
1

In Section 8.10.1 , page 94 - Changes in red and blue

A sequence instance can be used in event expressions to control the execution of procedural statements based
on the successful completionmatch of the sequence. This allows the endpoint of a named sequence to trigger
multiple actions in other processes. Syntax 17-2 and 17-4 describes the syntax for declaring named sequences
and sequence instances and sequence expressions. A sequence instance can be used directly in an event ex-
pression, as shown in Syntax 8-9.

When a sequence instance is specified in an event expression, the process executing the event control shall
block until the givenspecified sequence reaches its end-point, that is, the sequence succeeds non-vacuously. A
sequence reaches its end point whenever there is a match for the entire sequence expression. A process re-
sumes execution following the Observe region in which the end point is detected.

In Section 17.16 , page 267 - Changes in red and blue

The expect statement is a procedural blocking statement that allows a property to be declared and also to wait-
for the first successful match of the property waiting on a property evaluation. The syntax of the expect state-
ment accepts a named property or a property declaration, and is given below.

expect_property_statement ::= // from Annex A.2.10
expect (property_spec) action_block

Syntax 17-18—expect statement syntax (excerpt from Annex A)

The expect statement accepts the same syntax used to assert a property. An expect statement causes the
executing process to block until the given property succeessor succeeds or fails. The expect statement un-
blocks at the earliest match of the property (i.e., first_match). The statement following the expect is sched-
uled to execute after processing the Observe region following the success of the property, or the first failed
attemptin which the property completes its evaluation. When In either case (i.e., the property succeeds or
fails,), the specified property terminates its evaluation when the process unblocks, and the property stops being
evaluated (i.e., no property evaluation is started until that expect statement is executed again).

When executed, the expect statement automatically starts a single thread of evaluation for evaluating the
given property on the subsequent clocking event, that is, the first attemptevaluation shall take place on the
next clocking event. When the process unblocks (due to the property succeeding or failing) the property stops
being evaluated. If the property fails at its clocking event, the optional else clause of the action block is exe-
cuted. If the property succeeds the optional pass statement of the action block is executed.

The semantics of the expect statement are to block until first match (or failure) of the given property and
whose starting time is greater than the time at which the expect statement executes.

program tst;
initial begin

200ms;
expect(@(posedge clk) a ##1 b ##1 c) else $error(“expect failed”);
ABC: ...

end
endprogram

In the above example, the expect statement specifies a property that consists of the sequence a ##1 b ##1
c. The expect statement (second statement in the initial block of program tst) blocks until the sequence a -> b
-> c a ##1 b ##1 c is recognizedmatched, or determined not to match. The property evaluation starts on
starting wth the following clocking event (posedge clk) afterfollowing the 200ms delay. If the sequence is

2

matched at the corresponding time, the process is unblocked and continues to execute on the statement labeled
ABC. If the sequence fails to match then the else clause is executed, which in this case generates a run-time
error. For the expect above to succeed, the sequence a ##1 b ##1 c must match starting on the clocking
event (posedge clk) immediately after time 200ms. If a is false on the first clocking event after 200ms, the
expect fails. If a is true on the first clocking event after 200ms and b is false one clocking event later, the ex-
pect will also fail. The sequence will not match if a, b, or c are evaluated to be false at the first, second or
third clocking event respectively.

The expect statement can be incorporated in any procedural code, including tasks or class methods. Because it
is a blocking statement, the property expression may safely refer to automatic variables as well as static vari-
ables. For example, the task below waits between 1 and 10 cyclesclock ticks for the variable data to have
equal a particular value, which is specified by an automatic argument value. The second argument, suc-
cess, is used to return the result of the expect statement:, 1 for success and 0 for failure.

