Proposal - Global change of "clocking domain" to "clocking block"

SystemVerilog 3.1a Draft Documentation

Table of Contents - page viii

Section 15 Clocking blocks... 136

15.1 Introduction (informative) .. 136

15.2 Clocking block declaration .. 136

15.3 Input and output skews ... 138

15.4 Hierarchical expressions ... 139

15.5 Signals in multiple clocking blocks ... 139

15.6 Clocking block scope and lifetime .. 139

15.7 Multiple clocking blocks example... 139

15.8 Interfaces and clocking blocks... 140

15.9 Clocking block events.. 142

15.10 Cycle delay: ## ... 142

15.11 Default clocking... 142

15.12 Input sampling ... 143

15.13 Synchronous events .. 144

15.14 Synchronous drives... 144

Page 2

— Cycle-Based Functionality: Clocking blocks and cycle-based attributes that help reduce development, ease maintainability, and promote reusability:

— Cycle-based signal drives and samples

— Synchronous samples

— Race-free program context

Section 8.10 - page 64

If the expression denotes a clocking-domain input or inout (see Section 15), the event control operator uses the synchronous values, that is, the values sampled by the clocking event. The expression can also denote a clocking-domain name (with no edge qualifier) to be triggered by the clocking event.

Section 14

Scheduling Semantics

14.1 Execution of a hardware model and its verification environment

The balance of the sections of this standard describes the behavior of each of the elements of the language. This section gives an overview of the interactions between these elements, especially with respect to the scheduling and execution of events. Although SystemVerilog is not limited to simulation, the semantics of the language are defined for event directed simulation, and other uses of the hardware description language are abstracted from this base definition.

14.2 Event simulation

The SystemVerilog language is defined in terms of a discrete event execution model. The discrete event simulation is described in more detail in this section to provide a context to describe the meaning and valid interpretation of SystemVerilog constructs. These resulting definitions provide the standard SystemVerilog reference algorithm for simulation, which all compliant simulators shall implement. Note that there is a great deal of choice in the definitions that follow, and differences in some details of execution are to be expected between different simulators. In addition, SystemVerilog simulators are free to use different algorithms than those described in this section, provided the user-visible effect is consistent with the reference algorithm.

A SystemVerilog description consists of connected threads of execution or processes. Processes are objects that can be evaluated, that can have state, and that can respond to changes on their inputs to produce outputs. Processes are concurrently scheduled elements, such as initial blocks. Example of processes include, but are not limited to, primitives, initial and always procedural blocks, continuous assignments, asynchronous tasks, and procedural assignment statements.

Every change in state of a net or variable in the system description being simulated is considered an update event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive to that event are considered for evaluation in an arbitrary order. The evaluation of a process is also an event, known as an evaluation event.

Evaluation events also include PLI callbacks, which are points in the execution model where user-defined external routines can be called from the simulation kernel.

In addition to events, another key aspect of a simulator is time. The term simulation time is used to refer to the time value maintained by the simulator to model the actual time it would take for the system description being simulated. The term time is used interchangeably with simulation time in this section.

To fully support clear and predictable interactions, a single time slot is divided into multiple regions where events can be scheduled that provide for an ordering of particular types of execution. This allows properties and checkers to sample data when the design under test is in a stable state. Property expressions can be safely evaluated, and testbenches can react to both properties and checkers with zero delay, all in a predictable manner. This same mechanism also allows for non-zero delays in the design, clock propagation, and/or stimulus and response code to be mixed freely and consistently with cycle accurate descriptions.

14.3 The stratified event scheduler

A compliant SystemVerilog simulator must maintain some form of data structure that allows events to be dynamically scheduled, executed and removed as the simulator advances through time. The data structure is normally implemented as a time ordered set of linked lists, which are divided and sub-divided in a well defined manner.

The first division is by time. Every event has one and only one simulation execution time, which at any given point during simulation can be the current time or some future time. All scheduled events at a specific time define a time slot. Simulation proceeds by executing and removing all events in the current simulation time slot before moving on to the next non-empty time slot, in time order. This procedure guarantees that the simulator never goes backwards in time.

A time slot is divided into a set of ordered regions:

1) Preponed

2) Pre-active

3) Active

4) Inactive

5) Pre-NBA

6) NBA

7) Post-NBA

8) Observed

9) Post-observed

10) Reactive

11) Postponed

The purpose of dividing a time slot into these ordered regions is to provide predictable interactions between the design and testbench code.

Except for the Observed and Reactive regions and the Post-observed PLI region, these regions essentially encompass the Verilog 1364-2001 standard reference model for simulation, with exactly the same level of determinism. This means that legacy Verilog code shall continue to run correctly without modification within the new mechanism. The Postponed region is where the monitoring of signals, and other similar events, takes place. No new value changes are allowed to happen in the time slot once the Postponed region is reached.

The Observed and Reactive regions are new in the SystemVerilog 3.1 standard, and events are only scheduled into these new regions from new language constructs.

The Observed region is for the evaluation of the property expressions when they are triggered. A criterion for this determinism is that the property evaluations must only occur once in any clock triggering time slot. During the property evaluation, pass/fail code shall be scheduled in the Reactive region of the current time slot.

The sampling time of sampled data for property expressions is controlled in the clock domain block. The new #1step sampling delay provides the ability to sample data immediately before entering the current time slot, and is a preferred construct over other equivalent constructs because it allows the 1step time delay to be parameterized. This #1step construct is a conceptual mechanism that provides a method for defining when sampling takes place, and does not require that an event be created in this previous time slot. Conceptually this #1step sampling is identical to taking the data samples in the Preponed region of the current time slot.

