
Hardware Description Language-Embedded
Regular Expression Support for Module Iteration and Interconnection

Lionel Bening, Bryan Hornung
Hewlett-Packard Company
3000 Waterview Parkway

Richardson, TX 75080

 Robert Pflederer
inSilicon Corporation

411 East Plumeria Drive
San Jose, CA 95134

Abstract
This paper describes a module iteration and intercon-
nection support method based on regular expressions
within a hardware description language elements. The
method takes advantage of consistent naming practices
within interconnected modules to produce orderly
naming of the interconnections. It supports coherent
and incremental interconnection net naming by use of
naming rules. The acceptance of this method exceeded
expectations in our design project work, suggesting that
it may even be a future HDL replacement for the VHDL
generate and Verilog for-loop

1 Introduction
Given the large numbers of parts and interconnec-

tions in computing hardware systems, designers have
used automated techniques to generate the names for
part instances and their interconnections.

These generating techniques originated decades be-
fore the standardization of hardware description lan-
guages. Being small and often ad-hoc programs, they
are not widely discussed in the literature.

 In this paper, we begin by comparing various gen-
erator in terms of the following attributes:

• explicit - implicit

• internal – external

• product – ad-hoc

We next present a user viewpoint of our preproces-
sor in section 3. Section 4 describes internal details of
our preprocessor implementation. Section 5 suggests
possible future steps we envision for wider use of this
technology .

2 Comparing generating methods

2.1 Explicit vs implicit

From its beginnings, VHDL [1] supported a gener-
ate statement for iterated submodule instances and in-
terconnections.

As Verilog became an open language and moved to
be standardized [2] there were ideas [3] about iterating
instances and connections, but they did not make it into
the 1995 standard.

As of this writing, Section 12 of the Verilog IEEE
1364 2000(draft 5) proposed standard [4] describes new
generate/endgenerate/genvar keywords that support
iteration and connection generation.

We regard the generating techniques in both the
VHDL and Verilog as explicit. They first create the
instances and their interconnections at a module level,
and then check the interconnection module ports in the
port-to-net name specifications against the submodule
ports being interconnected.

Implicit interconnection builds upon the generally
recognized hardware design naming practice of using
the same net and port names in a receiving module as in
a transmitting module [5] [6]. For example, if the clock
net name in the design for a clock-generating module is
CK, use of CK as the port name for the corresponding
nets on modules that receive that clock net makes the
net function clear to anyone reading the design descrip-
tion.

This has prompted toolsmiths within many design
shops and vendors [7][8][9][10] to develop preproces-
sors that automatically generate interconnect HDL
modules implied by consistent name usage across sub-
modules.

2.2 Internal vs external

Iteration/interconnection preprocessing can be inter-
nal to or external to the standard HDL's (Verilog or
VHDL) language definition. External preprocessors are
often written in C, or the perl language [11], and may
invoke perl's support of regular expression (regular-
expression) matching. with rules supplied from another

file. Search tools and text editors have used regular-
expression's for decades. Regular-expression matching
tools and search library functions [12] are available free
through the Free Software Foundation, Inc.

2.3 Product vs ad-hoc

Support and stability of the in-house implicit inter-
connection preprocessors varies from nil to tenuous to
solid. With scripting languages like perl, rapid
prototyping often results in module-specific preproces-
sor extensions and proliferation of preprocessor vari-
ants.

A clever way of dealing with module-specific exten-
sions to the perl script is to place the script extension
text within the module file as comments. Then the stan-
dard part of the perl script outside the module can lo-
cate the perl script extensions within the module com-
ments and execute the perl code there.

A measure of support and stability of a preprocessor
is whether designers check in the preprocessor input or
preprocessor output into the release tree. With a sup-
ported and stable preprocessor, designers can check the
preprocessor source into the release tree.

2.4 Our implementation

Our preprocessor implementation supports module
iteration and interconnection based on implicit inter-
connection within the hardware description language.
Compared with the current HDL for-loop and generate-
loop techniques, our implementation has the advantages
of:

• Improved designer productivity, built upon submo d-
ule port names that the designer has already entered.

• Rule-based generated interconnection that supports
consistency across a project.

• Ease of maintenance/enhancement. When designers
add ports, the port connections follow rules already
entered.

