
Mantis 2088: Allow checker construct to include covergroups

Motivation

Mantis 1900 added a new construct called a checker to encapsulate related verification constructs like
assertions into one entity. This proposal extends the checker to allow covergroup constructs to be included. This
is required to make the checker more usable in a coverage-driven methodology.

Change Notes

2/21/2008: Modified the proposal in response to feedback from Gord Vreugdenhil. Now, only instances
of covergroups are allowed within the checker. Changes no longer are required to the BNF, so I removed these
changes.

Note to editor: This proposal relies on the following other language-extending Mantis items:
• 1900: checker
• 2182: VPI Diagrams for checkers
• 2149: Covergroups sample() method with arguments (for last example)

16.18.1 Overview Note to editor: from Mantis 1900 Text

REPLACE

The checkers may contain concurrent assertions, free variable declarations and assignments, structural
procedures, function declarations, let declarations, sequences and properties, and generate regions. The
following procedures are allowed in a checker (see 16.18.4):

WITH

The checkers may contain concurrent assertions, free variable declarations and assignments, structural
procedures, function declarations, let declarations, sequences and properties, covergroup instances, and
generate regions. The following procedures are allowed in a checker (see 16.18.4):

16.18.2 Checker declaration Mantis 1900

REPLACE

A checker body may contain the following elements:

 Declaration of let, sequences, properties and functions.

 Concurrent assertions.

 Free variables and their assignments (see 16.18.5).

 Default clocking and disable declarations.

 initial_check and always_check procedures (see 16.18.4).

 Generate blocks, containing any of the above elements.

1

WITH

A checker body may contain the following elements:

 Declaration of let, sequences, properties and functions.

 Concurrent assertions.

 Covergroup instances.

 Free variables and their assignments (see 16.18.5).

 Default clocking and disable declarations.

 initial_check and always_check procedures (see 16.18.4).

 Generate blocks, containing any of the above elements.

ADD NEW SECTION Note to editor: Shift subsequent section numbers

16.18.6 Covergroups in checkers

One or more covergroup instances (see 18.3) are permitted within a checker. Any covergroup declarations,
however, must occur external to the checker. These covergroup instances shall not appear in any procedural
block in the checker. A covergroup will not be able to reference checker variables directly, since it is defined
externally to the checker. However, any variable visible in the checker, including checker formal arguments
and checker variables may be passed as an argument to the covergroup new() constructor. For example:

covergroup cg_active (ref logic clk, ref logic active, ref bit active_d1)
@(posedge clk);

cp_active : coverpoint active
{
 bins idle = { 1'b0 };
 bins active = { 1'b1 };
}

cp_active_d1 : coverpoint active_d1
{

bins idle = { 1'b0 };
bins active = { 1'b0 };

}
endgroup

checker my_check(logic clk, active);
checkvar bit active_d1 = 1’b0;

always_check @(posedge clk) begin
active_d1 <= active;

end

cg_active cg_active_1 = new(clk, active, active_d1);
endchecker : my_check

The clocking event which controls the covergroup sampling may not reference or depend on a checker variable.
For example:

2

covergroup cg_active (ref bit clk, ref logic active) @(posedge clk);
. . .
endgroup

checker my_check_w_clock_div(logic clk, active);
checkvar bit clk_div2 = 1'b0;
checkvar bit a;

assign a = active;

always_check @clk clk_div2 <= !clk_div2;

// Illegal: covergroup may not reference checker variables in clocking
// event.
cg_active cg_active_1 (clk_div2, active)

endchecker : my_check_w_clock_div

A covergroup may also be triggered by a procedural call to its sample() method (see 18.8). The following
examples show how the sample() method may be called from a sequence match item to trigger a covergoup.

covergroup cg_op (ref bit [3:0] opcode_d1);
cp_op : coverpoint opcode_d1;

endgroup:cg_op

checker op_test (logic clk, vld_1, vld_2, logic [3:0] opcode)
checkvar bit [3:0] opcode_d1;

always_check @(posedge clk) opcode_d1 <= opcode;

// Covergroup instance defined here
cg_op cg_op_1 = new(opcode_d1);

sequence op_accept;
@(posedge clk) vld_1 ##1 (vld2, cg_op_1.sample());

endsequence
cover property (op_accept);

endchecker

In this example, the coverpoint cp_op_1 refers to the checker variable opcode_d1 directly. It is triggered by
a call to the default sample() method from a sequence match item. This function call occurs in the Reactive
region, which is after all checker variables have been updated. As a result the covergroup will sample the
updated value of the checker variable opcode_d1.

Note to editor: The following example relies on Mantis 2149

It is also possible to define a custom sample() method for a covergroup (see 18.8.1). An example of this is
shown below:

covergroup cg_op with function sample(bit [3:0] opcode_d1);
cp_op : coverpoint opcode_d1;

endgroup:cg_op

checker op_test (logic clk, vld_1, vld_2, logic [3:0] opcode)
checkvar bit [3:0] opcode_d1;

always_check @(posedge clk) opcode_d1 <= opcode;

3

cg_op cg_op_1 = new();

sequence op_accept;
@(posedge clk) vld_1 ##1 (vld2, cg_op_1.sample(opcode_d1));

endsequence
cover property (op_accept);

endchecker

In this example, a custom sample() method has been defined for the covergroup cg_op, and the coverpoint
cp_op references the formal argument of the custom sample() method. This custom method will be called in
the Reactive region upon a sequence match, but the sampled value of the sequential checker variable
opcode_d1 will be passed to the sample() method. As a result the covergroup will sample the value from
the Preponed region.

4