Code specified in the program block, and pass/fail code from property expressions, are scheduled in the Reactive region.

The Pre-active, Pre-NBA, and Post-NBA are new in the SystemVerilog 3.1 standard but support existing PLI callbacks. The Post-observed region is new in the SystemVerilog 3.1 standard and has been added for PLI support.

The Pre-active region is specifically for a PLI callback control point that allows for user code to read and write values and create events before events in the Active region are evaluated (see Section 14.4).

The Pre-NBA region is specifically for a PLI callback control point that allows for user code to read and write values and create events before the events in the NBA region are evaluated (see Section 14.4).

The Post-NBA region is specifically for a PLI callback control point that allows for user code to read and write values and create events after the events in the NBA region are evaluated (see Section 14.4).

The Post-observed region is specifically for a PLI callback control point that allows for user code to read values after properties are evaluated (in Observed or earlier region).

The flow of execution of the event regions is specified in Figure 14-1.

Figure 14-1 — The SystemVerilog flow of time slots and event regions

The Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-observed and Reactive regions are known as the iterative regions.

The Preponed region is specifically for a PLI callback control point that allows for user code to access data at the current time slot before any net or variable has changed state.

The Active region holds current events being evaluated and can be processed in any order.

The Inactive region holds the events to be evaluated after all the active events are processed.

An explicit #0-delay requires that the process be suspended and an event scheduled into the Inactive region of the current time slot so that the process can be resumed in the next inactive to active iteration.

A nonblocking assignment creates an event in the NBA region, scheduled for current or a later simulation time.

The Postponed region is specifically for a PLI callback control point that allows for user code to be suspended until after all the Active, Inactive and NBA regions have completed. Within this region, it is illegal to write values to any net or variable, or to schedule an event in any previous region within the current time slot.

14.3.1 The SystemVerilog simulation reference algorithm

execute_simulation {

 T = 0;

 initialize the values of all nets and variables;

 schedule all initialization events into time 0 slot;

 while (some time slot is non-empty) {

 move to the next future non-empty time slot and set T;

 execute_time_slot (T);

 }

}

execute_time_slot {

 execute_region (preponed);

 while (some iterative region is non-empty) {

 execute_region (active);

 scan iterative regions in order {

 if (region is non-empty) {

 move events in region to the active region;

 break from scan loop;

 }

 }

}

execute_region (postponed);

}

execute_region {

 while (region is non-empty) {

 E = any event from region;

 remove E from the region;

 if (E is an update event) {

 update the modified object;

 evaluate processes sensitive to the object and possibly schedule

 further events for execution;

 } else { /* E is an evaluation event */

 evaluate the process associated with the event and possibly

 schedule further events for execution;

 }

 }

}

The Iterative regions and their order are: Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-observed and Reactive.

14.4 The PLI callback control points

There are two kinds of PLI callbacks, those that are executed immediately when some specific activity occurs, and those that are explicitly registered as a one-shot evaluation event.

It is possible to explicitly schedule a PLI callback event in any region. Thus, an explicit PLI callback registration is identified by a tuple: (time, region).

The following list provides the mapping from the various current PLI callbacks

Table 14-3: PLI Callbacks Callback Identification

Section 15

Clocking blocks

15.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the interface, a key construct that encapsulates the communication between blocks, thereby enabling users to easily change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a testbench communicates with a device under test. However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or clocking paradigms.

SystemVerilog adds the clocking block that identifies clock signals, and captures the timing and synchronization requirements of the blocks being modeled. A clocking block assembles signals that are synchronous to a particular clock, and makes their timing explicit. The clocking block is a key element in a cycle-based methodology, which enables users to write testbenches at a higher level of abstraction. Rather than focusing on signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the environment, a testbench can contain one or more clocking blocks, each containing its own clock plus an arbitrary number of signals.

The clocking block separates the timing and synchronization details from the structural, functional, and procedural elements of a testbench. Thus, the timing for sampling and driving clocking block signals is implicit and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly, without explicitly using clocks or specifying timing. These operations are:

— Synchronous events

— Input sampling

— Synchronous drives

15.2 Clocking block declaration

The syntax for the clocking block is:
…

The delay_control must be either a time literal or a constant expression that evaluates to a positive integer

value.

The clocking_identifier specifies the name of the clocking block being declared.

The signal_identfier identifies a signal in the scope enclosing the clocking block declaration, and declares the name of a signal in the clocking block. Unless a hierarchical_expression is used, both the signal and the clocking_item names shall be the same.

The clocking_event designates a particular event to act as the clock for the clocking block. Typically, this expression is either the posedge or negedge of a clocking signal. The timing of all the other signals specified in a given clocking block are governed by the clocking event. All input or inout signals specified in the clocking block are sampled when the corresponding clock event occurs. Likewise, all output or inout signals in the clocking block are driven when the corresponding clock event occurs. Bidirectional signals (inout) are sampled as well as driven.

