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Section 1
Introduction to SystemVerilog 

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. Much of the syntax and semantics in these extensions
are part of the SUPERLOG Extended Synthesis Subset (ESS) donation made to Accellera by Co-Design Auto-
mation, Inc. and proven with their products. SUPERLOG was developed by Peter Flake and Simon David-
mann to extend Verilog into the systems space and the verification space and was built on top of the work of
the IEEE Verilog 2001 committee. 

Throughout this document:

— “Verilog” or “Verilog-2001” refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refers to the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:

— “Verilog 0.0” is the original Verilog language, first developed by Gateway Design Automation in 1984

— “Verilog 1.0” is the Open Verilog International (OVI) public version of Verilog released in 1990, which 
was standardized by the IEEE in 1995 as IEEE Std. 1364-1995

— “Verilog 2.0” is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.0” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined 
in this document 

The Accellera initiative to extend Verilog is an on going effort under the direction of the Accellera HDL+
Technical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond
SystemVerilog 3.0. 

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions while still providing an easy route with existing tools into current hardware implementation
flows. 

SystemVerilog adds several new constructs to Verilog-2001, including:

— C data types to provide better encapsulation and compactness of code 

— int, char, typedef, struct, union, enum

— Enhancements to existing Verilog constructs, to provide tighter specifications

— Extensions to always blocks to include linting type features

— Logic (0, 1, X, Z) and bit (0, 1) data types

— Automatic/static specification on a per variable instance basis

— Procedural break, continue, return

— Interfaces to encapsulate communication and facilitate “Communication Oriented” design

— State Machines for designing control logic in compact and readable form

— Dynamic processes for modeling pipelines 

— A $root top level hierarchy which can have global definitions 



Accellera
SystemVerilog 3.0/draft 4  (3/8/02) Extensions to Verilog-2001

2 Copyright 2001 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Section 2
Lexical Conventions

2.1 Introduction (informative) 

The lexical conventions for SystemVerilog are extensions of those for Verilog. SystemVerilog adds literal time
values, literal array values, literal structures and enhancements to literal strings.

2.2 Literal value syntax

Syntax 2-1—Literal values

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe ( ‘ ), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit.

’0, ’1, ’X, ’x, ’Z, ’z // sets all bits to this value

2.4 Real literals

The default type is real for fixed point format (e.g. 1.2), and exponent format (e.g. 2.0e10).

A cast can be used to convert literal real values to the shortreal type (e.g. shortreal’(1.2) ). Casting
is described in section 3.8.

[BNF excerpt to be inserted after BNF is approved]



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 4  (3/8/02)

Copyright 2001 Accellera. All rights reserved. 3
This is an unapproved Accellera Standards Draft, subject to change.

2.5 Time literals 

Time is written in integer or fixed point format, followed without a space by a time unit (fs ps ns us ms s).
For example:

0.1ns
40ps

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab
\f form feed 
\a bell
\x02 hex number

A string literal can be cast to a character, or a packed array, as in Verilog-2001. If the size differs, it is right jus-
tified.

char c1 = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be cast to an unpacked array of characters, and a zero termination is added like in C. If the
size differs it is left justified.

char c3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in section 4.

2.7 Array literals

Arrays literals are similar to C initializers, but with the repeat operator ( {{}} ) allowed

int n[1:2][1:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, repeat operators can be
nested:

int n[1:2][1:3] = {2{{3{4}}}};

If the type is not given by the context, it must be specified with a cast

typedef int [1:3] triple; // 3 integers packed together
b = triple’{0,1,2};

2.8 Structure literals

Structure literals are similar to C initializers. Structure literals must have a type, either from context or a cast:

typedef struct {int a; shortreal b;} ab; 
ab c; 
c = {0, 0.0}; // structure literal type determined from the left hand context 
(c)
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Nested braces should reflect the structure, for example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}}; 

Note that the C alternative {1, 1.0, 2, 2.0} is not allowed.
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Section 3
Data Types

3.1 Introduction (informative) 

To provide for clear translation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and long without causing
confusion, in SystemVerilog, int is 32 bits and longint is 64 bits. The C float type is called shortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called logic. See section 3.3.1.

Verilog-2001 provides arbitrary fixed length arithmetic using reg data types. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds a bit type which can only have bits with 0
or 1 values. See section 3.3.1.