Although not a product outside our laboratory, our
generator implementation is of sufficient quality that we
can check the Verilog preprocessor source into our de-
sign release tree.

3 Regular expression usage
3.1 Connection rules

With regular-expression extensions to Verilog, de-
signers can enter pattern matching rules to form in-
stance names and interconnection net names. The net
names combine portions of the instance names and
submodule port names. These pattern matching rules

select portions of the instance names and the submodule
port names for the preprocessor to combine and form
connecting net names. Table 1 lists the applicability of
some regular-expression match rules to instances and
ports.

RE MATCH RULE APPLICABILITY

[a-d0-4] matches any
character of set port instance

string1 |
string2 |
string3

matches string1 or
string2 or string3 port instance

. matches any
[a-zA-Z0-9_] character port

.* matches 0 or more
[a-zA-Z0-9_] characters port

$ matches the
end-of-string port

(RE) remembers the match
for later reference port instance

Table 1. Regular Expression (RE) Application

3.2 Generating and using instance names

For instance names containing regular-expression
patterns, the regular-expression processor uses the
regular-expression to generate all instance names within
a specified range. For example,

 mtype minst_([a-b])([0-3]) (...

Example 1. Instances Specified in regular-expressions.

generates eight instances of the form:
 mtype minst_a0 (...
 mtype minst_a1 (...
 mtype minst_a2 (...
 mtype minst_a3 (...
 mtype minst_b0 (...
 mtype minst_b1 (...
 mtype minst_b2 (...
 mtype minst_b3 (...

Example 2. Instances Implied by regular-expressions .

Designers can reference the matching strings in net
names by variables of the form $n, where n is an inte-
ger corresponding to the order in which the regular-
expressions appear in the Verilog text. The numbering
restarts at $1 with each new instance.

3.3 Matching and using port names

For port names in submodules that match patterns
specified by designers, the regular-expression preproc-
essing can combine the module instance with portions
of the submodule port names to produce connection net
names. For each port within an instance, regular-

expression numbering restarts at one plus the last num-
ber of patterns in the instance name.

Example 3(a) shows two instances of a part qdata in
which the regular-expression preprocessing generates
net names based on the generated instance names and
patterns that it finds in the submodule port.

Except for the regular-expression text added in, this is
standard Verilog.
• qdata is the submodule type name

• qd([01]) is the instance name

• rd0_ecc is a port name on qdata

• rd0_$1_ecc is a net name connected to rd0_ecc

• the .rd0_e connection is an exception to the connec-
tion rul on the next line.
The key ideas in this paper shown in this example

that support iteration and interconnection are:

• the regular-expressions within parenthesis in instance
and port names,

• the $ denoting the end of the port name, and

• the $n in the net name.

The ([01]) added in the instance name indicates
that the designer wants two instances of qdata: qd0 and
qd1. Enclosing the range of values within parenthesis
means that the range element (0 or 1, depending on the
instance) can be referenced from scalar $1 to form part
of a net name, as shown in the net rd0_$1_ecc.

The port regular-expression

.(bt|rd|sc)([01])_(.*)$

provides the rule that matches any port on submodule
type qdata that matches the 8 combinations of the first
two regular-expressions and suffixed with any charac-
ter.

Given the preceding input of the regular-expression
Verilog shown in Example 3, the regular-expression
preprocessing generates the Verilog instances and con-
nections shown in Example 4.

qdata qd([01]) (
.rd0_ecc (rd0_$1_ecc),
.(bt|rd|sc)([01])_(.*)$ ($2$3_$1_$4),
.hg_qd_(.*)$ (hg_qd$1_$2),
.hg_ecc_ind (6'b0),
.qdctl(.*)$ (qdctl$1$2),
.op_s2c_(.*)$ (op$1_s2c_$2),
.dp_(.*)$ (dp$1_$2));

…
(a) Interconnect module with instance, ports and

nets as regular expressions

module qdata(…);
input bt0_fnd_ff;
input bt1_fnd_ff;
input rd0_ecc;
input [287:0] rd0dat2qd;
input [5:0] rd0_wr_ind;
input rd0_wr_stt;
input rd1_ecc;
input [287:0] rd1dat2qd;
input [5:0] rd1_wr_ind;
input rd1_wr_stt;
input [2:0] hg_qd_adl;
input [5:0] hg_qd_ind;
input hg_qd_ind_vld;
input hg_qd_len;
input [5:0] hg_ecc_ind;
input [6:4] op_s2c_qd_adl;
input [5:0] op_s2c_qd_ind;
input [3:0] op_s2c_qd_pt;
input op_s2c_tv;
input [5:0] sc0_wr_ind;
input sc0_wr_trns;
input [5:0] sc1_wr_ind;
input sc1_wr_trns;
input qdctl_ecc;
output [287:0] dp_cdpdat;
output [287:0] dpdat2mdp;

…
endmodule

(b) Submodule ports to be interconnected

Example 3 . Interconnect module and submodule.

