
In 6.22.1 Matching types

Replace

f) Two array types match if they have the same number of unpacked dimensions and their slowest
varying dimensions have matching types and the same left and right range bounds. The type of the
slowest varying dimension of a multidimensional array type is itself an array type.

typedef byte MEM_BYTES [256];
typedef bit signed [7:0] MY_MEM_BYTES [256]; // MY_MEM_BYTES matches
 // MEM_BYTES
typedef logic [1:0] [3:0] NIBBLES;
typedef logic [7:0] MY_BYTE; // MY_BYTE and NIBBLES are not matching types

With

f) Two array types match if they have the same number of unpacked dimensions and their slowest
varying dimensions have matching types and are both packed or both unpacked, are the same kind of
array (fixed-size, dynamic, associative, or queue), have matching index types (for associative arrays),
and have matching element types. Fixed-size arrays shall also have the same left and right range
bounds. The type of the slowest varying dimension of a multidimensional array type Note that the
element type of a multidimensional array is itself an array type.

typedef byte MEM_BYTES [256];
typedef bit signed [7:0] MY_MEM_BYTES [256]; // MY_MEM_BYTES matches
 // MEM_BYTES
typedef logic [1:0] [3:0] NIBBLES;
typedef logic [7:0] MY_BYTE; // MY_BYTE and NIBBLES are not matching types

typedef logic MD_ARY [][2:0];
typedef logic MD_ARY_TOO [][0:2]; // Does not match MD_ARY

In 6.22.2 Equivalent types

Replace

d) Unpacked array types are equivalent by having equivalent element types and identical shape. Shape
is defined as the number of dimensions and the number of elements in each dimension, not the actual
range of the dimension.

bit [9:0] A [0:5];
bit [1:10] B [6];
typedef bit [10:1] uint10;
uint10 C [6:1]; // A, B and C have equivalent types
typedef int anint [0:0]; // anint is not type equivalent to int

With

d) Unpacked fixed-size array types are equivalent by having if they have equivalent element types and
identical shape. Shape is defined as the number of dimensions and the number of elements in each
dimension, not the actual range of the dimension equal size; the actual range bounds may differ. Note
that the element type of a multidimensional array is itself an array type.

bit [9:0] A [0:5];

bit [1:10] B [6];
typedef bit [10:1] uint10;
uint10 C [6:1]; // A, B and C have equivalent types
typedef int anint [0:0]; // anint is not type equivalent to int

d) Dynamic array, associative array and queue types are equivalent if they are the same kind of array

(dynamic, associative, or queue), have equivalent index types (for associative arrays), and have
equivalent element types.

In 7.4 Packed and unpacked arrays

Replace

Arrays can be fixed or dynamic. Fixed-size unpacked arrays can be multidimensional and have fixed storage
allocated for all the elements of the array. Each dimension of an unpacked array can be declared as having a
fixed or unfixed size. A dynamic array allocates storage for elements at run time along with the option of
changing the size of one of its dimensions. An associative array allocates storage for elements individually
as they are written. Associative arrays can be indexed using arbitrary data types. A queue type of array
grows or shrinks to accommodate the number of elements written to the array at run time.

With

Arrays can be fixed or dynamic. Fixed-size unpacked arrays can be multidimensional and have fixed storage
allocated for all the elements of the array. Each dimension of an unpacked array can be declared as having a
fixed or unfixed size. A dynamic array allocates storage for elements at run time along with the option of
changing the size of one of its dimensions. An associative array allocates storage for elements individually as
they are written. Associative arrays can be indexed using arbitrary data types. A queue type of array grows or
shrinks to accommodate the number of elements written to the array at run time.

Unpacked arrays may be fixed-size arrays (see 7.4.2), dynamic arrays (see 7.5), associative arrays (see 7.9),
or queues (see 7.11). Unpacked arrays are formed from any data type, including other packed or unpacked
arrays (see 7.4.5).

In 7.4.2 Unpacked arrays
Replace

Unpacked arrays can be made of any data type, and can be used to group elements of the declared element
type into multidimensional data. Arrays shall be declared by specifying the element address range(s) after
the declared identifier.

