
Replace section 7.19 Abstract classes and virtual methods with the following two
sections

7.19 Virtual methods

Abstract classes can also have virtual methodsA method of a class may be identified with
the keyword virtual. Virtual methods are a basic polymorphic construct. A virtual
method shall overrides a method in all the of its base (parent) classes, whereas a normal
non-virtual method shall only overrides a method in that class and its descendants. One
way to view this is that there is only one implementation of a virtual method per class
hierarchy, and it is always the one in the latest derived class.

Virtual methods provide prototypes for subroutinesthe methods that later override them,
i.e., all of the information generally found on the first line of a method declaration: the
encapsulation criteria, the type and number of arguments, and the return type if it is
needed. Later, when subclasses override virtual methods, they shall must follow the
prototype exactly by having matching return types and matching argument names, types,
and directions. It is not necessary to have matching default expressions, but the presence
of a default much match.. Thus, all versions of the virtual method look identical in all
subclasses.:

class BasePacket;
 int A = 1;
 int B = 2;
 function void printA;
 $display(“A is “,A);
 endfuncion : printA
 virtual function void printB;
 $display(“B is “,B);
 endfuncion : printB
endclass : BasePacket
class My_Packet extends Packet;
 int A = 3;
 int B = 4;
 function void printA;
 $display(“A is “,A);
 endfuncion : printA
 virtual function void printB;
 $display(“B is “,B);
 endfuncion : printB
endclass : BasePacket

BasePacket P1 = new;
My_Packet P2 = new;
initial begin
 P1.printA; // displays ‘A is 1’
 P1.printB; // displaya ‘B is 2’
 P1 = P2; // P1 has a handle to a My_packet object
 P1.printA; // displays ‘A is 1’
 P1.printB; // displaya ‘B is 4’ – latest derived method
 P2.printA; // displays ‘A is 3’
 P2.printB; // displaya ‘B is 4’

 end

Once a method has been identified as virtual, it shall remain virtual in any subclass that
overrides it. The virtual keyword may be used in later declarations, but is not required.

7.19 20 Abstract classes and prototype virtual methods
A set of classes can may be created that can be viewed as all being derived from a
common base class. For example, a common base class of type BasePacket that sets out
the structure of packets but is incomplete would never be instantiatedconstructed. This is
characterized as an abstract class. From this abstract base class, however, a number of
useful subclasses could may be derived, such as Ethernet packets, token ring packets,
GPSS packets, and satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they could vary significantly in terms of their
internal details.

A base class sets out the prototype for the subclasses. Because the base class is not
intended to be instantiated, it can be made abstract by specifying the class to bemay be
characterized as being abstract by identifying it with the keyword virtual:

virtual class BasePacket;
…
endclass

An object of an abstract class shall not be constructed directly. It may be indirectly
constructed through the chaining of constructors in an extended non-abstract subclass
object.

A virtual method in an abstract class may be declared as a prototype without providing an
implementation. This may be indicated with the keyword extern together with not
providing a method body. An extended subclass may provide an implementation by
overriding the virtual method.

Abstract classes may be extended to additional abstract classes, but all prototype virtual
methods shall have implementations in order to be extended into a non-abstract class. By
having implementations for all its methods, the class is complete and may now be
constructed. Any class may be extended into an abstract class, and may provide
additional or overridden virtual methods without implementations.

virtual class BasePacket;
 extern virtual function integer send(bit[31:0] data); // No
implementation
endfunction
endclass
class EtherPacket extends BasePacket;
virtual function integer send(bit[31:0] data);
// body of the function
...
endfunction
endclass

EtherPacket is now a class that can have an object of its type constructedbe instantiated.
In general, if an abstract class has any virtual methods, all of the methods must be
overridden (and provided with a method body) for the subclass to be instantiated. If any
virtual methods have no implementation, the subclass needs to be abstract.

Note – A method without a statement body is still a legal, callable method. For example,
if the function send was declared as show below, it would have an implementation:

virtual function integer send(bit[31:0] data); // Will return ’x
endfunction

An abstract class can contain methods for which there is only a prototype and no
implementation (i.e., an incomplete class). An abstract class cannot be instantiated; it can
only be derived. Methods of normal classes can also be declared virtual. In this case, the
method must have a body. If the method does have a body, then the class can be
instantiated, as can its subclasses.