Automatic type conversions from a smaller number of bits to a larger number of bits involve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bits to a smaller number does cause a warning message. Automatic conversions between logic and
bit do not cause warning messages. To convert a logic value to a bit, 1 converts to 1, anything else to 0. 

User defined types are introduced by typedef and must be defined before they are used. Data types can also
be parameters to modules or interfaces, making them like class templates in object-oriented programming. One
routine can be written to reverse the order of elements in any array, which is impossible in C and in Verilog.

Structures and unions are complicated in C because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags. 

See also Section 4 on arrays.
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3.2 Data type syntax

Syntax 3-2—data types

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types: 

Table 3-1—Integer data types

char 2-state C data type, usually an 8 bit signed integer (ASCII) or a short int (Unicode)

shortint 2-state SystemVerilog data type, 16 bit signed integer 

int 2-state SystemVerilog data type, 32 bit signed integer 

longint 2-state SystemVerilog data type, 64 bit signed integer 

byte 2-state SystemVerilog data type, 8 bit signed integer 

bit 2-state SystemVerilog data type, user-defined vector size 

logic 4-state SystemVerilog data type, user-defined vector size with different use rules from reg 

reg 4-state Verilog-2001 data type, user-defined vector size 

integer 4-state Verilog-2001 data type, at least 32 bit signed integer 

[BNF excerpt to be inserted after BNF is approved]
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3.3.1 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These are logic, reg and
integer. The other types do not have unknown values and are called 2-state types, for example bit and int. 

The difference between int and integer is that int is 2-state logic and integer is 4-state logic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less
memory, and are preferred in some design styles.

3.3.2 Signed and unsigned data types 

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
tors such as ‘<’, etc.

int unsigned ui;
int signed si;

The data types char, byte, shortint, int, integer and longint default to signed. The data types bit
and logic default to unsigned, as do arrays of these types. 

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is a reserved keyword in Ver-
ilog-2001, but is not utilized.

See also section 7, on operators and expressions.

3.4 Other basic data types 

3.4.1 Time data types

Time is a special data type. It is a 64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by the timeprecision declaration. It can also be changed by
a ‘timescale directive.

The timeprecision declaration affects the local accuracy of delays

module m;
timeprecision 0.1ns;
initial #10.11ns a = 1; // round to #10.1ns according to time precision

endmodule

The timeunit declaration is used to set the current time unit. When a literal time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number is mul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. An integer or real variable is cast to a time value by using the integer or real as a delay.

For example

#10.11; // multiply by time unit and round according to time precision

See section 12.7 on for more information on setting the time units and time precision.

3.4.2 Real and shortreal data types

The real1 data type is from Verilog-2001, and is the same as a C double. The shortreal data type is a Sys-
temVerilog data type, and is the same as a C float.

1 The real and shortreal types are represented as described by IEEE 734-1985, an IEEE standard for floating point numbers. 
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3.4.3 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions, indi-
cating no return value.

3.5 User-defined types

The user can define a new type using typedef, as in C.

typedef  int  intP;

This can then be instantiated:

intP a, b;

A type can be used before it is defined, provided it is first identified as a type by an empty typedef:

typedef foo;
foo f = 1;
typedef int foo;

Note that this does not apply to enumeration values, which must be defined before they are used.

If the type is defined within an interface it must be re-defined locally before being used.

interface it;
typedef  int  intP;

endinterface 
it it1;
typedef it1.intP intP;

User-defined type names must be used for complex data types in casting (see section 3.7, below), and as
parameters.

3.6 Enumerations

An enumerated type has one of a set of named values.

enum {red, yellow, green} light1, light2; // ‘anonymous’ type

The values can be cast to integer types, and increment from an initial value of 0. This can be over-ridden.

enum {bronze=3, silver, gold} medal; // silver=4, gold=5

A sized constant can be used to set the size of the type. All sizes must be the same.

[BNF excerpt to be inserted after BNF is approved]
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enum {bronze=4’h3, silver, gold} medal4; // 4 bits wide

A type name can be given so that the same type can be used in many places.

typedef  enum {NO, YES} boolean; 
boolean myvar; // named type

The type is checked in assignments, arguments and relational operators (which check the values). Like C, there
is no overloading of literals, so medal and medal4 cannot be defined in the same scope, since they contain
the same names. 