With

Unpacked arrays can be made of any data type, and can be used to group elements of the declared element
type into multidimensional data. Arrays whose elements are themselves arrays are declared as
multidimensional arrays (see 7.4.5). Unpacked Aarrays shall be declared by specifying the element address
range(s) dimension(s) after the declared identifier.

Replace

Each dimension shall be represented by an address range, such as [1:1024], or a single positive number to
specify the size of an unpacked array, like C. In other words, [size] becomes the same as [0:size-1].

The following examples declare equivalent size two-dimensional arrays of int variables:

With

Each fixed-size dimension shall be represented by an address range, such as [1:1024], or a single positive
number to specify the size of an fixed-size unpacked array, like C. In other words, [size] becomes the
same as [0:size-1].

The following examples declare equivalent size two-dimensional fixed-size arrays of int variables:

Remove

An unpacked array element can be assigned a value in a single assignment. To assign a value to an element
of an array, an index for every dimension shall be specified. The index can be an expression.

Each dimension of an unpacked array can be declared as having a fixed or unfixed size. Fixed-size unpacked
arrays can be multidimensional and have fixed storage allocated for all the elements of the array. If an
unpacked array has one or more dynamic, associative, or queued dimensions, it is considered a variable-size
array.

In 7.4.5 Multiple dimension arrays

Replace

7.4.5 Multiple dimension arrays

With

7.4.5 Multiple dimension Multidimensional arrays

Replace

The dimensions preceding the identifier set the packed size. The dimensions following the identifier set the
unpacked size.

With

A multidimensional array is an array of arrays. Multidimensional arrays can be declared by including multiple
dimensions in a single declaration. The dimensions preceding the identifier set the packed size dimensions.
The dimensions following the identifier set the unpacked size dimensions.

Replace

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo6 = foo1[2]; // a 10-bit quantity.

With

A subarray is an array that is an element of another array. As in the C language, subarrays are referenced by
omitting indices for one or more array dimensions, always omitting the ones that vary most rapidly. Omitting
indices for all the dimensions references the entire array. When the array is used with a smaller number of
dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo6 = foo1[2]; // a 10-bit quantity.

 int A[2][3][4], B[2][3][4], C[5][4];
 …
 A[0][2] = B[1][1]; // assign a subarray composed of four ints
 A[1] = B[0]; // assign a subarray composed of three arrays of four ints
 // each
 A = B; // assign an entire array
 A[0][1] = C[4]; // assign compatible subarray of four ints

In 7.5 Dynamic arrays

Replace

A dynamic array is any dimension of an unpacked array whose size can be set or changed at run
time. The space for a dynamic array does not exist until the array is explicitly created at run time.

The syntax to declare a dynamic array is as follows:

data_type array_name [];

where data_type is the data type of the array elements. Dynamic arrays support the equivalent
types as fixed-size arrays.

For example:

bit [3:0] nibble[]; // Dynamic array of 4-bit vectors
integer mem[]; // Dynamic array of integers

The new[] operator is used to set or change the size of the array.

The size() built-in method returns the current size of the array.

The delete() built-in method clears all the elements yielding an empty array (zero size).

With

A dynamic array is any dimension of an unpacked array whose size can be set or changed at run
time. The space for a dynamic array does not exist until the array is explicitly created at run time.
The default size of an uninitialized dynamic array is zero. The size of a dynamic array is set by the
new constructor or array assignment, described in 7.5.1 and 7.6 respectively. Dynamic arrays
support the equivalent types as fixed-size arrays all variable data types as element types, including
arrays.

Dynamic array dimensions are denoted in the array declaration by []. Any unpacked dimension in
an array declaration may be a dynamic array dimension.

For example:

bit [3:0] nibble[]; // Dynamic array of 4-bit vectors
integer mem[2][]; // Fixed-size unpacked array Dynamic composed of 2 dynamic subarrays

of integers

Note that in order for an identifier to represent a dynamic array, it must be declared with a dynamic
array dimension as the leftmost unpacked dimension

The new[] operator constructor is used to set or change the size of the array and initialize its
elements (see 7.5.1).

