
page 1 of 3 SV Mantis 1702 impact on 1447

Things to integrate with Mantis 1447

Relates to: SV Mantis items 1702, 1447
Applies to: IEEE 1800-2008 draft 4

Version 1, 27 Nov 2007
Mainly trying to ensure assignment compatibility amongst all kinds of non-associative
unpacked arrays, provided that their elements are of assignment-compatible types and
the sizes are OK.

Jonathan Bromley, 27 November 2007

SV Mantis 1702 impact on 1447 page 2 of 3

CHANGE final paragraph of 7.4 as follows:

Arrays can be fixed or dynamic. Fixed-size unpacked arrays can be multidimensional and have fixed storage allocated for all
the elements of the array. Each dimension of an unpacked array can be declared as having a fixed or unfixed size. A dynamic
array allocates storage for elements at run time along with the option of changing the size of one of its dimensions. An
associative array allocates storage for elements individually as they are written. Associative arrays can be indexed using
arbitrary data types. A queue type of array grows or shrinks to accommodate the number of elements written to the array at
run time.

An array may have any number of unpacked dimensions. Each unpacked dimension of an array shall be declared in any one
of the following ways:

• as a fixed-size dimension (see 7.4.5)

• as a dynamic array dimension (see 7.5)

• as an associative array dimension (see 7.9)

• as a queue dimension (see 7.11)

A dynamic array allocates storage for elements at run time along with the option of changing the size of one of its
dimensions. An associative array allocates storage for elements individually as they are written. Associative arrays can be
indexed using arbitrary data types. A queue type of array grows or shrinks to accommodate the number of elements written
to the array at run time.

ADD text in 7.6 as follows:

A dynamic array or queue can be assigned to a fixed-size array of an equivalent having elements of assignment-compatible
type if the size of the dynamic array or queue dimension is the same as the length of the fixed-size array dimension. Unlike
assigning with a fixed-size array, this operation requires a run-time check that can result in an error, in which case no
operation shall be performed.

int A[100:1]; // fixed-size array of 100 elements

int B[] = new[100]; // dynamic array of 100 elements

int C[] = new[8]; // dynamic array of 8 elements

A = B; // OK. Compatible type and same size

A = C; // type check error: different sizes

A dynamic array, queue or one-dimensional fixed-size array can be assigned to a queue having elements of assignment-
compatible type.

A dynamic array, queue or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible having
elements of assignment-compatible type. In this case, the assignment creates a new dynamic array with a size equal to the
length of the fixed-size array. For example:

page 3 of 3 SV Mantis 1702 impact on 1447

CHANGE 7.7 as follows:

Arrays can be passed as arguments to tasks or functions. The rules that govern array argument passing by value are the same
as for array assignment (see 7.6). When an array argument is passed by value, a copy of the array is passed to the called task
or function. This is true for all array types: fixed-size, dynamic, queue, or associative.

If a dimension of a formal is unsized (unsized dimensions can occur in dynamic arrays, queues and in formal arguments of
import DPI functions), then any size of the corresponding dimension of an actual is accepted.

For example, the declaration

task fun(int a[3:1][3:1]);

declares task fun that takes one argument, a two-dimensional array with each dimension of size 3. A call to fun must pass
a two-dimensional array and with the same dimension size 3 for all the dimensions. For example, given the above description
for fun, consider the following actuals:

int b[3:1][3:1]; // OK: same type, dimension, and size

int b[1:3][0:2]; // OK: same type, dimension, & size (different ranges)

reg b[3:1][3:1]; // error: incompatible element type

event b[3:1][3:1]; // error: incompatible type

int b[3:1]; // error: incompatible number of dimensions

int b[3:1][4:1]; // error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array or queue of a compatible
type, provided it is of the same size.

For example, the declaration

task bar(string arr[4:1]);

declares a task that accepts one argument, an array of 4 strings. This task can accept the following actual arguments:

string b[4:1]; // OK: same type and size

string b[5:2]; // OK: same type and size (different range)

string b[] = new[4]; // OK: same type and size, requires run-time check

A subroutine that accepts a dynamic array or queue can be passed a dynamic array, queue of a compatible type or a one-
dimensional fixed-size array of a compatible type.

For example, the declaration

task foo(string arr[]);

declares a task that accepts one argument, a dynamic array of strings. This task can accept any one-dimensional array of
strings, queue or any dynamic array of strings.

An import DPI function that accepts a one-dimensional array can be passed a dynamic array of a compatible type and of any
size if formal is unsized and of the same size if formal is sized. However, a dynamic array cannot be passed as an argument if
the formal is an unsized output.

