LRM-261

SV-EC

3.3.1 Page 8

Editor’s Note: Is “integral” synonymous with “singular“? Both terms are used liberally throughout the LRM. Section 12 refers to “integral singular” in multiple places. The BNF only defines “singular” (A.2.2.1). It appears to me that they are the same. If so, then only one term should be used throughout the LRM and BNF. If these terms are different, then another section needs to be added here describing singular, and the BNF needs to be defined for “integral”.

RESPONSE:

No. integral is not synonymous with singular. However, an integral is also a singular, but not the other way around (a singular is not necessarily an integral). For example, an event is a singular but not an integral.

The term integral singular is obviously redundant and can be replaced by integral since it alone denotes both.

Done: No change

LRM-262

SV-EC

3.7 Page 9

Editor’s Note: This syntax ought to be in the syntax excerpt in section 3.2, but I could not find it in the Annex A BNF

RESPONSE:

Editor’s note is Correct. Modify the BNF as shown below.

Add to this section snippets from variable_declaration and data_type productions.

Add chandle to data_type production. Merge singular_type into data_type (remove singular_type), and change associative dimension. As shown below:

data_type ::=

 integer_vector_type [signing] { packed_dimension } [range]

| integer_atom_type [signing]

| type_declaration_identifier { packed_dimension }

| non_integer_type

| struct packed [signing] { { struct_union_member } } { packed_dimension }

| union packed [signing] { { struct_union_member } } { packed_dimension }

| struct [signing] { { struct_union_member } }

| union [signing] { { struct_union_member } }
| enum [integer_type [signing] { packed_dimension }]

 { enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }

| string

| event

| chandle
| class_ scope_type_identifier
associative_dimension ::=

 [data_type]

| [*]

class_ scope_type_identifier::=

 class_identifier :: { class_identifier :: } type_declaration_identifier

| class_identifier :: { class_identifier :: } class_identifier

Done: Except for addition of class_scope_type_identifier
LRM-263

SV-EC

3.8 Page 10

Editor’s Note: This syntax ought to be in the syntax excerpt in section 3.2, but I could not find it in the Annex A BNF

RESPONSE:

Editor’s note is Correct.

That syntax must be allowed by the variable_decl_assignment BNF production.

Modify that production as shown below (optional variable_dimension).

variable_decl_assignment ::=

 variable_identifier [variable_dimension] [= constant_expression]

| variable_identifier [] = new [constant_expression] [(variable_identifier)]

| class_identifier [parameter_value_assignment] = new [(list_of_arguments)]

Then the syntax for this section is then included by variable_declaration.

Done

LRM-264

SV-EC

3.11.4.1 Page 19

Editor’s Note: Would “prototype” be a better term that “syntax”, since these methods are not part of the BNF?

RESPONSE:

Yes, absolutely. Replace “syntax” with “prototype” in these sections.

Done: Change 3.11.4.1 through 3.11.4.5

LRM-266

SV-BC/SV-EC

3.14 Page 23

Editor’s Note: Should “singular_type” be included in the casting type? In fact, “simple_type” is only used by the casting_type production. Can “simple_type” be replaced with “singular_type”?

RESPONSE:

No. (see LRM-49) Singular should not become a BNF term.

Done: No change
LRM-267

SV-EC

3.15 Page 24

Editor’s Note: The paragraph above is only definition of “singular” that I could find, outside of the BNF. The term should be defined in its own subsection, probably in 3.3.x, and the BNF included in that definition. A reference to that defining subsection should then be added to the preceding paragraph.

RESPONSE:

The term singular could be defined in its own section, but it is not a BNF term (see LRM-266).

However, a definition for singular does not belong in Section 3.3.x since a singular is not an integral type.

The singular definition should be moved to a new Section 3.14 (before the Casting section). That will make singular an index item, thus, easier to find.

Done: Created new Section 3.14

LRM-268

SV-EC

4.6 Page 29

Editor’s Note: Is new[] an operator, method or function (it is called a both function and an operator in the next subsection).

RESPONSE:

The keyword new is a built-in mechanism. In the context of a class, it is considered a method, which is function, and in the context of dynamic-arrays it is considered an operator. There is no contradiction. Since it is a keyword and its semantics are built-in, it can be described as either.

Done: No change

LRM-269

SV-EC

5.7 Page 43

Editor’s Note: I feel the preceding paragraph is awkwardly and ambiguously worded.

Why is “wire” in quotes? Is this an indication that it is not referring to the wire keyword? Even it that is the intent, it is easy to assume that the specific keyword is intended, and therefore that only the wire data type can be aliased. I suggest striking the “or “wire” “, or replacing it with “or net”.