The size() built-in method returns the current size of the array (see 7.5.2).

The delete() built-in method clears all the elements yielding an empty array (zero size) (see 7.5.3).

In 7.5.1 New[]

Replace

The built-in function new allocates the storage and initializes the newly allocated array elements
either to their default initial value or to the values provided by the optional argument.

The prototype of the new function is as follows:

<box with grammar productions>

Syntax 7-3—Declaration of dynamic array new (excerpt from Annex A)

[expression]:
 The number of elements in the array. The type of this operand is longint. It shall be an error
if the value of this operand is negative.

(expression):

Optional. An array with which to initialize the new array. If it is not specified, the elements of
the newly allocated array are initialized to their default value. This array identifier must be a
dynamic array of a data type equivalent to the array on the left-hand side, but it need not
have the same size. If the size of this array is less than the size of the new array, the extra
elements shall be initialized to their default value. If the size of this array is greater than the
size of the new array, the additional elements shall be ignored.

This argument is useful when growing or shrinking an existing array. In this situation, the
value of (expression) is the same as the left-hand side; therefore, the previous values of
the array elements are preserved. For example:

 integer addr[]; // Declare the dynamic array.
 addr = new[100]; // Create a 100-element array.
 ...
 // Double the array size, preserving previous values.
 addr = new[200](addr);

The new operator follows the SystemVerilog precedence rules. Because both the square brackets
[] and the parenthesis () have the same precedence, the arguments to this operator are evaluated
left to right: [expression] first, and (expression) second.

With

The built-in function new constructor sets the size of a dynamic array allocates the storage and
initializes its elements. initializes the newly allocated array elements either to their default initial
value or to the values provided by the optional argument. It may appear in place of the right-hand
side expression of variable declaration assignments and blocking procedural assignments when the
left-hand side indicates a dynamic array.

The prototype of the new function is as follows:

<Note to editor: retain syntax box, update as in A.6.2>

Syntax 5-1—Declaration Syntax of dynamic array new (excerpt from Annex A)

[expression]:

The desired size of the dynamic array. number of elements in the array. . The type of this
operand is longint. It shall be an error if the value of this operand is negative.

(expression):

Optional. An array with which to initialize the new the dynamic array. If it is not specified,
the elements of the newly allocated array are initialized to their default value. This array
identifier must be a dynamic array of a data type equivalent to the array on the left-hand
side, but it need not have the same size. If the size of this array is less than the size of the
new array, the extra elements shall be initialized to their default value. If the size of this
array is greater than the size of the new array, the additional elements shall be ignored.

This argument is useful when growing or shrinking an existing array. In this situation, the
value of (expression) is the same as the left-hand side; therefore, the previous values of
the array elements are preserved. For example:

 integer addr[]; // Declare the dynamic array.
 addr = new[100]; // Create a 100-element array.
 ...
 // Double the array size, preserving previous values.
 addr = new[200](addr);

The new operator follows the SystemVerilog precedence rules. Because both the square brackets
[] and the parenthesis () have the same precedence, the arguments to this operator constructor are
evaluated left to right: [expression] first, and (expression) second.

Dynamic array declarations may include a declaration assignment with the new constructor as the
right-hand side:

 int arr1 [][2][3] = new [4]; // arr1 sized to length 4; elements are fixed-size arrays and so do
 // not require initializing.
 int arr2 [][] = new [4]; // arr2 sized to length 4; dynamic subarrays remain unsized and
 // uninitialized.
 int arr3 [1][2][] = new [4]; // Error – arr3 is not a dynamic array, though it contains dynamic
 // subarrays.

Comment [MJB1]: Mantis 2176 says
to strike this sentence.

Dynamic arrays may be initialized in procedural contexts using the new constructor in blocking
assignments:

 int arr[2][][];
 arr[0] = new [4]; // dynamic subarray arr[0] sized to length 4.
 arr[0][0] = new [2]; // legal, arr[0][n] created above for n = 0..3
 arr[1][0] = new [2]; // illegal, arr[1] not initialized so arr[1][0] does not exist

arr[0][] = new [2]; // illegal, syntax error - dimension without subscript on left hand side
 arr[0][1][1] = new[2]; // illegal, arr[0][1][1] is an int, not a dynamic array.