3.4 Bit Slice Arithmetic
In some designs, successive instances of a given

type operate on different bit slices of a bus. Our pre-
processor supports integer addition + subtraction - and
multiplication * operations on numeric $n variables.

Example 5 is based on example 8 in Section 12 of
the IEEE 1364 2000(draft 5) proposed Verilog standard
[4]. As well as regular-expression-based instances and
net names, this example presents regular-expression-
based addition and multiplication applied to the in-
stance number to specify successive bit slices.

sms_16b216t0 p([0-3]) (
.dqi (data[15+16*$1:16*$1]),
.csb (csx),
.ba (ba[0]),
.addr (adr[10:0]),
.rasb (rasx),
.casb (casx),
.web (wex),
.udqm (dqm[2*$1+1]),
.ldqm (dqm[2*$1]),
.dev_id (dev_id3[4:0])
);

Example 5 . Instances, Interconnections and Bit Slices
Specified in regular-expressions.

Example 6 is the resultant Verilog from the preced-
ing preprocessor input shown in Example 5. The high-
light/underlining relates the components of the original
text with the generated instance and bit numbering.

sms_16b216t0 p0 (
.dqi (data[15:0]),
.clk (clk),
.csb (csx),
.cke (cke),
.ba (ba[0]),
.addr (adr[10:0]),
.rasb (rasx),
.casb (casx),
.web (wex),
.udqm (dqm[1]),
.ldqm (dqm[0]),
.dev_id (dev_id3[4:0])
);

sms_16b216t0 p1 (
.dqi (data[31:16]),
.clk (clk),
.csb (csx),
.cke (cke),
.ba (ba[0]),
.addr (adr[10:0]),
.rasb (rasx),
.casb (casx),
.web (wex),
.udqm (dqm[3]),
.ldqm (dqm[2]),
.dev_id (dev_id3[4:0])
);

qdata qd0 (
 .rd0_ecc (rd0_0_ecc),
 .bt0_fnd_ff (bt0_0_fnd_ff),
 .bt1_fnd_ff (bt1_0_fnd_ff),
 .rd0_wr_ind (rd0_0_wr_ind),
 .rd0_wr_stt (rd0_0_wr_stt),
 .rd1_ecc (rd1_0_ecc),
 .rd1_wr_ind (rd1_0_wr_ind),
 .rd1_wr_stt (rd1_0_wr_stt),
 .sc0_wr_ind (sc0_0_wr_ind),
 .sc0_wr_trns (sc0_0_wr_trns),
 .sc1_wr_ind (sc1_0_wr_ind),
 .sc1_wr_trns (sc1_0_wr_trns),
 .hg_qd_adl (hg_qd0_adl),
 .hg_qd_ind (hg_qd0_ind),
 .hg_qd_ind_vld (hg_qd0_ind_vld),
 .hg_qd_len (hg_qd0_len),
 .hg_ecc_ind (6'h00),
 .qdctl_ecc (qdctl0_ecc),
 .op_s2c_qd_adl (op0_s2c_qd_adl),
 .op_s2c_qd_ind (op0_s2c_qd_ind),
 .op_s2c_qd_pt (op0_s2c_qd_pt),
 .op_s2c_tv (op0_s2c_tv),
 .dp_cdpdat (dp0_cdpdat),
 .dpdat2mdp (dpdat2mdp),
 .rd0dat2qd (rd0dat2qd),
 .rd1dat2qd (rd1dat2qd));
qdata qd1 (
 .rd0_ecc (rd0_1_ecc),
 .bt0_fnd_ff (bt0_1_fnd_ff),
 .bt1_fnd_ff (bt1_1_fnd_ff),
 .rd0_wr_ind (rd0_1_wr_ind),
 .rd0_wr_stt (rd0_1_wr_stt),
 .rd1_ecc (rd1_1_ecc),
 .rd1_wr_ind (rd1_1_wr_ind),
 .rd1_wr_stt (rd1_1_wr_stt),
 .sc0_wr_ind (sc0_1_wr_ind),
 .sc0_wr_trns (sc0_1_wr_trns),
 .sc1_wr_ind (sc1_1_wr_ind),
 .sc1_wr_trns (sc1_1_wr_trns),
 .hg_qd_adl (hg_qd1_adl),
 .hg_qd_ind (hg_qd1_ind),
 .hg_qd_ind_vld (hg_qd1_ind_vld),
 .hg_qd_len (hg_qd1_len),
 .hg_ecc_ind (6'h00),
 .qdctl_ecc (qdctl1_ecc),
 .op_s2c_qd_adl (op1_s2c_qd_adl),
 .op_s2c_qd_ind (op1_s2c_qd_ind),
 .op_s2c_qd_pt (op1_s2c_qd_pt),
 .op_s2c_tv (op1_s2c_tv),
 .dp_cdpdat (dp1_cdpdat),
 .dpdat2mdp (dpdat2mdp),
 .rd0dat2qd (rd0dat2qd),
 .rd1dat2qd (rd1dat2qd));