3.7 Structures and Unions

Structure and union declarations follow the C syntax, but without the optional structure tags before the ‘{‘. 

struct { bit[7:0] opcode; bit [23:0] addr; }IR; // anonymous structure defines 
variable IR

IR.opcode = 1; // set field in IR.

Named structure types must always use typedef, as there is no equivalent of the C struct adjective, such as
‘struct instruction IR;’. Some additional examples of declaring structure and unions are: 

typedef  struct { 
bit[7:0] opcode; 
bit [23:0] addr; 

} instruction; // named structure type
instruction IR; // define variable

typedef  union { int i; shortreal f; } num; // named union type
num n;

n.f = 0.0; //  set n in floating point format

typedef  struct { 
bit isfloat; 
union { int i; shortreal f; } n; // anonymous union

} tagged; // named structure
tagged a[9:0]; // array of them

A structure can be assigned as a whole, and passed to or from a function or task as a whole. Note that it is inef-
ficient to copy large structures. A structure can contain arrays, but a union cannot contain an array of variable
size. 

Section 2.8 discusses assigning initial values to a structure.

3.8 Casting

A data type may be changed by using a cast ( ’ ) operation.

int’(2.0 * 3.0)

A decimal number as a data type means a number of bits.

17’( x - 2)

The signedness can also be changed.
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signed’ (x)

A user-defined type can be used.

mytype’(foo)

A complex data type cannot be used. It must be defined with a typedef.

When a shortreal is converted to an int, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 bits, its bit pattern is preserved, which means it can be con-
verted back to the same value without any loss of information. This technique can also be used for structures,
where the $bits attribute gives the size of a structure in bits:

typedef bit [$bits (tagged) - 1 : 0] tagbits; // tagged defined above
tagbits t = tagbits'(a[3]); // convert structure to array of bits
a[4] = tagged't; // convert array of bits back to structure

Note that the bit data type loses X values. If these are to be preserved, the logic type should be used instead.

The size of a union in bits is the size of its largest member. The size of a logic in bits is 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed, $unsigned can also be
used.
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Section 4
Arrays

4.1 Introduction (informative) 

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are logic vectors, they can be
assigned as a single unit, but not if they are arrays. Verilog 2001 allows multiple dimensions.

In Verilog-2001, all data types can be declared as arrays. The reg, wire and all other net types can also have a
vector width declared. A dimension declared before the object name is referred to as the “vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] r1 [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

Dense arrays of small data types such as bits can be stored packed (8 bits to a byte) or unpacked (1 bit to a
word). This choice affects the efficiency of operations such as addition of bit vectors or selection of individual
bits, and is similar to the Verilog-2001 notions of vectored and scalared. Assignments and arithmetic oper-
ations are allowed for packed arrays but not for unpacked. The vectored and scalared modifiers shall
behave as defined in the IEEE Verilog standard. They may be used by software implementations to optimize
performance. 

Packed arrays can only be made of the single bit types: bit, logic, reg, wire, and the other net types. The
dimensions are written to the left of the variable for a packed array, and to the right for an unpacked array.

bit [7:0] c1; // packed array 
bit u [7:0]; // unpacked array 

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array may be limited, but shall be at least
65536 (216) bits.

Integer types with predefined widths cannot have packed array dimensions declared. . These types are: char,
byte, shortint, int, longint, and integer. An integer type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to 0,
such that the right-most index is 0. 

byte c2; // same as bit [7:0] c2; 
integer i1; // same as logic signed [31:0] i1; 

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size, where access must be by index.
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bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)

can be used as follows:

joe[9] = joe[8]  + 1; // 4 byte add
joe[7][3:2] = joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0] in the preceding example)
vary more rapidly than the dimensions following the name ([1:10] in the preceding example). When used,
the first dimensions ([3:0]) follow the second dimensions ([1:10]).

In a list of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] foo1 [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays

bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with typedef:

typedef  bit [1:5] bsix; 
bsix [1:10] foo5; // 1 to 5 varies most rapidly

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones:

bit [9:0] foo6; 
foo5 = foo1[2]; // a 10 bit quantity.

As in Verilog-2001, a comma-separated list of array declarations can be made. All arrays in the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared 

If an index expression is of type logic vector, and the array is of type logic vector, an X in the index expression
will cause a read to return X and a write to issue a run-time warning. If an index expression is of type logic
vector, but the array is not of type logic, an X in the index expression will generate a run-time warning and be
treated as 0. If an index expression is out of bounds, a run-time warning may be generated. This check can be
turned off for efficiency.