In either case, if the new constructor call does not specify an initialization expression, the elements
are initialized to the default value for their type.

The optional initialization expression is used to initialize the dynamic array. When present, it shall
be an array that is assignment-compatible with the left-hand-side dynamic array.

 int idest[], isrc[3] = ‘{5, 6, 7};
 idest = new [3] (isrc); // set size and array element data values (5, 6, 7)

The size argument need not match the size of the initialization array. When the initialization array’s
size is greater, it is truncated to match the size argument; when it is smaller, the initialized array is
padded with default values to attain the specified size.

 int src[], dest1[], dest2[];
 src = new [3] (‘{2, 3, 4});
 dest1 = new[2] (src); // dest1’s elements are {2, 3}.
 dest2 = new[4] (src); // dest1’s elements are {2, 3, 4, 0}.

This behavior provides a mechanism for resizing a dynamic array while preserving its contents. An
existing dynamic array can be resized by using it both as the left-hand side term and the
initialization expression.

integer addr[]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.
...
// Double the array size, preserving previous values.
// Preexisting references to elements of addr are outdated.
addr = new[200](addr);

Resizing or reinitializing a previously-initialized dynamic array using new is destructive; no
preexisting array data is preserved (unless reinitialized with its old contents – see above), and all
preexisting references to array elements become outdated.

In 7.6 Array assignments

Replace

A dynamic array can be assigned to a fixed-size array of an equivalent type if the size of the
dynamic array dimension is the same as the length of the fixed-size array dimension. Unlike
assigning with a fixed-size array, this operation requires a run-time check that can result in an error,
in which case no operation shall be performed.

int A[100:1]; // fixed-size array of 100 elements
int B[] = new[100]; // dynamic array of 100 elements

int C[] = new[8]; // dynamic array of 8 elements

A = B; // OK. Compatible type and same size
A = C; // type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a
compatible type. In this case, the assignment creates a new dynamic array with a size equal to the
length of the fixed-size array. For example:

With

Associative arrays are only assignment compatible with associative arrays (see 7.10.9). Fixed-size
unpacked arrays, dynamic arrays and queues are assignment compatible with each other under the
following conditions:

• Their element types shall be assignment compatible. Note that if the element type is any
variety of array, then this is a recursive condition.

• If the destination is fixed-size, then the source and destination sizes shall be equal.

Since the size of a dynamic array or queue can only be determined at run time, failure of the above
condition shall result in a run time error and A dynamic array can be assigned to a fixed-size array
of an equivalent type if the size of the dynamic array dimension is the same as the length of the
fixed-size array dimension. Unlike assigning with a fixed-size array, this operation requires a run-
time check that can result in an error, in which case no operation shall be performed. Example
code showing assignment of a dynamic array to a fixed-size array follows.

int A[2][100:1]; // fixed-size array of 100 elements
int B[] = new[100]; // dynamic array of 100 elements
int C[] = new[8]; // dynamic array of 8 elements
int D [3][][]; // multidimensional array with dynamic subarrays
D[2] = new [2]; // initialize one of D’s dynamic subarrays.
D[2][0] = new [100];
A[1] = B; // OK. Compatible type and same size. Both are arrays of 100 ints.
A[1] = C; // type check error: different sizes (100 vs. 8 ints)
A = D[2]; // A[0:1][100:1] and subarray D[2][0:1][0:99] both comprise 2 subarrays of 100 ints.

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a
compatible type. In this case, the assignment creates a new dynamic array with a size equal to the
length of the fixedsize array. For example: Examples showing assignment to a dynamic array are
below. (See 7.5.1 for additional assignment examples involving the dynamic array new
constructor).

In 7.7 Arrays as arguments to tasks or functions

Replace

Arrays can be passed as arguments to tasks or functions. The rules that govern array argument
passing by value are the same as for array assignment (see 7.6). When an array argument is
passed by value, a copy of the array is passed to the called task or function. This is true for all array
types: fixed-size, dynamic, or associative.

