Interfaces

Discussion (Current Text)

Communication is an important aspect of a digital system, and current HDLs do not provide the modeling support needed. Even at the structural level, they do not allow wires with different directions of information flow to be bundled and named. The languages do not support more abstract levels of communication well in terms of encapsulation and re-use.

The SUPERLOG ESS co-design language is designed to deal with a high level, software-like view of a digital system and with a lower level register-transfer and structural view. To support the translation between these two abstraction levels, SUPERLOG ESS has interfaces and state machines. These also allow encapsulation and re-use of bus models for system design, facilitating the following applications:

Exploring hardware/software partitioning

Exploring the various bus choices in system design.

Performance analysis

Constructing bus functional models of ASIC cores (and even full models)

Writing test benches which conform to bus protocol and timing

Re-using system simulation test benches for implementation testing.

Checking that implementations are meeting bus protocol and timing

A key feature is the ability to change easily the level of abstraction at which the communication between modules is modeled. This allows high level models and low level models to be swapped, and hardware timing to be easily inserted in a software interface. This is achieved by providing the same communication structure for both software(tasks) and hardware(wires). This structure is called an interface.

At its lowest level, an interface is a bundle of wires. In fact a wire is just a built-in type of interface. The interface can be passed through a port as a single item, and the component wires referenced where needed.

At its highest level an interface is more like a class template. It can have types, constants, variables, functions and tasks. The types can be parameters. The member variables and functions are referenced by nested identifiers of the form instance.member.

To provide direction information for module ports and control of the use of tasks and functions within particular modules, the modport construct is provided. As the name indicates, the directions are those seen from the module.

Processes and continuous assignments in interfaces are useful for system level modeling and testbench applications. They should not be used for synthesizable code.

Discussion (Proposed Update)

The communication between blocks of a digital system is a critical area that can affect everything from hardware-software partitioning to performance analysis to bus implementation choices and protocol checking. The interface construct in the SUPERLOG ESS co-design language was created specifically to encapsulate the communication between blocks, allowing a smooth migration from abstract system-level design through successive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the communication between blocks, the interface construct also facilitates design re-use. The inclusion of such a useful language feature is one of the major advantages of the SUPERLOG ESS over traditional HDLs.

At its lowest level, an interface is a bundle of wires. In fact a wire is just a built-in type of interface. The interface is instantiated in a design and can be passed through a port as a single item, and the component wires referenced where needed. The power of the interface comes from its ability to encapsulate functionality as well as connectivity, making an interface, at its highest level, more like a class template.

An interface can have parameters, constants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be passed in as parameters. The member variables and functions are referenced relative to the instance name of the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/function members of that interface to drive the communication. With the functionality thus encapsulated in the interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol can be easily changed by replacing the interface with a different interface containing the same members but implemented at a different level of abstraction. The modules connected via the interface don’t need to change at all.

To provide direction information for module ports and to control the use of tasks and functions within particular modules, the modport construct is provided. As the name indicates, the directions are those seen from the module.

In addition to task/function methods, an interface can also contain processes (i.e. always blocks) and continuous assignments, which are useful for system-level modelling and testbench applications. This allows the interface to include, for example, its own protocol checker that automatically verifies that all modules connected via the interface conform to the specified protocol. Other applications, such as functional coverage recording and reporting, protocol checking and assertions can also be built into the interface.

Page 2 of 2 <DOC TITLE>

Co-Design Automation, Inc. Confidential and Proprietary Information

