Add to section 12.23 the text shown in blue

The variable count in the example above can only be accessed by the corresponding disp count method.
Each specialization of the class vector has its own unique copy of count.

A specialization is the combination of a specific generic class with a unique set of parameters. Two sets of
parameters shall be unique unless all parameters are the same as defined by the following rules:

1- A parameter is a type parameter and the two types are matching types.

2- A parameter is a value parameter and both their type and their value are the same.

All matching specializations of a particular generic class shall represent the same type. The set of matching
specializations of a generic class is defined by the context of the class declaration. Since generic classes in
a package are visible throughout the system, all matching specializations of a package generic class are the
same type. In other contexts, such as modules or programs, each instance of the scope containing the ge-
neric class declaration creates a unique generic class, thus, defining a new set of matching specializations.

A generic class is not a type; only a concrete specialization represents a type. In the example above, the

class vector becomes a concrete type only when it has had parameters applied to it, for example:
typedef vector my vector; // use default size of 1
vector# (6) vx; // use size 6

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

In Section A.4.1.1 and Syntax 19-5:
parameter_value_assignment (BNF)

REPLACE

parameter value assignment ::=# (list of parameter assignments)

WITH

parameter_value assignment ::=# ([list of parameter assignments |)