Out of range index values shall be illegal for both reading from and writing to an array of 2-state variables,
such as int. The result of an out of range index value is indeterminate. Implementations shall generate a warn-
ing if an out of range index occurs for a read or write operation. 

4.4 Part selects (Slices)

An expression can select part of a packed array, or indeed any integer type, which is assumed to be numbered
down to 0:

int j = 0;
shortint msh = j[31:16];

The size of the part must be constant, but the position may be variable. The syntax of Verilog 2001 is used:
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int i = bitvec[j +: k]; // k must be constant.
a = {(b[c -: d]), e}; // d must be constant

Slices (part selects) of an array can only apply to one dimension, but other dimensions may have single index
values in an expression. 
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Section 5
Data Declarations

5.1 Introduction (informative) 

There are several forms of data in SystemVerilog: macros (see section 17), literals (see section 2), parameters
(see section 14), constants, variables, nets, attributes (see section 15)

C constants are either literals, macros or enumerations. There is also a const, keyword but it is not enforced
in C.

Verilog 2001 constants are literals, parameters, localparams, specparams or macros. Verilog 2001 also has
variables and nets. Variables must be written by procedural statements and nets must be written by continuous
assignments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001. 

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to a task , function or named block and de-allocated on exit). C has the keywords static
and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows static to override a default of automatic for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

Syntax 5-3—Data declaration syntax

[BNF excerpt to be inserted after BNF is approved]
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5.3 Constants

Constants are named data items which never change. SystemVerilog allows any data type to be declared as
constant, with the const keyword.

const  char  colon = ":" ;

A constant expression contains literals and other named constants.

SystemVerilog enhancements to parameter constant declarations are presented in section 14. SystemVerilog
does not change localparam and specparam constants declarations. 

5.4 Variables

A variable declaration consists of a data type followed by one or more instances.

shortint  s1, s2[0:9];

A variable can be declared with an initializer, which must be a constant expression:

int i = 0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after simulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur
before any initial or always blocks are started and so does not generate an event. If an event is needed, an
initial block should be used to assign the initial values.

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time). 

SystemVerilog data declared inside a module or interface but outside a task, process or function is local in
scope and static in lifetime (exists for the lifetime of the module or interface). This is roughly equivalent to C
static data declared outside a function, which is local to a file.

Data declared in an automatic task, function or block has the lifetime of the call or activation and a local scope.
This is roughly equivalent to a C automatic variable. Data declared in a dynamic process is also automatic.

Data declared in a static task, function or block defaults to a static lifetime and a local scope. If an initializer is
used the keyword static must be specified to make the code clearer. 

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to access it.

Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
as automatic. Data declared as automatic has the lifetime of the call or block, and is initialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-
matic task, function or in a process has a static lifetime but a scope local to the block. This is like C static data
declared within a function.
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module msl;
int st0; // static
initial begin

int st1; //static
static int st2; //static 
automatic int auto1; //automatic

end
task automatic t1();

int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic

endtask
endmodule

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 11 on tasks and functions.

5.6 Net declarations

Syntax 5-4—Net declaration syntax

5.7 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through module ports.

[BNF excerpt to be inserted after BNF is approved]

Editor Note: need to add description of what is different from Verilog-2001. If nothing, then remove.
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The resultant value of multiple drivers is determined by the resolution function of the net type. The value can
be overridden by a force statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment is implied.

A register can only be written by one or more procedural statements, including procedural (quasi-) continuous
assignments. The last write determines the value. The force statement overrides the assign statement which
overrides the normal assignments. A register cannot be written through a port.

A logic variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. It is an error to have a continuous assignment and a
procedural assignment write to the same logic variable, even through ports. The assign statement overrides
normal procedural assignments to a logic variable, until deassigned. A logic variable can be written through
a port. 

Note the difference between a net declaration with assignment and a variable initialization:

wire w = vara & varb; // continuous assignment
reg r = consta & constb; // initial assignment
logic v = consta & constb; // initial assignment
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Section 6
Attributes

6.1 Introduction (informative) 

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. The SystemVerilog extends the attribute syntax to support interfaces. The SystemVerilog also
defines a default data type for attributes.