If a dimension of a formal is unsized (unsized dimensions can occur in dynamic arrays and in
formal arguments of import DPI functions), then any size of the corresponding dimension of an
actual is accepted.

<snip…>

int b[3:1][4:1]; // error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array
of a with compatible type of the same size.

For example, the declaration

task bar(string arr[4:1]);

declares a task that accepts one argument, an array of 4 strings. This task can accept the following
actual arguments:

string b[4:1]; // OK: same type and size
string b[5:2]; // OK: same type and size
string b[] = new[4]; // OK: same type and size,

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or a
one-dimensional fixed-size array of a compatible type.

For example, the declaration

task foo(string arr[]);

declares a task that accepts one argument, a dynamic array of strings. This task can accept any
one-dimensional array of strings or any dynamic array of strings.

An import DPI function that accepts a one-dimensional array can be passed a dynamic array of a
compatible type and of any size if formal is unsized and of the same size if formal is sized.
However, a dynamic array cannot be passed as an argument if formal is an unsized output.

With

Arrays can be passed as arguments to tasks or functions. The rules that govern array argument
passing by value are the same as for array assignment (see 7.6). When an array argument is
passed by value, a copy of the array is passed to the called task or function. This is true for all array
types: fixed-size, dynamic, queue, or associative.

The rules that govern whether an array actual argument can be associated with a given formal
argument are the same as the rules for whether a source array’s values can be assigned to a
destination array (see 7.6). If a dimension of a formal is unsized (unsized dimensions can occur in
dynamic arrays, queues, and in formal arguments of import DPI functions), then it matches any size
of the actual argument’s corresponding dimension of an actual is accepted.

<snip…>

int b[3:1][4:1]; // error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array
or queue of a with compatible element type and equal of the same size.

For example, the declaration

task bar(string arr[4:1]);

declares a task that accepts one argument, an array of 4 strings. This task can accept the following
actual arguments:

string b[4:1]; // OK: same type and size
string b[5:2]; // OK: same type and size
string b[] = new[4]; // OK: same type,number of dimensions and dimension size,

A subroutine that accepts a dynamic array or queue can be passed a dynamic array, queue, of a
compatible type or a one-dimensional fixed-size array of a compatible type.

For example, the declaration

task foo(string arr[]);

declares a task that accepts one argument, a dynamic array of strings. This task can accept any
one-dimensional unpacked array of strings or any one-dimensional dynamic array or queue of
strings.

An import DPI function that accepts a one-dimensional array can be passed a dynamic array of a
compatible type and of any size if formal is unsized and of the same size if formal is sized.
The rules that govern dynamic array and queue formal arguments also govern the behavior of
unpacked dimensions of DPI open array formal arguments (see 7.6). DPI open arrays can also
have a solitary unsized, packed dimension (see 34.5.6.1). However, a A dynamic array or queue
cannot shall not be passed as an actual argument if the DPI formal argument has is an unsized
dimensions and an output direction mode.

In A.2.4 Declaration assignments
<Note to editor: Make the same changes in syntax box in 6.7>

Replace

variable_decl_assignment ::=
 …
 dynamic_array_variable_identifier [] [= dynamic_array_new]

With

variable_decl_assignment ::=
 …

dynamic_array_variable_identifier [] unsized_dimension { variable_dimension } [=
dynamic_array_new]

In A.6.2 Procedural blocks and assignments
<Note to editor: Make the same changes in syntax box in 7.5.1 and 10.4.1>

Replace

blocking_assignment ::=
 …
 hierarchical_dynamic_array_variable_identifier = dynamic_array_new

With

blocking_assignment ::=
 …
 hierarchical_dynamic_array_variable_identifier nonrange_variable_lvalue = dynamic_array_new

In A.8.4 Primaries

Add

select ::=

[{ . member_identifier bit_select } . member_identifier] bit_select [[part_select_range]]

nonrange_select ::=
[{ . member_identifier bit_select } . member_identifier] bit_select

In A.8.5 Expression left-side values

Add at end

nonrange_variable_lvalue ::=

[implicit_class_handle . | package_scope] hierarchical_variable_identifier nonrange_select

