
Add to section 12.23 the text shown in blue

The variable count in the example above can only be accessed by the corresponding disp_count method.
Each specialization of the class vector has its own unique copy of count.

A specialization is the combination of a specific generic class with a unique set of parameters. Two sets of
parameters shall be unique unless all parameters are the same as defined by the following rules:
1- A parameter is a type parameter and the two types are matching types.
2- A parameter is a value parameter and both their type and their value are the same.

All matching specializations of a particular generic class shall represent the same type. The set of matching
specializations of a generic class is defined by the context of the class declaration. Since generic classes in
a package are visible throughout the system, all matching specializations of a package generic class are the
same type. In other contexts, such as modules or programs, each instance of the scope containing the ge-
neric class declaration creates a unique generic class, thus, defining a new set of matching specializations.

A generic class is not a type; only a concrete specialization represents a type. In the example above, the
class vector becomes a concrete type only when it has had parameters applied to it, for example:

typedef vector my_vector; // use default size of 1
vector#(6) vx; // use size 6

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

In Section A.4.1.1 and Syntax 19-5:
parameter_value_assignment (BNF)

REPLACE

parameter_value_assignment ::= # (list_of_parameter_assignments)

WITH

parameter_value_assignment ::= # ([list_of_parameter_assignments])

