Clocking block overview diagrams

to 1llustrate taxonomy and to provide
a framework for discussion

Revision information

e 26-Sep-2006, Jonathan Bromley:

— first attempt to provide a complete set of diagrams illustrating some key
features of clocking blocks, intended to clarify discussion of semantics

Typographical conventions (1)

Terms that are intended to be used as part of a normative
vocabulary are shown 1n Times bold italic in a buff box

Placeholders for Verilog code whose meaning 1s taken to
be self-evident are shown in Courier bold italic

Verilog code fragments that form an integral part of an
example are shown in Courier bold roman

Functional elements of a clocking are shown in

Times light italic in a white box

It 1s anticipated that there may be some discussion over
whether these elements are an appropriate description.

Typographical conventions (2)

e Internal variables of a clocking block, whether or not they
are visible or meaningful to user code, are shown by means
of a large black blob: —e
Again these features may perhaps be controversial.

e Lines, arrows and shapes drawn 1n thin red lines are used
to draw attention to features of a diagram, or to link a
feature@ » 1ts annotation.

* Verilog code fragments that are part of the clocking block's
enclosing module, program or interface, but not part of the
clocking itself, are shown in a pale blue shadowed box:

initial begin
cb.ioN <= ...

Clocking input

logic/wire clk;

{

any_type In;
®

clocking input

<

; connection
clocking cb I
@ (posedge clk);
input In;
\ 4
sample and
endclocking resynchronize
L input clockvar
cb.In
initia&gin
. if (|cb.In|)
enclosing

module/interface/program

Clocking output on a variable

logic/wire clk; any var type OutV;
®

{

<

clocking cb
@ (posedge clk);

output OutV;

endclocking

A

schedule update
as NBA

A

resynchronize
and resolve

clocking output
connection
OoutvVv

$-

enclosing
module/interface/program

\

output clockvar
cb.OutVv

initi?l begin

cb.OutVv (<= ...
clocking drive

Clocking output on a net

logic/wire clk;

{

any_ net_type OutN;
®

<

clocking cb
@ (posedge clk);

output OutN;

endclocking

A

continuous assign

clocking output
connection
OutN

f

schedule update
as NBA

A

implicit internal
variable,
not visible to
user code

resynchronize
and resolve

$-

enclosing
module/interface/program

\

output clockvar
cb.OutN

initi?l begin

cb.OutN (<= ...
clocking drive

Clocking inout on a variable

logic/wire clk;

{

any_ var_type ioV;

clocking cb
@ (posedge clk);

I
1

A

inout 1ioV;

clocking inout
connection
ioV

schedule update v
as NBA sample and
A resynchronize

endclocking

resynchronize
and resolve

output clockvar
cb.ioV

£

:

init#?l begin

cb.ioV

input clockvar
cb.ioV

clocking drive

if (|(cb.ioV

Clocking inout on a net

logic/wire clk;

{

any net_type 1ioN;

clocking cb

@ (posedge clk);

inout 1ioN;
endclocking

I
1

£

continuous assign

clocking inout
connection
ioN

f

implicit internal

output clockvar
cb.ioN

variable,
schedule update A 4 not visible to

as NBA sample and user code

A resynchronize

resynchronize
and resolve)

‘ < input clockvar

,/’\ cb.ioN

cb.ioN

init#?l begin

<=

if (

cb.

ioN