The clocking_skew determines how many time units away from the clock event a signal is to be sampled or driven. Input skews are implicitly negative, that is, they always refer to a time before the clock, whereas output skews always refer to a time after the clock (see Section 15.3). When the clocking event specifies a simple edge, instead of a number, the skew can be specified as the opposite edge of the signal. A single skew can be specified for the entire domain by using a default clocking item.

clocking ck1 (posedge clk);

 default input #1step output negedge; // legal

 // outputs driven on the negedge clk

 input ... ;

 output ... ;

endclocking

clocking ck2 (clk); // no edge specified!

 default input #1step output negedge; // illegal
 input ... ;

 output ... ;

endclocking

The hierarchical_identifier specifies that, instead of a local port, the signal to be associated with the clocking block is specified by its hierarchical name (cross-module reference).

Example:

…

In the above example, the first line declares a clocking block called bus that is to be clocked on the positive edge of the signal clock1. The second line specifies that by default all signals in the domain shall use a 10ns input skew and a 2ns output skew. The next line adds three input signals to the domain: data, ready, and enable; the last signal refers to the hierarchical signal top.mem1.enable. The fourth line adds the signal ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the clock. The last line adds the signal addr and overrides the default input skew so that addr is sampled one step before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is 0 (in the NBA region). A step is a special time unit whose value is defined in Section 18.7. A 1step input skew allows input signals to sample their steady-state values in the time step immediately before the clock event (i.e., in the preceding Postponed region). Unlike other time units, which represent physical units, a step cannot be used to set or modify either the precision or the timeunit.

15.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simulation time units after the corresponding clock event. Figure 15-1 shows the basic sample/drive timing for a positive edge clock.

Figure 15-1

…

A skew must be a constant expression, and can be specified as a parameter. If the skew does not specify a time unit, the current time unit is used. If a number is used, the skew is interpreted using the timescale of the current scope.

…

An input skew of 1step indicates that the signal is to be sampled at the end of the previous time step. That is, the value sampled is always the signal’s last value immediately before the corresponding clock edge.

Inputs with explicit #0 skew are sampled at the same time as their corresponding clocking event, but to avoid races, they are sampled in the Observed region. Likewise, clocking block outputs with no skew are driven at the same time as their specified clocking event, as nonblocking assignments (in the NBA region).

Skews are declarative constructs, thus, they are semantically very different from the syntactically similar procedural delay statement. In particular, an explicit #0 skew, does not suspend any process nor does it execute or sample values in the Inactive region.

15.4 Hierarchical expressions

Any signal in a clocking block can be associated with an arbitrary hierarchical expression. As described in Section 15.2, a hierarchical expression is introduced by appending an equal sign (=) followed by the hierarchical expression:

clocking cd1 @(posedge phi1);

 input #1step state = top.cpu.state;

endclocking

However, hierarchical expressions are not limited to simple names or signals in other scopes. They can be used to declare slices and concatenations (or combinations thereof) of signals in other scopes or in the current scope.

clocking mem @(clock);

 input instruction = { opcode, regA, regB[3:1] };

endclocking

15.5 Signals in multiple clocking blocks

The same signals—clock, inputs, inouts, or outputs—can appear in more than one clocking block. Clocking blocks that use the same clock (or clocking expression) shall share the same synchronization event, in the same manner as several latches can be controlled by the same clock. Input semantics are described in Section 15.12, and output semantics are described in Section 15.14.

15.6 Clocking block scope and lifetime

A clocking block is both a declaration and an instance of that declaration. A separate instantiation step is not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.) operator: dom.sig // signal sig in clocking dom

Clocking blocks cannot be nested. They cannot be declared inside functions or tasks, or at the global ($root) level. Clocking blocks can only be declared inside a module, interface or program (see Section 16).

Clocking blocks have static lifetime and scope local to their enclosing module, interface or program.

15.7 Multiple clocking blocks example

In this example, a simple test program includes two clocking blocks. The program construct used in this example is discussed in Section 16.

…

15.8 Interfaces and clocking blocks

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking block using a SystemVerilog interface can significantly reduce the amount of code needed to connect the testbench. Furthermore, since the signal directions in the clocking block within the testbench are with respect to the testbench, and not the design under test, a modport declaration can appropriately describe either direction. A testbench program can be contained within a program and its ports can be interfaces that correspond to the signals declared in each clocking block. The interface’s wires shall have the same direction as specified in the clocking block when viewed from the testbench side (i.e., modport test), and reversed when viewed from the device under test (i.e., modport dut).

For example, the previous example could be re-written using interfaces as follows:
…

The test module can be instantiated and connected as before:

...

Alternatively, in the program test above, the clocking block can be written using both interfaces and hierarchical expressions as:

…

This would allow using the shorter names (cd1.data, cd2.cmd, …) instead of the longer interface syntax (cd1.a.data, cd2.b.cmd,…).

15.9 Clocking block events

The clocking event of a clocking block is available directly by using the clocking block name, regardless of the actual clocking event used to declare the clocking block.

For example.

...

The clocking event of the dram domain can be used to wait for that particular event:

 @(dram);

The above statement is equivalent to @(posedge phi1).

15.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

...

The constant_expression can be any SystemVerilog expression that evaluates to a positive integer value.

What constitutes a cycle is determined by the default clocking in effect (see Section 15.11). If no default clocking has been specified for the current module, interface, or program then the compiler shall issue an error.

Example:

 ## 5; // wait 5 cycles (clocking events) using the default clocking

 ## j + 1; // wait j+1 cycles (clocking events) using the default clocking

15.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, interface, or program.

The syntax for the default cycle specification statement is:
...

The clocking_identifier must be the name of a clocking block.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking more than once in the same program or module shall result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope includes the module, interface, or program that contains the declaration as well as any nested modules or interfaces. It does not include instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

...

