

Change Section 3.7, Page 12

Variables of type string can be indexed from 0 to N-1 (the last element of the array), and they can
take on the special value “”, which is the empty string.Reading an element of a string yields a byte.
A string shall not contain the special character “\0”.

Change Section 3.7, Page 12

If an initial value is not specified in the declaration, the variable is initialized to “”, the empty string.
An empty string has zero length.

Change Section 3.7, Page 12

A string, or a string literal, or packed array can be assigned directly to a string variable. Integral
types can be assigned to a string variable, but require a cast. When casting an integral value to a
string, the The string variable shall grow or shrink to accommodate the size of the integral value
packed array. If the size (in bits) of the integral value packed array is not a multiple of 8, then the
integral value packed array is zero filled on the left.

A string literal assigned to a string variable is converted according to the following steps:

- Any leading “\0” characters in the string literal are ignored.

- If the result of the first step is an empty string literal, the string is assigned the empty string.

- Otherwise, the string is assigned the remaining charactes in the string literal until reaching
either the end of the string literal, or the first character “\0”, whichever comes first.

Thus, leading “\0” characters are ignored, and subsequent “\0” characters truncate the result.

Casting an integral value to a string variable proceeds in the following steps:

- If the size (in bits) of the integral value is not a multiple of 8, the integral value is left extended
and filled with zeros until its bit-size is a multiple of 8. The extened value is then treated the
same as a string literal, where each successive eight-bits represent a character.

- The steps described above for string literal conversion are applied to the extended value.

For example:

string s1 = "hello"; // sets s1 to "hello"
bit [11:0] b = 12’ha41;
string s2 = b; // sets s2 to ’h0a41
string s2 = string’(b); // sets s2 to ’h0a41
As a second example:

typedef reg [15:0] r_t;

r_t r;
integer i = 1;
string b = "";
string a = {"Hi", b};
r = a r_t’(a) ; // OK
b = r string’(r) ; // OK (implicit cast, implementations can issue a warning)
b = "Hi"; // OK
b = {5{"Hi"}}; // OK
a = {i{"Hi"}}; // OK (non constant replication)
r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {"Hi",b}; // OK
r = {"H",""}; // yields "H\0" "" is converted to 8’b0
b = {"H",""}; // yields "H" as "" is the empty string
a[0] = "h"; // OK same as a[0] = "hi")

Change Table 3-2, Page 13

Operator Semantics

Str1 == Str2

Equality. Checks if the two strings are equal. Result is 1 if they are equal and 0 if they are
not. Both strings can be of type string. Or one of them can be a string literal. If both
operands are string literals, the expression is the same Verilog equality operator for
integer types. The special value " " is allowed.

Str1 != Str2

Str1 != Str2 Inequality. Logical Negation of ==

Str1 < Str2
Str1 <= Str2
Str1 > Str2

Str1 >= Str2

Comparison. Relational operators return 1 if the corresponding condition is true using the
lexicographical ordering of the two strings Str1 and Str2. The comparison uses the
compare string method behaves like the ANSI C strcmp function (or the compare string
method) (with regard to the lexical ordering) and embedded null bytes are included. Both
operands can be of type string, or one of them can be a string literal.

Change Section 3.7.2, Page 14

3.7.2 putc()
task putc(int i, string s)
task putc(int i, byte c)

— str.putc(i, c) replaces the ith character in str with the given integral value.

— str.putc(i, s) replaces the ith character in str with the first character in s.

— s can be any expression that can be assigned to a string.

— putc does not change the size of str: If i < 0 or i >= str.len(), then str is unchanged.

— If the second argument to this method is byte 0 or the empty string, the string variable shall be

unaffected. An attempt to embbed a 0-valued character in the string shall be considered an out-
of-bounds access.

Note: str.putc(j, x) is semantically equivalent to str[j] = x

Change Section 3.7.6, page 14

3.7.6 compare()
function int compare(string s)

— str.compare(s) compares str and s, as in the ANSI C strcmp function (with regard to lexical
ordering and return value), and embedded null bytes are included.

See the relational string operators in Section 3.7, Table 3-2.

Change Section 3.7.7, page 14

3.7.7 icompare()

function int icompare(string s)

— str.icompare(s) compares str and s, like the ANSI C strcmp function (with regard to lexical
ordering and return value), but the comparison is case insensitive and embedded null bytes are
included.

