Clocking block overview diagrams

to 1llustrate taxonomy and to provide
a framework for discussion



Revision information

e 26-Sep-2006, Jonathan Bromley:

— first attempt to provide a complete set of diagrams illustrating some key
features of clocking blocks, intended to clarify discussion of semantics



Typographical conventions (1)

Terms that are intended to be used as part of a normative
vocabulary are shown 1n Times bold italic in a buff box

Placeholders for Verilog code whose meaning 1s taken to
be self-evident are shown in Courier bold italic

Verilog code fragments that form an integral part of an
example are shown in Courier bold roman

Functional elements of a clocking are shown in

Times light italic in a white box

It 1s anticipated that there may be some discussion over
whether these elements are an appropriate description.



Typographical conventions (2)

e Internal variables of a clocking block, whether or not they
are visible or meaningful to user code, are shown by means
of a large black blob: —e
Again these features may perhaps be controversial.

e Lines, arrows and shapes drawn 1n thin red lines are used
to draw attention to features of a diagram, or to link a
feature@ » 1ts annotation.

* Verilog code fragments that are part of the clocking block's
enclosing module, program or interface, but not part of the
clocking itself, are shown in a pale blue shadowed box:

initial begin
cb.ioN <= ...
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Clocking output on a variable
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Clocking output on a net

logic/wire clk;
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Clocking inout on a variable

logic/wire clk;
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Clocking inout on a net

logic/wire clk;
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