Example 2. Assigning an existing clocking to be the default:

...

15.12 Input sampling

All clocking block inputs (input or inout) are sampled at the corresponding clocking event. If the input skew is not an explicit #0, then the value sampled corresponds to the signal value at the Postponed region of the time step skew time-units prior to the clocking event (see Figure 15-1 in Section 15.3). If the input skew is an explicit #0, then the value sampled corresponds to the signal value in the Observed region.

Samples happen immediately (the calling process does not block). When a signal appears in an expression, it is replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking blocks, the semantics are straightforward; each clocking block samples the corresponding signal with its own clocking event.

15.13 Synchronous events

Explicit synchronization is done via the event control operator, @, which allows a process to wait for a particular signal value change, or a clocking event (see Section 15.9).

The syntax for the synchronization operator is given in Section 8.10.

The expression used with the event control can denote clocking-domain input (input or inout), or a slice thereof. Slices can include dynamic indices, which are evaluated once, when the @ expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clock-domain ram_bus

 @(ram_bus.ack_l);

— Wait for the next clocking event in clock-domain ram_bus

 @(ram_bus);

— Wait for the positive edge of the signal ram_bus.enable

 @(posedge ram_bus.enable);

— Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is evaluated at runtime.

 @(negedge dom.sign[a]);

— Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever happens first.

 @(posedge dom.sig1 or dom.sig2);

— Wait for the either the negative edge of dom.sig1 or the positive edge of dom.sig2, whichever happens first.

 @(negedge dom.sig1 or posedge dom.sig2);

The values used by the synchronization event control are the synchronous values, that is, the values sampled in the postponed region immediately before the corresponding clocking event (except clocking inputs with explicit #0 delays, which are sampled in the Observed region of the corresponding clocking event).

15.14 Synchronous drives

Clocking block outputs (output or inout) are used to drive values onto their corresponding signals, but at a specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by the output skew.

The syntax to specify a synchronous drive is similar to an assignment:

...

The clockvar_expression is either a bit-select, slice, or the entire clocking block output whose corresponding signal is to be driven (concatenation is not allowed):

 dom.sig // entire clockvar

 dom.sig[2] // bit-select

 dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles) that must pass before the statement executes. Specifying a non-zero event_count blocks the current process until the specified number of clocking events have elapsed, otherwise the statement executes at the current time. The event_count uses syntax similar to the cycle-delay operator (see Section 15.10), however, the synchronous drive uses the clocking block of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment event_count specification also delays execution of the assignment. In this case the process does not block and the right-hand side expression is evaluated when the statement executes.

Examples:

 bus.data[3:0] <= 4’h5; // drive data in the NBA region of the current cycle

 ##1 bus.data <= 8’hz; // wait 1 (bus) cycle and then drive data

 ##2; bus.data <= 2; // wait 2 default clocking cycles, then drive data

 bus.data <= ##2 r; // remember the value of r and then drive

 // data 2 (bus) cycles later

Regardless of when the drive statement executes (due to event_count delays), the driven value is assigned to the corresponding signal only at the time specified by the output skew.

15.14.1 Drives and nonblocking assignments

Synchronous signal drives to design signals are processed as nonblocking assignments.

A key feature of inout clocking block variables and synchronous drives is that a drive does not change the clock domain input. This is because reading the input always yields the last sampled value, and not the driven value.

15.14.2 Drive value resolution

When more than one synchronous drive is applied to the same clocking block output (or inout) at the same simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runtime error is issued, and each conflicting bit is driven to X (or 0 for a 2-state port).

For example:

...

The driven value of nibble is 4’b0xx1, regardless of whether nibble is a reg or a wire.

When the same variable is an output from multiple clocking blocks, the last drive determines the value of the variable. This allows a single module to model multi-rate devices, such as a DDR memory, using a different clocking block to model each active edge. For example:

...

The variable j is an output to two clocking blocks using different clocking events (posedge vs. negedge). When driven, the variable j shall take on the value most recently assigned by either clocking block.

Clocking block outputs driving a net (i.e. through different ports) cause the net to be driven to its resolved signal value. When a clocking block output corresponds to a wire, a driver for that wire is created that is updated as if by a continuous assignment from a register inside the clock-domain that is updated as a nonblocking assignment.
Section 16

Program Block

16.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires, task and function declarations, and procedural statements within always and initial blocks. This construct works extremely well for the description of hardware. However, for the testbench, the emphasis is not in the hardware-level details such as wires, structural hierarchy, and interconnects, but in modeling the complete environment in which a design is verified. A lot of effort is spent getting the environment properly initialized and synchronized, avoiding races between the design and the testbench, automating the generation of input stimuli, and reusing existing models and other infrastructure.

The program block serves three basic purposes:

1) It provides an entry point to the execution of testbenches.

2) It creates a scope that encapsulates program-wide data.

3) It provides a syntactic context that specifies scheduling in the Reactive region.

The program construct serves as a clear separator between design and testbench, and, more importantly, it specifies specialized execution semantics in the Reactive region for all elements declared within the program. Together with clocking blocks, the program construct provides for race-free interaction between the design and the testbench, and enables cycle and transaction level abstractions.

The abstraction and modeling constructs of SystemVerilog simplify the creation and maintenance of testbenches. The ability to instantiate and individually connect each program instance enables their use as generalized models.

