
20070205

The new scheduling semantics address the first half of Mantis item 549. I anticipate that Doug
Warmke's 890 proposal will address the rest of the issues and then we should be able to close this
item.

Regards - Cliff Cummings

Issues with Section 15 "Scheduling Semantics"

Chapter 15 of the LRM describes the new scheduling semantics of a
SystemVerilog simulator. There are a number of inconsistencies and
incorrect statements in this chapter. However, when analyzing how
new time queues are used by assertions, clocking blocks, and programs
it seems clear how the new scheduler should operate despite the
inaccuracies.

1 Inconsistencies

1.1 Missing pre-active region in section 15.3.1

The pre-active region described as the 2nd ordered region in section
15.3 is missing from the reference algorithm in section 15.3.1 on page
179. We believe it should immediately follow the line

execute_region(preponed);

and should read

execute_region(pre-active);

Completed as described.

1.2 Iterative Regions

The set of regions that are defined as the iterative regions on the
bottom of page 178 and again on page 179 are described by the reference
algorithm in section 15.3.1 as placing their events in the active
region and then running the active region followed by a rescan of all
regions. However, the diagram in figure 15-1 only shows that certain
regions are capable of returning to just before the preactive region.
In particular, the regions for pre-NBA, post-NBA, and post-Observed
do not appear to be able to return. We believe the diagram in figure
15-1 is in error and should be updated to show that these regions also
return.

Completed as described.

2 Inaccuracies

2.1 Preponed Region Definition

In section 15.3 on the bottom of page 178, the preponed region is
defined as a region for PLI callbacks that allow a user to access

data in the current time slot before any net or variable has changed
state. This appears to be more closely related to the definition for
the pre-active region, not the definition of the preponed region.

The preponed region is used by clocking blocks and assertions as a
sampling point to obtain consistent sampled values before any net or
variable has changed state. In order to achieve this, the preponed
region can not allow any modification of simulation state during its
execution by either the simulation or PLI. Further, PLI constructs
need not use this region as they can use the region immediately
following (pre-active) for the same purpose.

We believe the wording of this definition should change to say that

"The Preponed region is specifically for sampling by SystemVerilog
constructs to access data in the current time slot before any net
or variable has changed state. This region is not a PLI region,
and PLI constructs may not schedule into it."

If it is decided to allow PLI into the proponed region, despite having
the preactive region for the same purpose, then wording similar to that
used for the postponed region regarding the illegality of writing values
must be added to the preponed region's definition in order to ensure
that the preponed region is able to provide its intended function for
assertions and clocking blocks.

Not completely accurate. Both Preponed and Pre-Active regions are required to allow PLI commands
to sample values in the Preponed region before the PLI is allowed to make updates in the Pre-Active
region. For this reason, the Preponed region description indicates that PLI commands are only
allowed to read and not write in this region.

Preponed is now described as both a simulation and PLI region.

2.2 Observed Region Definition

Similar to the preponed region, the observed region is used for
sampling by new SystemVerilog constructs. In order to be successful
in this endeavor, this region must either disallow PLI callbacks during
its run or disallow those pli operations from writing to any net or
variable. We recommend that it be modified consistent with the
modifications necessary for the preponed region as described by section
2.1 above.

Observed region now indicates that "PLI callbacks are not allowed in the Observed region."

2.3 Postponed Region Definition

The wording indicates that the postponed region is only used for PLI
callbacks. This, however, is not the case, as this region is also used
for non-PLI activities such as $monitor. This wording should be updated
to indicate its multi-purpose usage.

Description has been updated to be consistent with this request.

2.4 cbAtEndOfSimTime Definition

Although the name of this callback region indicates it should be at
the end of the simulation time, it is also expected to be a read-write
region. As such the table 15-3 in section 15.4 which places it in the
postponed region is inaccurate. Originally this region was targeted
for the post-NBA location which would have been the last read-write
region. However, with the addition of the SystemVerilog constructs
it is unclear where this belongs. Possible answers include post-NBA,
post-Observed, and Reactive. We believe the most correct answer is in
the Reactive region as this is the last read-write region of the new
simulation cycle.