6.2 Attribute syntax for interfaces

 

Syntax 6-5—Interface attribute syntax

An example of defining an attribute for an interface declaration is:

(* interface_att = 10 *) interface bus1.... endinterface

The default type of an attribute with no value is bit, with a value of 1. Otherwise, the attribute takes the type of
the expression.

[BNF excerpt to be inserted after BNF is approved]

Open issue from meeting 12: Peter to add syntax for attributes with modports.
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Section 7
Operators and Expressions

7.1 Introduction (informative) 

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operands is fixed, and hence the operator is of a fixed type and size. This allows efficient code gen-
eration. 

SystemVerilog includes the C assignment operators, such as +=, and the C incrementor and decrementor oper-
ators, ++ and --.

Verilog 2001 added signed nets and registers, and signed based literals. There is a difference in the rules for
combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001 rules.

The fixed type and size of operators is preserved in SystemVerilog. 

In Verilog-2001, the size is the maximum of the operands and the context, with unsigned winning whether it is
bigger or not. This is likely to give unexpected behavior — adding a carry bit can make a signed result
unsigned. An example of this in Verilog is:

parameter p1 = -10 + ‘h1; // this is unsigned
wire [63:0] w1 = p1;
wire [31:0] w2 = p1;
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7.2 Operator syntax

Syntax 7-6—Operator syntax

7.3 Assignment, incrementor and decrementor operations 

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=. 

In SystemVerilog, an expression can include a blocking assignment, provided it does not have a timing control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=b for a!=b. Assignment operators may only be used with blocking assignments.

if ((a=b)) b = (a+=1);

[BNF excerpt to be inserted after BNF is approved]
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a = (b = (c = 5));

SystemVerilog also includes the C incrementor and decrementor operators ++i, --i, i++, and i-- (provided
there is no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments. 

7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type logic, the result is of type logic.
Similarly if one is of type int and the other of type integer, the result is of type integer.

The operators != and == return an X if either operand contains an X or a Z, as in Verilog-2001. This is con-
verted to a 0 if the result is converted to type bit, e.g. in an ‘if’. The operators !== and === match Xs and Zs
exactly.

The expression bit’( 1’bX ? 1’b0 : 1’b1 ) returns 0 not 1 because the X on the selector produces
an X on the ternary operator output, which is converted to 0 by the cast to bit.

The operators || and && provide ‘short-circuit’ evaluation as follows:

a( ) || b ( ); // b is not evaluated if a returns 1.
a( ) && b( ); // b is not evaluated if a returns 0;

Note that b is evaluated if a returns X.

To avoid short-circuit evaluation use a bitwise operator

a( ) != 0 | b( ) != 0; // b is always evaluated

The unary reduction operators (& ~& | ~| ^ ~^) can be applied to any packed type, including multi-dimen-
sional packed arrays. The operators shall return a single value of type logic if the packed type is four valued,
and of type bit if the packed type is two valued. 

int i;
bit b = &i;
integer j;
logic c = &j;

7.5 Real operators

Real and shortreal operands are allowed with the following unary operators (the increment is by 1.0):

+ - ++ -- !

Real and shortreal operands are allowed with the following binary and ternary operators:

+ - * /
> >= < <=
&& ||
== !=
?:

If any operand is real, the result is real, except before the ? in the ternary operator. If no operand is real
and any operand is shortreal, the result is shortreal.

Real operands can also be used in the following expressions:
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str.realval // structure or union member
realarray[intval] // array element

7.6 Size

The number of bits of an expression is determined by the operands and the context, as in Verilog-2001. In Sys-
temVerilog, casting can be used to set the context of an intermediate value.

A tool may warn when the left and right hand sides of an assignment are different sizes. These warnings can be
prevented by using casts.

7.7 Sign

The following unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations. 

7.8 Operator precedence and associativity 

Operator precedence and associativity is listed in table 7-2, below. The highest precedence is listed first.:

Note that & is higher precedence than ^ , following the Verilog standard.