16.2 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more procedural code streams. The connection between design and testbench uses the same interconnect mechanism as used by SystemVerilog to specify port connections, including interfaces. The syntax for the program block is:

Syntax 16-1—Program declaration syntax (excerpt from Annex A)

For example:

program test (input clk, input [16:1] addr, inout [7:0] data);

 initial ...

endprogram

or

program test (interface device_ifc);

 initial ...

endprogram

A more complete example is included in Sections 15.7 and 15.8.

Although the program construct is new to SystemVerilog, its inclusion is a natural extension. The program construct can be considered a leaf module with special execution semantics. Once declared, a program block can be instantiated in the required hierarchical location (typically at the top level) and its ports can be connected in the same manner as any other module.

Program blocks can be nested within modules or interfaces. This allows multiple cooperating programs to share variables local to the scope. Nested programs with no ports or top-level programs that are not explicitly instantiated are implicitly instantiated once. Implicitly instantiated programs have the same instance and declaration name. For example:

module test(...)

 int shared; // variable shared by programs p1 and p1

 program p1;

 ...

 endprogram

 program p2;

 ...

 endprogram // p1 and p2 are implicitly instantiated once in module test

endmodule

A program block can contain one or more initial blocks. It can not contain always blocks, UDPs, modules, interfaces, or other programs.

Type and data declarations within the program are local to the program scope and have static lifetime. Program variables can only be assigned using blocking assignments. Non-program variables can only be assigned using nonblocking assignments. Using nonblocking assignments with program variables or blocking assignments with design (non-program) variables shall be an error.

16.3 Multiple programs

It is allowed to have any arbitrary number of program definitions or instances. The programs can be fully independent (without inter-program communication), or cooperative. The degree of communication can be controlled by choosing to share data using nested blocks or hierarchical references (including $root), or making the data private by declaring it inside the corresponding program block.

16.4 Eliminating testbench races

There are two major sources of non-determinism in Verilog. The first one is that active events are processed in an arbitrary order. The second one is that statements without time-control constructs in behavioral blocks do not execute as one event. However, from the testbench perspective, these effects are all unimportant details. The primary task of a testbench is to generate valid input stimulus for the design under test, and to verify that the device operates correctly. Furthermore, testbenches that use cycle abstractions are only concerned with the stable or steady state of the system for both checking the current outputs and for computing stimuli for the next cycle. Formal tools also work in this fashion.

Statements within a program block that are sensitive to changes (e.g., update events) in design signals (declared in modules, not program blocks) are scheduled in the Reactive region. Consider a program block that contains the statement @(clk) S1; where clk is a design signal in some module. Every transition of signal clk , will cause the statement S1 to be scheduled into the Reactive region. Likewise, initial blocks within program blocks are scheduled in the Reactive region; in contrast, initial blocks in modules are scheduled in the Active region.
. In addition, design signals driven from within the program must be assigned using nonblocking assignments and are updated in the NBA region. Thus, even signals driven with no delay are propagated into the design as one event. With this behavior, correct cycle semantics can be modeled without races; thereby making program-based testbenches compatible with clocked assertions and formal tools.

Since the program schedules events in the Reactive region, the clocking block construct is very useful to automatically sample the steady-state values of previous time steps or clock cycles. Programs that read design values exclusively through clocking blocks with non-#0 input skews are insensitive to read-write races. It is important to note that simply sampling input signals (or setting non-#0 skews on clock domain inputs) does not eliminate the potential for races. Proper input sampling only addresses a single clocking block. With multiple clocks, the arbitrary order in which overlapping or simultaneous clocks are processed is still a potential source for races. The program construct addresses this issue by scheduling its execution in the Reactive region, after all design events have been processed, including clocks driven by nonblocking assignments.

16.4.1 Zero-skew clocking block races

When a clocking block sets both input and output skews to #0 (see Section 15.3) then its inputs are sampled (in the Observed region) at the same time as its outputs are driven (in the NBA region). This type of explicit #0-delay processing is a common source of non-determinism that can result in races. Nonetheless, even in this case, the program minimizes races by means of two mechanisms. First, by constraining program statements to be scheduled in the Reactive region, after all explicit #0-delay transitions have propagated through the design and the system has reached a quasi steady state. Second, by requiring design variables or nets to be modified only via nonblocking assignments. These two mechanisms reduce the likelihood of a race; nonetheless, a race is still possible when skews are set to explicit #0.

16.5 Blocking tasks in cycle/event mode

Calling program tasks or functions from within design modules is illegal and shall result in an error. This is because the design must not be aware of the testbench. Programs are allowed to call tasks or functions in other programs or within design modules. Functions within design modules can be called from a program, and require no special handling. However, blocking tasks (tasks with delays) within design modules that are called from a program do require explicit synchronization upon return from the task. That is, when blocking tasks return to the program code, the program block execution is automatically postponed until the Reactive region. The copy out of the parameters happens when the task returns. Calling blocking tasks in design modules from within programs requires careful consideration. Expressions evaluated by the task before blocking on the first timing control shall use the values after they have been updated by nonblocking assignments. In contrast, if the task is called from a module at the start of the time step (before nonblocking assignments are processed) then those same expressions shall use the values before they have been updated by nonblocking assignments.

module ...

 task T;

 S1: a = b; // might execute before or after the Observed region

 #5;

 S2: b <= 1’b1; // always executes before the Observed region

 endtask

endmodule

If task T, above, is called from within a module, then the statement S1 can execute immediately when the Active region is processed, before variable b is updated by a nonblocking assignment. If the same task is called from within a program, then the statement S1 shall execute when the Reactive region is processed, after variable b might have been updated by nonblocking assignments. Statement S2 always executes immediately after the delay expires; it does not wait for the Reactive region even though it was originally called from the program block.

