
Clocking block overview diagrams

to illustrate taxonomy and to provide
a framework for discussion

Revision information
• 26-Sep-2006, Jonathan Bromley:

– first attempt to provide a complete set of diagrams illustrating some key
features of clocking blocks, intended to clarify discussion of semantics

Typographical conventions (1)
• Terms that are intended to be used as part of a normative

vocabulary are shown in

• Placeholders for Verilog code whose meaning is taken to
be self-evident are shown in

• Verilog code fragments that form an integral part of an
example are shown in

• Functional elements of a clocking are shown in

It is anticipated that there may be some discussion over
whether these elements are an appropriate description.

Times bold italic in a buff box

Courier bold italic

Courier bold roman

Times light italic in a white box

Typographical conventions (2)
• Internal variables of a clocking block, whether or not they

are visible or meaningful to user code, are shown by means
of a large black blob:
Again these features may perhaps be controversial.

• Lines, arrows and shapes drawn in thin red lines are used
to draw attention to features of a diagram, or to link a
feature to its annotation.

• Verilog code fragments that are part of the clocking block's
enclosing module, program or interface, but not part of the
clocking itself, are shown in a pale blue shadowed box:
initial begin
 cb.ioN <= ...
initial begin
 cb.ioN <= ...

enclosing
module/interface/program

initial begin
 ...
 if (cb.In) ...

initial begin
 ...
 if (cb.In) ...

clocking cb
 @(posedge clk);
 input In;
 output OutV;
 output OutN;
 inout ioV;
 inout ioN;
endclocking

any_type In;
clocking input

connection
In

input clockvar
cb.In

logic/wire clk;

Clocking input

sample and
resynchronize

enclosing
module/interface/program

clocking cb
 @(posedge clk);
 input In;
 output OutV;
 output OutN;
 inout ioV;
 inout ioN;
endclocking resynchronize

and resolve

any_var_type OutV;

initial begin
 ...
 cb.OutV <= ...

initial begin
 ...
 cb.OutV <= ...

clocking output
connection
OutV

output clockvar
cb.OutV

logic/wire clk;

Clocking output on a variable

schedule update
as NBA

clocking drive

enclosing
module/interface/program

clocking cb
 @(posedge clk);
 input In;
 output OutV;
 output OutN;
 inout ioV;
 inout ioN;
endclocking resynchronize

and resolve

any_net_type OutN;

initial begin
 ...
 cb.OutN <= ...

initial begin
 ...
 cb.OutN <= ...

clocking output
connection
OutN

output clockvar
cb.OutN

logic/wire clk;

Clocking output on a net

clocking drive

schedule update
as NBA

continuous assign
implicit internal

variable,
not visible to

user code

clocking cb
 @(posedge clk);
 input In;
 output OutV;
 output OutN;
 inout ioV;
 inout ioN;
endclocking resynchronize

and resolve

any_var_type ioV;

initial begin
 ...
 cb.ioV <= ...
 if (cb.ioV) ...

initial begin
 ...
 cb.ioV <= ...
 if (cb.ioV) ...

clocking inout
connection

ioV

output clockvar
cb.ioV

logic/wire clk;

Clocking inout on a variable

clocking drive

schedule update
as NBA

input clockvar
cb.ioV

sample and
resynchronize

clocking cb
 @(posedge clk);
 input In;
 output OutV;
 output OutN;
 inout ioV;
 inout ioN;
endclocking resynchronize

and resolve

any_net_type ioN;

initial begin
 ...
 cb.ioN <= ...
 if (cb.ioN) ...

initial begin
 ...
 cb.ioN <= ...
 if (cb.ioN) ...

clocking inout
connection

ioN

output clockvar
cb.ioN

logic/wire clk;

Clocking inout on a net

schedule update
as NBA

input clockvar
cb.ioN

sample and
resynchronize

continuous assign
implicit internal

variable,
not visible to

user code