Table 7-2—Operator precedence and associativity

()  []  -> . left

Unary ! ~ ++ -- + - & ~& && | ~| || ^ ~^ right 

** left

* / % left

+ - left

<< >> <<< >>> left

< <= > >= left

== != === !== left

& left

^  ~^ left

| left

&& left

|| left

?: right

=  +=  -=  *=  /=  %=  &=  ^=  |= <<= >>= <<<= >>>= none

{,} concatenation
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7.9 Concatenation

Braces ( { } ) are used to show concatenation, as in Verilog-2001. The concatenation is treated as a packed
vector of bits (or logic if any operand is of type logic). It can be used on the left hand side of an assignment or
in an expression:

logic log1, log2, log3;
{log1, log2, log3} = 3’b111;
{log1, log2, log3} = {1’b1, 1’b1, 1’b1}; // same effect as 3’b111

The following examples may give warning of size mismatch:

bit [1:0] packedbits = {1,1}; // right hand side is 64 bits
int i = {1’b1, 1’b1}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

bit unpackedbits [1:0] = {1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1’b1,1’b1}; //no size warning, int can be set to 1’b1

Multiple concatenation can be used for initializers as well e.g. {3{1}} for {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .
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Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative) 

Procedural statements are introduced by one of:

initial // do this statement once

always, always_comb, always_latch, always_ff // loop forever (see section 10 on processes)

task // do these statements whenever the task is called

function // do these statements whenever the function is called and return a value

SystemVerilog has the following types of control flow within a process

— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are in initial or always blocks, tasks or functions. 

Verilog-2001 includes most of the statement types of C, except for do...while, break, continue and
goto. Verilog-2001 has the repeat statement which C does not, and the disable. 

The use of the Verilog-2001 disable to carry out the functionality of break and continue requires the user to
invent block names, and introduces the opportunity for error. SystemVerilog adds C-like break and con-
tinue functionality, which do not require the use of block names. 

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds C-
like do...while loop for this capability.

Syntax 8-7—Statement syntax

[BNF excerpt to be inserted after BNF is approved]
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8.2 Blocking and nonblocking assignments

Syntax 8-8—Blocking and nonblocking assignment syntax

The following assignments are allowed in both Verilog-2001 and SystemVerilog: 

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;
@c r = a;
r = @c a;
r <= @c a;

SystemVerilog also allows a time unit to specified in the assignment statement, as follows:

#1ns r = a;
r = #1ns a;
r <= #1ns a;

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the left-
hand side is smaller than the right hand side, and information may be lost, a warning is given. Nonblocking
assignments to automatic variables are not allowed.

[BNF excerpt to be inserted after BNF is approved]
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8.3 Selection statements 

Syntax 8-9—Selection statement syntax

if (condition) statement // as Verilog or C
if (condition) statement else statement 

The condition is evaluated as a Boolean so that 0 or X or null or void or {} are false and any other values are
true.
SystemVerilog adds the keywords unique and priority, which can be used before an if. In the case of an
else...if the unique indicates that the conditions do not overlap. If either keyword is used it is a run-time
warning for no condition to match unless there is an explicit else. For example: 

unique if((a==0) || (a==1)) $display(" 0 or 1");
else if (a == 2) $display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) $display(" 0 or 1");
else if (a[2] == 0) $display("2 or 3");
else $display(" 4 to 7");

In the case of the unique if, there is no overlap in the conditions, allowing the expressions to be evaluated in
parallel. With the priority if, if the variable ‘a’ in the preceding example had a value of 0, it would satisfy
both the first and second conditions, requiring priority logic.

In Verilog-2001, there are three types of case statement, introduced by case, casez and casex. 

With SystemVerilog, each of these may be qualified by priority or unique. A priority case acts on the
first match only. A unique case guarantees no overlapping case values, allowing the case items to be evalu-
ated in parallel.   If the case is qualified as priority or unique, the simulator issues a warning message if an
unexpected case value is found. The user does not need to code a default case to trap unexpected case val-
ues.

For example

bit[2:0] a;
unique case(a) // values 3,5,6,7 will cause a run-time warning

0,1: $display(" 0 or 1 ");
2: $display("2");
4: $display("4");

endcase 

[BNF excerpt to be inserted after BNF is approved]
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priority casez(a)
2’b00?: $display(" 0 or 1 ");
2’b0??: $display(" 2 or 3 ");
default: $display(" 4 to 7");

endcase 

The unique and priority keywords shall determine the simulation behavior. It is recommended that synthe-
sis follow simulation behavior where possible. Attributes may also be used to determine synthesis behavior. 