16.6 Program control tasks

In addition to the normal simulation control tasks ($stop and $finish), a program can use the $exit control task.

16.6.1 $exit()

Each program can be finished by calling the $exit system task. When all programs exit, the simulation finishes.

The syntax for the $exit system task is:

task $exit();

When all initial blocks in a program finish (i.e., they execute their last statement), the program implicitly calls $exit. Calling $exit causes all processes spawned by the current program to be terminated.

Section 17

Assertions

17.1 Introduction (informative)

SystemVerilog adds features to specify assertions of a system. An assertion specifies a behavior of the system. Assertions are primarily used to validate the behavior of a design. In addition, assertions can be used to provide functional coverage and generate input stimulus for validation.

There are two kinds of assertions: concurrent and immediate.

— Immediate assertions follow simulation event semantics for their execution and are executed like a statement in a procedural block. Immediate assertions are primarily intended to be used with simulation.

— Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals of SystemVerilog assertions is to provide a common semantic meaning for assertions so that they can be used to drive various design and verification tools. Many tools, such as formal verification tools, evaluate circuit descriptions using a cycle-based semantic, which typically relies on a clock signal or signals to drive the evaluation of the circuit. Any timing or event behavior between clock edges is abstracted away. Concurrent assertions incorporate this clock semantic. While this approach generally simplifies the evaluation of a circuit description, there are a number of scenarios under which this cycle-based evaluation provides different behavior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

17.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the procedural code. The expression is non-temporal and treated as a condition as in an if statement. The immediate assert statement is a statement_item and can be specified anywhere a procedural statement is specified.

Syntax 17-1—Immediate assertion syntax (excerpt from Annex A)

The action_block specifies what actions are taken upon success or failure of the assertion. The statement associated with the success of the assert statement is the first statement. It is called the pass statement and is executed if the expression evaluates to true. The evaluation of the expression follows the same semantic as that of the conditional context of the if statement. As with the if statement, if the conditional expression evaluates to X, Z or 0, then the assertion fails. The pass statement can, for example, record the number of successes for a coverage log, but can be omitted altogether. If the pass statement is omitted, then no user-specified action is taken when the assert expression is true. The statement associated with else is called a fail statement and is executed if the assertion fails. That is, the expression does not evaluate to a known, non-zero value. The else statement can also be omitted. The action block is executed immediately after the evaluation of the assert expression.

The optional statement label (identifier and colon) creates a named block around the assertion statement (or any other SystemVerilog statement) and can be displayed using the %m format specification.

assert_foo : assert(foo) $display("%m passed"); else $display("%m failed");

Note: The assertion control system tasks are described in Section 22.6.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity associated with it. By default, the severity of an assertion failure is error. Other severity levels can be specified by including one of the following severity system tasks in the fail statement:

· $fatal is a run-time fatal, which shall terminate the simulation with an error code. The first argument passed to $fatal shall be consistent with the argument to $finish.

· $error is a run-time error.
· $warning is a run-time warning, which can be suppressed in a tool-specific manner.
· $info indicates that the assertion failure carries no specific severity.
The syntax for these system tasks is shown in Section 22.5.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless a tool-specific option, such as a command-line option, is enabled to suppress the failure.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and specific information about the specific failure, which shall include the following information:

· The file name and line number of the assertion statement.

· The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is called.

Each system task can also include additional user-specified information using the same format as the Verilog $display.

If more than one of these system tasks is included in the else clause, then each shall be executed as specified.

If the severity system task is executed at a time other than when the assertion fails, the actual failure time of the assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)

 if (state == REQ)

 assert (req1 || req2)

 else begin t = $time;

 #5 $error("assert failed at time %0d",t);

 end

If the assertion fails at time 10, the error message shall be printed at time 15, but the user-defined string printed shall be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific option, such as a command- line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be used to signal a failure to another part of the testbench.

assert (myfunc(a,b)) count1 = count + 1; else ->event1;

assert (y == 0) else flag = 1;

17.3 Concurrent assertions overview

Concurrent assertions describe behavior that spans over time. Unlike immediate assertions, the evaluation model is based on a clock such that a concurrent assertion is evaluated only at the occurrence of a clock tick. The values of variables used in the evaluation are the sampled values. This way, a predictable result can be obtained from the evaluation, regardless of the simulator’s internal mechanism of ordering events and evaluating events. This model of execution also corresponds to the synthesis model of hardware interpretation from an RTL description.

The values of variables used in assertions are sampled in the Preponed region of a time slot and the assertions are evaluated during the Observed region. This is explained in Section 14, Scheduling Semantics.

The timing model employed in a concurrent assertion specification is based on clock ticks and uses a generalized notion of clock cycles. The definition of a clock is explicitly specified by the user and can vary from one expression to another.

A clock tick is an atomic moment in time and implies that there is no duration of time in a clock tick. It is also given that a clock shall tick only once at any simulation time, and the sampled values for that simulation time are used for evaluation. In an assertion, the sampled value is the only valid value of a variable at a clock tick. Figure 17-1 shows the values of a variable as the clock progresses. The value of signal req is low at clock ticks 1 and 2. At clock tick 3, the value is sampled as high and remains high until clock tick 6. The sampled value of variable req at clock tick 6 is low and remains low until clock tick 10. Notice that, at clock tick 9, the simulation value transitions to high. However, the sampled value is low.