Example 4. Preprocessor-generated interconnect

sms_16b216t0 p2 (
.dqi (data[47:32]),
.clk (clk),
.csb (csx),
.cke (cke),
.ba (ba[0]),
.addr (adr[10:0]),
.rasb (rasx),
.casb (casx),
.web (wex),
.udqm (dqm[5]),
.ldqm (dqm[4]),
.dev_id (dev_id3[4:0])
);

sms_16b216t0 p3 (
.dqi (data[63:48]),
.clk (clk),
.csb (csx),
.cke (cke),
.ba (ba[0]),
.addr (adr[10:0]),
.rasb (rasx),
.casb (casx),
.web (wex),
.udqm (dqm[7]),
.ldqm (dqm[6]),
.dev_id (dev_id3[4:0])
);

Example 6. Resultant Instances, Interconnections and
Bit Slices Derived from Regular-Rxpressions.

3.5 Instance-specific constants
To "personalize" multiple instances of a module, in-

puts can be tied off to an instance-specific constant
value. For the example:

 …
kpi_pi4 pi([01]) (
.pi_bus_num (1'b$1),
 …

Example 7. Instance-specific constant In regular-
expression.

the preprocessor-generated Verilog is:
 …
kpi_pi4 pi0 (
.pi_bus_num (1'b0),
 …
kpi_pi4 pi1 (
.pi_bus_num(1'b1),

 …
Example 8. Resultant Instance-Specific Constant

3.6 Defining shared interconnection rules

Example 9 illustrates macro definitions for regular
interconnection expression rules and their shared usage
across multiple module instances.

`define FOUR_INSTmbt|mdprd|mdpwr|mcs|mdel
`define TWO_INSTnoe|mopim|mopc|mrqc|mdrd|mdrc
`define RULE_D(`FOUR_INST)_(.*)$ ($3$1$2_$4)
`define RULE_E (`TWO_INST)_(.*)$ ($3$1_$4)
 …
kmsc_mem_sched4 msc([01])([01]) (

`RULE_D,
`RULE_E);

kmpd_mpd_inout4 mdp([01])([01]) (
`RULE_D,
`RULE_F);

Example 9. Define rule-based interconnection.

4 Implementation
We implemented the regular-expression-based it-

eration and interconnection by combining the Free
Software Foundation regular-expression pattern
matching and search library [12] with our in-house
Verilog parser and elaborator. Our parser supports the
RTL subset described in [6] for our in-house Verilog-
based applications.

We extended our RTL Verilog parser to recognize
• regular-expressions in instances and ports,
• scalars in connection net names and bit expres-

sions.
We added a "regular-expression" phase in the elabo-

ration that traverses the data structures representing the
Verilog, transforming the data structures containing
regular expressions and scalars into the expanded
Verilog data structures, without the expressions and
scalars. This phase runs in the following steps:
1. Iterate instances based on regular-expressions

within instance names.
2. Form scalar lists based upon iterated instance

names.
3. Search submodule ports for names corresponding

to regular-expressions within the ports Use the
re_compile_pattern and re_match functions from
the regex.c [12] library.