Table 15-3 now shows cbAtEndOfSimTime executes in the Pre-Postponed region.

Doug Warmke to address the remaining issues.

3 Interpretation

3.1 Program Blocks

The specification in the reference algorithm in section 15.3.1 that
events are moved from their region of origin to the active region
can be somewhat misleading. Although this accurately describes the
complexities around the triggering of NBA's and the events and
subsequent process wakeups that they cause, such is not the case for
other regions, in particular the reactive region.

Program blocks are specified to run in the reactive region. If an
event in a program block were to trigger an event that caused another
process to wakeup in the program block there are two possible
interpretations. One interpretation is that since we are now on the
active region, this event and the corresponding wakeup should wait
until the next reactive region. Another possible interpretation is
that since we were executing a portion of the program block we should
execute the process in the current region rather than wait for the
next region.

Chapter 15 is worded such that the first interpretation is correct.
However, Chapter 17 is worded such that the second interpretation is
correct. We believe users would find the second interpretation more
to their liking and thus propose that it be used.

However, in so interpreting it, the LRM's specification of chapter
15 is no longer accurate. The paragraph that describes the interaction
with program blocks would need to change from "are scheduled" to "run"
to be consistent. Some additional changes may also be necessary in
section 15.3.1 in the reference algorithm. We believe the most logical
change would simply be to remove the portion about moving events to
the active region and running the active region. Instead we should
simply run the first non-empty region. Any additional wording that
specifies what gets scheduled into the active region should also
change to specify the current region, whatever it is. This should
accurately describe the level of indeterminism within any given
simulation while preserving the correct functionality for events

triggered in the NBA region as well as events triggered in the
Reactive region.

3.2 Missing Callbacks

A number of the new regions specify that PLI can schedule into them.
However, at no place in the LRM is there any definition of the
callbacks that could be used for the preponed, observed, post-observed,
or reactive regions. We interpret this to mean that there is no such
callback, and user code can not interact with these regions. Although
this satisfies the special requirements of the preponed and observed
regions, this does make the need for the post-Observed region somewhat
unclear as it is impossible to schedule anything into it. It seems
logical that we should define new callback names for each of these
regions.

4 Backwards Compatibility

4.1 #0 and the inactive region

SystemVerilog declares that an explicit #0 requires a delay into the
inactive region. This may create a backwards compatibility issue as
historically simulations treated #0 differently depending on the
context in which it was used. For example, if used to describe the
delay on a gate or wire, the #0 delay means the same thing as no
delay. Similarly, the #0 on the RHS of an NBA (and even a regular
blocking assign) would be the same as no delay. Only as a delay
control on a statement in procedural code does #0 cause a delay to
the inactive queue (actually meaning the next "active" queue).

In certain SystemVerilog situations, #0 means to perform an action
in the Observed region, or delay till the next Reactive region.
We believe this wording needs to be modified to either allow for
implementation dependent variations or construct dependent
variations. A better solution would be to simply remove the inactive
queue from the definition and define that the particular #0 delay
in procedural RTL code delay to the next appropriate simulation
region of the appropriate type. This could then be done in the section
on statement delays rather than in the section on time queues.

4.2 cbReadWriteSynch Callback Definition

Table 15-3 in section 15.4 specifies the translation from historic
VPI cbReadWriteSynch callback to the new SystemVerilog regions.
Although this is accurate for some simulators, it is inaccurate for
certain others, which had been using the pre-NBA region. Rather
than define which region this callback occurs in for SystemVerilog,
this callback should be deprecated.

5 Organization

5.1 Region Defintions

The region definitions as found in section 15.3 are somewhat
difficult to piece together. Some regions have more than one defining
paragraph spread across multiple pages. We believe it would be
advisable to organize these paragraphs in some manner. One possible
organization is to have a single defining paragraph per region that
provides all the necessary information.

5.2 Inter-document references

Section 15.3 has a couple of paragraphs that allude to the time
queues usage in assertions, clocking blocks, and programs. These
references are incomplete to describe the functionality of these
constructs, and yet they provide more detail than is really necessary.
It may be advantageous to simply refer the reader to the other
sections of the document that describe the functionality of these
constructs in more detail.