Figure 17-1 — Sampling a variable on simulation ticks

An expression used in an assertion is always tied to a clock definition. The sampled values are used to evaluate value change expressions or Boolean sub-expressions that are required to determine a match with respect to a sequence expression.

Note:

· It is important to ensure that the defined clock behavior is glitch free. Otherwise, wrong values can be sampled.

· If a variable that appears in the expression for clock also appears in an expression for the assertion, the values of the two usages of the variable can be different. The value of the variable used in the clock expression is the current value, while for the assertion the sampled value of the variable is used.
The clock expression that controls evaluation of a sequence can be more complex than just a single signal name. An expression such as (clk && gating_signal) and (clk iff gating_signal) could be used to represent gated clocks. Other more complex expressions are possible. In order to ensure proper behavior of the system and conform as closely as possible to truly cycle-based semantics, the signals in a clock expression must be glitch-free and should only transition once at any simulation time.

An example of a concurrent assertion is:

base_rule1: assert property (cont_prop(rst,in1,in2)) pass_stat else fail_stat;

The keyword property distinguishes a concurrent assertion from an immediate assertion. The syntax of concurrent assertions is discussed in 17.12.

17.4 Boolean expressions

The expressions used in sequences are evaluated over sampled values of the variables that appear in the expression. The outcome of the evaluation of an expressions is boolean and is interpreted the same way as an expression is interpreted in the condition of a procedural if statement. That is, if the expression evaluates to X, Z, or 0, then it is interpreted as being false. Otherwise, it is true.

There are certain restrictions on the expressions that can appear in concurrent assertions. The restrictions on operand types, variables, and operators are specified in the following sections.

17.4.1 Operand types

The following types are not allowed:

· non-integer types (time, shortreal, real and realtime)

· string
· event
· chandle
· class
· associative arrays
· dynamic arrays
Fixed size arrays, packed or unpacked, can be used as a whole or as part selects or as indexed bit or part selects. The indices can be constants, parameters, or variables.

The following example shows some possible forms of comparison over members of structures and unions:

 typedef int [4] array;

 typedef struct { int a, b, c,d } record;

 union { record r; array a; } p, q;

The following comparisons are legal in expressions:

 p.a == q.a

and

 p.r == q.r

The following example provides further illustration of the use of arrays in expressions:
 logic [7:0] arrayA [0:15], arrayB[0:15];

The following comparisons are legal:

 arrayA == arrayB;

 arrayA != arrayB;

 arrayA[i] >= arrayB[j];

 arrayB[i][j+:2] == arrayA[k][m-:2];

 (arrayA[i] & (~arrayB[j])) == 0;

17.4.2 Variables

The variables that can appear in expressions must be static design variables or function calls returning values of types described in Section 17.4.1. The functions should be automatic (or preserve no state information) and shall not have output arguments, and no ref arguments (and no assignments to variables outside of the function. Static variables declared in programs, interfaces or clocking blocks can also be accessed. If a reference is to a static variable declared in a task, that variable is sampled as any other variable, independent of calls to the task.

17.4.3 Operators

All operators that are valid for the types described in Section 17.4.1 are allowed with the exception of assignment operators or increment and decrement operators. SystemVerilog includes the C assignment operators, such as +=, and the C increment and decrement operators, ++ and --. These operators cannot be used in expressions that appear in assertions. This restriction prevents side effects.

17.5 Sequences

…

Syntax 17-2—Sequence syntax (excerpt from Annex A)

Properties are often constructed out of sequential behavior. The sequence feature provides the capability to build and manipulate sequential behavior. A sequence is a list of SystemVerilog boolean expressions in a linear order of increasing time. The boolean expressions must be true at those specific clock ticks for the sequence to be true over time. A boolean expression at a point in time is a simple case of a sequence with time length of one clock cycle. To determine a match of a sequence, the boolean expressions are evaluated at each successive clock tick in an attempt to satisfy the sequence. If all expressions are true, then a match of the sequence occurs.

A sequence expression describes one or more sequences by using regular expressions. Such a regular expression can concisely specify a set of zero, finitely many, or infinitely many sequences that satisfy the sequence expression.

Sequences and sequence expressions can be composed by concatenation, analogous to a concatenation of lists. The concatenation specifies a delay, using ##, from the end of the first sequence until the beginning of the second sequence.

The following is the syntax for sequence concatenation.

…

Syntax 17-3—Sequence concatenation syntax (excerpt from Annex A)

In this syntax:

· constant_expression is computed at compile time and must result in an integer value.

· constant_expression can only be 0 or greater.
· The $ token is used to indicate the end of simulation. For formal verification tools, $ is used to indicate a finite, unbounded, range.
· When a range is specified with two expressions, the second expression must be greater or equal to the first expression.
The context in which a sequence occurs determines when the sequence is evaluated. The first expression in a sequence is checked at the first occurrence of the clock tick at or after the expression that triggered evaluation of the sequence. Each successive element (if any) in the sequence is checked at the next subsequent occurrence of the clock.

A ## followed by an optional number or range specifies that the sequence_expr should occur later than the current cycle. A number of 1 indicates that the next element should occur a single cycle later than the current cycle. The number 0 specifies that the next expression should occur in parallel with the current clock tick.