The same sentence says the alias connection must be “compatible” and must be the “same type”. To me, those are two different things. In Verilog, wire and tri are compatible, but are they the same type?. In Verilog, wire and tri1 have compatibility rules when connected together so there is no error or warning (see section 12.3.10). Can they be aliased to each other?

What if I alias two nets, both wire types of exactly the same size, but one is declared as signed (or is coerced to being signed by being connected to a signed port in the containing module) and the other wire is unsigned?

RESPONSE:

The term “or wire” should removed.
That sentence should read:

The nets connected with an alias statement must be type compatible, that is, they have to be of the same net-type. For example, it is illegal to connect a wand net to a wor net with an alias statement.

Done: Changed paragraph.

LRM-270

SV-EC

5.7 Page 43

Editor’s Note: The statement that implicit nets are assumed to be scalar is not accurate. For a module instance, if an undeclared identifier is also declared as a port of the containing module, then a net of the port size is assumed. I changed the wording as shown above.

RESPONSE:

The new wording is correct.

Done: No change

LRM-276

SV-EC

8.7 Page 60

Editor’s Note: This seems out of place in this section on procedural statements. It should be moved to section 9.9.

RESPONSE:

The editor’s note is an interesting comment.

The final block is a statement, but it does not create a process (as intial and always blocks do). Therefore, it would seem appropriate to leave “final block” in the Section on “Procedural Statements and Control Flow”. Unfortunately there is a statement in 9.1 that discusses final blocks that must be moved to Section 8.1 or else it does not make sense.

Done: Move last paragraph of 9.1 to 8.1.

LRM-277

SV-EC

8.10 Page 63

Editor’s Note: What is meant by “This can be made clearer by the use of parenthesis”? An example is needed. The BNF does not show optional parentheses for iff. SystemSim does not allow the following: “always @((posedge clk iff !reset) or negedge reset)”. I wish it did--the extra parenthesis does make it clearer what is being qualified by the iff.

RESPONSE:

That sentence means parenthesis can be used around the iff expression, which is allowed by the BNF. Using the same example as in the LRM:

always @(a iff (enable == 1))
Done: No Change

LRM-279

SV-EC

11.21 Page 92

Editor’s Note: Replace preceding syntax with final BNF excerpt, once available.

RESPONSE:

Editor’s note is correct. This BNF entry should be added to the primary production:

primary ::=

…

class_identifier :: {class_identifier ::} variable_identifier

Note: Also see added class_scope_type_identifier in LRM-262

Done: changed BNF and pointed to change for Section 11.21. Need declaration.

LRM-280

SV-EC

12.3 Page 100

Editor’s Note: I could not find this syntax in the BNF.

RESPONSE:

Propose breaking up class_item into class_property , class_methods, and class_constraint, as shown below.

A.1.8 Class items

class_item ::=

 { attribute_instance } class_property

| { attribute_instance } class_method

| { attribute_instance } class_constraint

class_property ::=

 { property_qualifier } data_declaration

| const { class_item_qualifier } data_type const_identifier [= constant_expression] ;
class_method ::=

 { method_qualifier } task_declaration

| { method_qualifier } function_declaration

| { method_qualifier } method_prototype

class_constraint ::=

 constraint_prototype

| constraint_declaration

class_item_qualifier11 ::=

 static

| protected

| local
property_qualifier11 ::=

 rand

| randc

| class_item_qualifier
method_qualifier11 ::=

 virtual
| class_item_qualifier
method_prototype ::=

 task named_task_proto ;

| function named_function_proto ;

extern_method_declaration ::=

 function [lifetime] class_identifier :: function_body_declaration

| task [lifetime] class_identifier :: task_body_declaration

And add the following footnote:

11 In any one declaration, only one of protected or local is allowed, only one of rand or randc is allowed, and static and/or virtual can appear only once
Then, this section can use the class_property and property_qualifier snippets.

Done except for question about extern_method_declaration use

LRM-281

SV-EC

12.11.3 Page 117

Editor’s Note: Is “void = “ legal? See Section 10.3.2

RESPONSE:

Editor is correct. That is not legal syntax. Example should be changed from:

void = foo.randomize();

// z = $random;

void = bar.randomize();
To:

void’(foo.randomize());

// z = $random;

void’(bar.randomize());
Done

LRM-282

SV-EC

13.2.1 Page

Editor’s Note: Would “prototype” be a better term that “syntax”, since methods are not part of the BNF?

