's review Open

RESPONSE:

The draft-5 BNF does support both forms of static for class methods:

static task foo(…)
// method lifetime

task static foo(…)
// arguments and data lifetime.