The following are examples of delay expressions. ‘true is a boolean expression that always evaluates to true, and is used for visual clarity. It can be defined as:

 ‘define true 1

 ##0 a // means a

 ##1 a // means ‘true ##1 a

 ##2 a // means ‘true ##1 ‘true ##1 a

 ##[0:3]a // means (a) or (‘true ##1 a) or (‘true ##1 ‘true ##1 a) or

 (‘true ##1 ‘true ##1 ‘true ##1 a)

 a ##2 b // means a ##1 ‘true ##1 b

The sequence:

 req ##1 gnt ##1 !req

specifies that req be true on the current clock tick, gnt shall be true on the first subsequent tick, and req shall be false on the next clock tick after that. The ##1 operator specifies one clock tick separation. A delay of more than one clock tick can be specified, as in:

 req ##2 gnt

This specifies that req shall be true on the current clock tick, and gnt shall be true on the second subsequent clock tick, as shown in Figure 17-2.

…

Figure 17-2 — Concatenation of sequences

The following specifies that signal b shall be true on the Nth clock tick after signal a:

 a ##N b // check b on the Nth sample

To specify a concatenation of overlapped sequences, where the end point of one sequence coincides with the start of the next sequence, a value of 0 is used, as shown below.

 a ##1 b ##1 c // first sequence seq1

 d ##1 e ##1 f // second sequence seq2

 seq1 ##0 seq2 // overlapped concatenation

In the above example, c is the endpoint of sequence seq1, and d is the start of sequence seq2. When concatenated with 0 clock tick delay, c and d must occur at the same time, resulting in a concatenated sequence equivalent to:

 a ##1 b ##1 c&&d ##1 e ##1 f

It should be noted that no other form of overlapping between the sequences can be expressed using the concatenation operation.

In cases where the delay can be any value in a range, a time window can be specified as follows:

 req ##[4:32] gnt

In the above case, signal req must be true at the current clock tick, and signal gnt must be true at some clock tick between 4 and 32 after the current clock tick.
The time window can extend to a finite, but unbounded, range by using $ as in the example below. req ##[4:$] gnt A sequence can be unconditionally extended by concatenation with ‘true.

 a ##1 b ##1 c ##3‘true

After satisfying signal c, the sequence length is extended by 3 clock ticks. Such adjustments in the length of sequences can be required when complex sequences are constructed by combining simpler sequences.

17.6 Declaring sequences

A sequence can be declared in — a module as a module_or_generate_item

· an interface as an interface_or_generate_item

· a program as a non_port_program_item
· a clocking block as a clocking_item
·
…
17.10 The property definition

A property defines a behavior of the design. A property can be used for verification as an assumption, a checker, or a coverage specification. In order to use the behavior for verification, an assert or cover statement must be used. A property declaration by itself does not produce any result.

A property can be declared in

— a module as a module_or_generate_item

— an interface as an interface_or_generate_item

— a program as a non_port_program_item

— a clocking block as a clocking_item

— $root
17.13 Clock resolution

There are a number of ways to specify a clock for a property:

— sequence instance with a clock, for example

 sequence s2; @(posedge clk) a ##2 b; endsequence

 property p2; not s2; endproperty

 assert property (p2);

— property, for example:

 property p3; @(posedge clk) not (a ##2 b); endproperty

 assert property (p3);

— contextually inferred clock from a procedural block, for example:

 always @(posedge clk) assert property (not (a ##2 b));

— clocking block, for example:

 clocking master_clk @(posedge clk);

 property p3; not (a ##2 b); endproperty

 endclocking

 assert property (master_clk.p3);

— default clock, for example:

 default clocking master_clk @(posedge clk);

For a multi-clocked assertion, the clocks are explicitly specified. No default clock or inferred clock is used. In addition, multi-clocked properties are not allowed to be defined within a clocking block.

A multi-clocked property assert statement must not be embedded in procedural code where a clock is inferred. For example, following forms are not allowed.
 always @(clk) assert property (mult_clock_prop);// illegal

 initial @(clk) assert property (mult_clock_prop);// illegal

The rules for an assertion with one clock are discussed in the following paragraphs.

The clock for an assertion statement is determined in the decreasing order of priority:

 1) Explicitly specified clock for the assertion.

 2) Inferred clock from the context of the code when embedded.

 3) Default clock, if specified.

A concurrent assertion statement must resolve to a clock. Otherwise, the statement is considered illegal.

Sequences and properties specified in clocking blocks resolve the clock by the following rules:

 1) Event control of the clocking block specifies the clock.

 2) No explicit event control is allowed in any property or sequence declaration.

 3) If a named sequence that is defined outside the clocking block is used , its clock, if specified, must be identical to the clocking block’s clock.

 4) Multi-clock properties are not allowed.
Bottom of page192

Resolution of clock for an assert statement is based on the following assumptions:

— assert can appear in an always block, initial block or outside procedural context

— clock is inferred from an always or initial block

— default clock can be specified using default clocking block
Table 17-4 specifies the rules for clock resolution when assert appears in an always or initial block, where i_clk is the inferred clock from an always or initial block, d_clk is the default clock, and p_clk is the property clock.

27.3.2 Obtaining static assertion information - end of section

— Assertion clocking block/expression
A.6.11 Clocking block
clocking_decl ::= [default] clocking [clocking_identifier] clocking_event ;

{ clocking_item }

endclocking
�PAGE \# "'Page: '#'�'" ��New wording proposed by Arturo in an email message to me on Nov 8, 2003