RESPONSE:

Yes, absolutely. Replace “syntax” with “prototype” in these sections and for 13.3.1 sections.

Done

LRM-283

SV-EC

15.11 Page 142

Editor’s Note: I was not able to match the first version of the original syntax with what is in the BNF. Nor does the BNF seem to support example 2, below.

RESPONSE:

Editor is correct.

The following should be added at the end of the module_or_generate_item_declaration BNF production (in A.1.5):

module_or_generate_item_declaration ::=

…

default clocking clocking_identifier ;
Done

LRM-284

SV-EC

15.14 Page 144

Editor’s Note: I could not find this syntax in the BNF.

RESPONSE:

That is not new syntax. The syntax for a clockvar_expression is already included in primary. A new BNF construct could be added for clarity (but is not necessary):

primary ::=

…

clocking_identifier . identifier

Not done

LRM-296

SV-BC/SV-EC

A.8.6 Page 305

Editor’s Note: This section does not list all the operators found in section 7.9, table 7-2. Should it?.

RESPONSE:

No additional operators need to be listed in this section.

The missing operators (inside, dist, =>, := , :/) are handled by syntax alone (either constraints grammar or the inside rule).

Nonetheless, the inside operator syntax is missing.

Modify Section A.8.3, as shown (gray text is added)

expression ::=

primary

| unary_operator { attribute_instance } primary

| inc_or_dec_expression

| (operator_assignment)

| expression binary_operator { attribute_instance } expression

| conditional_expression

| string_literal

| inside_expression

inside_expression ::= expression inside range_list_or_array
range_list_or_array ::=

 variable_identifier

| { value_range { , value_range } }

value_range ::=

 expression

| [expression : expression]
Done
LRM-297

SV-EC

C.5.15

Editor’s Note: “assign” is a Verilog keyword. Is it a legal function name in this context?

No. It’s not allowed.

The name of this method will change to set.

C.5.15 set()

function void set(List_Iterator#(T) first, last);

set assigns to the list object the elements that lie in the range specified by the first and last iterators. After this method returns, the modified list will have a size equal to the range specified by first and last. This method copies the data from the first iterator’s position up to, but not including, the last iterator’s position. If the last iterator refers to an element before the first iterator, the range wraps around the end of the list.

list2.set(list1.start, list2.finish); // list2 is a copy of list1

If the range iterators are invalid (i.e., they refer to different lists or to invalid positions), then this operation is illegal and can generate an error.

--- Also modify the appropriate line in C.3.2:

C.3.2 List class prototype

class List#(parameter type T);

extern function new();

extern function int size();

extern function int empty();

extern function void push_front(T value);

extern function void push_back(T value);

extern function T front();

extern function T back();

extern function void pop_front();

extern function void pop_back();

extern function List_Iterator#(T) start();

extern function List_Iterator#(T) finish();

extern function void insert(List_Iterator#(T) position, T value);

extern function void insert_range(List_Iterator#(T) position, first, last);

extern function void erase(List_Iterator#(T) position);

extern function void erase_range(List_Iterator#(T) first, last);

extern function void set(List_Iterator#(T) first, last);

extern function void swap(List#(T) lst);

extern function void clear();

extern function void purge();

endclass
Done
LRM-298

SV-AC SV-BC SV-CC SV-EC

G Page 353

Editor’s Note: What additional terms should be added to this glossary?

RESPONSE:

No additional glossary items for now.

LRM-293 & LRM-294

SV-AC

A.1.8 Page 280

Editor’s Note: Unmatched sets of curly-braces on preceding line (need to fix here and in section 12.4)

Editor’s Note: I am confused by the “constraint_item” and “constraing_item_or_block” productions. The seem to only refer to each other in a circular fashion.

RESPONSE:

Replace the entire section A.1.8 with the contents of LRM-280, and the following new section (A.1.9). This production assumes that LRM-296 and LRM-280 have been applied.

Annex A.1.9 Constraints

constraint_declaration ::= [static] constraint constraint_identifier { { constraint_block } }
constraint_block ::=

 solve identifiers before identifiers ;
| expression dist { dist_list } ;
| constraint

constraint ::=

 expression ;

 | expression => constraint_set

 | if (expression) constraint_set [else constraint_set]

constraint_set ::=

 constraint

| { { constraint } }
dist_list ::= dist_item { , dist_item }

dist_item ::=

 value_range := expression

| value_range :/ expression

constraint_prototype ::= [static] constraint constraint_identifier

extern_constraint_declaration ::=

[static] constraint class_identifier :: constraint_identifier { { constraint_block } }

Done

