SystemVerilog 3.1a draft6 clean – Section 17 „Assertions“
Remark

In the following comments, line numbers refer to lines counted from the top of the page ignoring white/empty lines.

General Comments

1. Line numbers, as available e.g. in IEEE VHDL1076 LRM, shall be introduced to ease review.

2. The definition of the hierarchical name in 18.4 does not include the definition of hierarchical names of assertions and also not the name of struct-elements or union choices. Both, assertion names and struct/union elements shall be mentioned and defined as hierarchical names in section 18.4.
3. The interpretation of X and Z is defined for bit values in 7.4 and for boolean expressions and expressions in if-conditions (8.4): Only X and 0 are interpreted as false.
Inconsistently, in 3.1 X,Z or o are interpreted as 0, in 17.4 and on page 229 line 24, X, Z or 0 are interpreted as false.
The bit interpretation of X and Z shall be defined consistently in one place in the LRM, preferably in 7.4. Furthermore, the boolean interpretation of any kind of bit values shall be defined here.
Comments to Assertions

1. If assertion label is part of hierarchical name, then use of %m in specific message delivers redundant information to the user (page 199, line 18).
2. In 17.13, the term “verification statement” is used for concurrent assertions, assumptions, and coverage statements. This term shall be introduced already in 17.3. and used in the reset of the section. Often concurrent assertion or assertion is used as synonym for “verification statement”. A unique terminology shall be used!
3. Restrictions concerning use of unions in Boolean expressions are missing in 17.4.1.
E.g. the comparison of unions without specification of the selector must be defined.
4. On page 204, it is stated, that the delay operator must be determined at compile time.
To increase genericity, it might be better to require determination of the delay operator at elaboration.
Further on, the usefulness of formal arguments is reduced if the association with actual arguments must take place at compile time.
5. Sentence on page 206 line 2 refers to “the concatenation operation”. This is misleading in my opinion because “the concatenation operation” is already defined differently in 7.12. The term “the delay operation” shall be used here instead.
6. On page 210, the term empty sequence is introduced. I wonder if “false” or ‘0’ is also an empty sequence. If yes, this shall be included in the LRM at this place.

7. Examples on the bottom of page 210 are misleading. ‘true ##1 occurs 3 times not only because of ##3 and not only because of ‘true. More clear might be

X ##3 (a [*3]) // means X ##1 ‘true ##1 ‘true ##1 a ##1 a ##1 a

8. On page 212 lines 23-25, three rules for clock inference for sampled value function are given. A fourth rule “- if used in a sequence …” shall be included to cover clock derivation for sampling functions from sequences.
9. On page 212 line 31 the value X is defined as return value for $sampled if $sampled is invoked before the first clocking event.
It should be specified here also, which value is returned instead of X for any kind of two-value types or a reference to 7.4 shall be given.
10. On page 213, $rose and $fell are defined according to the lease significant bit of the expressions. I wonder, if the least significant bit is defined for all types, e.g. any kind of (packed) array/record type. If yes, a reference shall be placed here, otherwise the least significant bit shall be defined for those kinds of types.
11. On page 213, $rose and $fell return X before the first clocking event. Also here, X must be defined for two-value types.
Further on, $rose and $fell shall be defined to return X (or a defined value for two value types as proposed above) before the second clocking event, because $rose and $fell need two values for computation. Otherwise, it shall be stated explicitly, that an unsynchronized value is used for the computation of $rose and $fell at the first clocking event.

12. The definition of $past needs also clarification of the return value X.
Further on, it shall be requested that “when $past is called, more than number_of_ticks clocking events must have taken place”. The relation to “past before the start of simulation” is imprecisely and does not consider clocks with variant cycle times nor gated clocks.

13. In figures 17-4, 17-5, 17-7, 17-9, 17-10 a rising arrow for “te3 ##2 te4 ##2 te5” shall be inserted at clock tick 6 signalling the matching of the sequence.
Furthermore, in figures 17-9 and 17-10 a rising arrow for “(te1 ##2 te2) or (te3 ##2 te4 ##2 te5)” shall be inserted at clock tick 6 signalling the matching of the sequence. The description of figures 17-9 and 17-10 must be adopted accordingly.