4. Form scalars based upon regular-expression
matches within port names.

5. Substitute scalar values within net names and bit
positions.

5 Status and future directions

Acceptance of the HDL regular-expression technol-
ogy among our designers has been good. Before we had
this technology, about 10% of all our structural Verilog
modules used automated interconnection based on im-
plicit connections of matched port names.

Since we combined the implicit interconnection with
the HDL regular-expression technology, 70% of our
modules use automated interconnection.

5.1 Language considerations

We can only speak from our own regular-
expression-based iteration and interconnect experience
with Verilog. Someone else will have to look at the
applicability of this technology in VHDL.

In Verilog, the use of regular-expression dollarsign-
prefixed-scalars in net names conflicts with Verilog's
allowing dollarsign characters in names. From the very
beginning of our use of Verilog, we ruled the $ charac-
ter out of our Verilog style[6]. This enabled us to use
the $ to prefix scalar numbers in Verilog, just as in perl.

Even though we were able to parse and elaborate an
RTL Verilog subset containing regular-expression it-
eration and interconnect, it remains to be determined
whether parsing and elaboration problems will be en-
countered when this technology faces with the entire
Verilog language.

5.2 Future of HDL Regular-Expressions

As of this writing, we are using this technology on
one project in one laboratory in our company. Although
sharing the method is fine, sharing the software itself
beyond our laboratory is not a part to our main activity:
designing logic chips and systems. We can consider
sharing this software with other projects and labs within
our company. However, delivery and support of EDA
software outside our company is highly unlikely.

Because the HDL-embedded regular-expression's
for iteration and interconnection technology seemed
simple, powerful and unique, we filed for a patent on it.
The patent and this paper serve to publicize and support
the wider acceptance and use of this technology.

The vision that we have is to license this technol-
ogy:

• Free, if it can be supported through a standardization
group, or the Free Software Foundation.

• At low cost to commercial vendors, or in exchange
for a cost discount to us on vendor products in ex-
change the vendor's use of this technology.

• At low cost to competitors who want to implement
this technology in their in-house tools.

6 Conclusion

We have presented a HDL-embedded iteration and
interconnection method that utilizes well-known regu-
lar-expression technology to build consistent rule-based
net names. These net names build upon the iterated in-
stance name extensions and the submodule port names,
resulting in a high degree of consistency. As a result,
designers from one project to the next increased their
automatic interconnect generator usage on their struc-
tural modules 7X. We patented and publicized this
technology with the vision that it might find widespread
acceptance and support.

7 References

[1] IEEE Standard 1076-1987, IEEE VHDL Language Refer-
ence Manual IEEE, Inc. New York, NY, USA, 1988.

[2] IEEE Standard 1364-1995 IEEE Standard Hardware De-
scription Language Based on the Verilog Hardware de-
scription Language, IEEE, Inc. New York, NY, USA,
1996.

[3] B. Davis and T. Mudge, "A Verilog Preprocessor for Rep-
resenting Datapath Components," Proceedings of the 4th
International Verilog Conference March, 1995, pp. 90-
98.

[4] IEEE Proposed Standard 1364-2000 (Draft 5) IEEE Stan-
dard Hardware Description Language Based on the
Verilog Hardware description Language, IEEE, Inc.
New York, NY, USA, March, 2000.

[5] M. Keating and P. Bricaud, Reuse Methodology Manual,
Kluwer Academic Publishers, 1999.

[6] L. Bening and H. Foster, Verifiable RTL Design, Kluwer
Academic Publishers, Feb, 2000.

[7] I. Chayut, MKTREE - Auto-Connects Verilog Version 4.0
http://www.verilog.net/mktree/

[8] B. J. Rosen HDLmaker http://www.polybus.com/hdlmaker
[9] M. McNamara Mac’s Verilog Mode for EMACs

http://www.verilog.com/verilog-mode.html
[10] Vstruct http://www.prime-tec.com
[11] L. Wall, T. Christiansen, J. Orwant, Programming perl,

3rd Edition O'Reilly & Associates, July, 2000, pp. 75-83.
[12] regex.c extended regular expression matching and search

library, version 0.12, available from the Free Software
Foundation, Inc http://www.gnu.org/