14. On page 220 line 3, the term “evaluation attempt” is used. A reference to the definition of the term shall be introduced here.
15. On page 220, in the second last line “Here, te1 and te2 are expressions” is stated. I propose to use here “sampled expression” instead of expression. I propose to use “sampled expression” instead of “expression” also on page 218 line 11.
The term sampled expression is introduced on page 232.
16. The waveforms in figures 17-11, 17-12, 17-13, 17-14, 17-15 need further explanation or even correction:

· If the waveforms represent sampled values, then the representation as continuous waveform is misleading. Their behaviour must be explained.
· If the waveforms represent the values at the variables and the variables are computed with mclk, then the evaluation of the sequence must be delayed for one clock cycle due to sampling.
· If the values are computed with clock edged shortly before the clock edges at mclk, then this must be described.

17. The sentence on page 224 line 9 shall be clarified. I propose to write “In this example, sequence e1 must finally match …”. Just match is not string enough.
18. On page 226 line 8, an example is given for variables passed to sequences. It is not clear for me at this place, if any kind of variables may be passed or only associated variables from other properties or sequences.
19. Figure 17-13 shall be entitled “implied sequence matching” instead of “Conditional sequence matching” because kind 6 of properties (page 231) is mentioned here.
Conditional sequence matching shall be used for kind 5 of properties (page 231).

20. On page 234, line 1 the sentence shall be corrected to “Generally, properties are associated with antecedents so …” because only properties posses the implication operator and not assertions (they only force propertied to evaluation) and because the term precondition is not introduced in conjunction with implication.
If precondition is needed here, the term precondition shall be introduced as synonym for antecedent in 17-11-1 second paragraph.
After this sentence, the sentence “The propery is evaluated every clock tick” shall be inserted, to be consistent with the subsequent example (last line on page 234).

21. On page 235, 5th line from below, the word “three” shall be replaced with digit “3” to gain consistent decription: “ … must hold at some point 1 to 3 …”.

22. I wonder, why the second keyword posedge in the examples of 17.12.1 are not written in a bold font. Is there a reason for? Please explain in the LRM.
23. Section 17.13. introduces the term “verification statement”. For confusion, the grammar uses for the according rule the name concurrent assertion statement. A cleanup would help to increase readability of the LRM.

24. Syntax 17-16: Rule concurrent statement may not be inserted.

25. First sentence on page 247 refers to a hierarchical name of an assertion. Assertions are not included in 18.4. but they should.

26. The semantic definition of a concurrent assertion in an initial block (page 250, 5th and 4th line from below) is imprecisely. I propose to extend the sentence to “If the statement appears in an initial block, then the monitoring is performed only on the first clock tick, after the property is executed”.
This considers a delay of several clock periods (e.g. #2000ms) in the initial block before the assert property.
27. The parameters of the “assert_task” shall be defined. Only “specified assertions” is mentioned. Following issues must be considered:
· What is the meaning of levels? If they relate to severity tasks three alternatives seem possible:
i. The severity task, which is called, must be determined at compile time to allow for turning on and off of assertion checks.
ii. Alternatively assertion checks are not turned on and off but their severity_tasks are ignored. (This option contradicts with the current decription however allows for dynamic control of assertion level by conditional selection of the called severity_task.).

iii. Assertions are controlled via levels only if the level can be determined at compile time.

· What is the meaning of list_of_modules_or_assertions?

i. Do they describe all assertions used in a module

ii. Do they describe all assertions used in a module or its sub-modules

iii. Do they describe all assertions bound to a module

iv. Do they describe all assertions declared in a module/program

v. Can assertions in program blocks/initial blocks/final blocks be controlled?

· What is the semantic if both levels and list_of_modules is defined?

· What is the implication of turning on- and off- for coverage count etc.

Missing items

Following features shall be included in SystemVerilog:
1. For symmetry reasons, I would like to see also $onecold, $onecold1 as system functions

2. More important, an implication operator PA impl PB for properties shall be provided. This operator shall have the same semantic as not PA or PB, i.e. PA and PB shall start at the same clock tick.