8.4 Transition statements 

The transition statement is used in state machine modeling, and discussed in section 9 on state machines. 

8.5 Loops statements 

Syntax 8-10—Loop statement syntax

Verilog-2001 provides for, while, repeat and forever loops. SystemVerilog adds a do...while loop: 

do statement while(condition) // as C

The condition can be any expression which can be treated as a Boolean. It is evaluated after the statement. 

8.6 Jump statements 

Syntax 8-11—Jump statement syntax

SystemVerilog adds the C jump statements break, continue and return.

break // out of loop as C
continue // skip to end of loop as C

[BNF excerpt to be inserted after BNF is approved]

[BNF excerpt to be inserted after BNF is approved]
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return expression // exit from a function
return // exit from a task or void function

Note that SystemVerilog does not include the C goto statement.

8.7 Named blocks and statement labels

Syntax 8-12—Blocks and labels syntax

Verilog-2001 allows a begin...end or fork...join statement block to be named. A named block is used to
identify the entire statement block. A named block creates a new hierarchy scope. The block name is specified
after the begin or fork keyword, preceded by a colon. For example: 

begin : blockA // Verilog-2001 named block
...

end 

SystemVerilog allows a matching block name to be specified after the block end or join keyword, preceded
by a colon. This can help document which end or join is associated with which begin or fork when there
are nested blocks. A name at the end of the block is not required. It is an error if the name at the end is differ-
ent.

begin: blockB // block name after the begin or fork
...

end: blockB

SystemVerilog allows a label to be specified before any statement, as in C. A statement label is used to identify
a single statement. A statement label does not create a hierarchy scope. The label name is specified before the
statement, followed by a colon. 

labelA: statement

A begin...end or fork...join block is considered a statement, and can have a statement label before the
block. This is not the same as a block name, however, because it does not create a hierarchy scope.

labelB: fork // label before the begin or fork
...

join : labelB

A label at the end of the block is not required. It is an error if the label at the end is different.

It shall be illegal to have both a label before a begin or fork and a block name after the begin or fork. A
label cannot appear before the end or join, as these keywords do not form a statement.

[BNF excerpt to be inserted after BNF is approved]
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8.8 Processes

Each initial and always block is a process. Each branch of a fork within such a block is also a process.
These are static processes and they can be explicitly named with a statement label as shown above.

A new (dynamic) process can be created by the process keyword. This forks off a statement without waiting
for completion:

process statement

See Section 10 for more information about processes.

8.9 Disable

SystemVerilog has break and continue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue a loop, but is more awkward than using
break or continue. The disable is also allowed to disable a named block, which does not contain the dis-
able statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block is a loop body, it acts like a continue. If the block is not currently executing, the
disable has no effect. The disable, break and continue statements shall not affect any nonblocking
assignments which have been started. 

It shall be illegal to disable a function because the return value would be uncertain. However a function may
disable its calling block.

SystemVerilog has return from a task, but disable is also supported. If disable is applied to a named task,
all current executions of the task are disabled. 

module ...
always always1: begin ... t1: task1( ); ... end
...
endmodule 

always begin
...
disable  u1.always1.t1; // exit task1, which was called from always1 

(static)
end 
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8.10 Delay and event control

Syntax 8-13—Delay and event control syntax

SystemVerilog has #time or #(time_expression) as a delay control, like Verilog-2001.

SystemVerilog adds the following enhancement:

module latch (output logic [31:0] y, input [31:0] a, input enable);
  always @(a iff enable == 1)
    y <= a;  //latch is in transparent mode
endmodule

The event expression only triggers if the expression after the iff is true, in this case when rst ==0. Note that
such an expression is evaluated when clk changes not when rst changes. Also note that iff has precedence
over or. This can be made clearer by the use of parentheses.

If a variable or net is not of type logic, posedge and negedge refer to transitions from 0 and to 0 respec-
tively. If the variable or net is a dense array or structure, it is zero if all elements are 0. 

Any change in a variable or net can be detected using the @ event control, as in Verilog-2001. For more clarity,
SystemVerilog also allows the event control to explicitly state any change, using the changed keyword:

@(myvar) // triggers on any change to myvar 

@(changed myvar) // triggers on any change to myvar 

If the expression evaluates to a result of more than one bit, a change on any of the bits of the result (including
an x to z change) will trigger the event control. The @(changed expression) differs from @(expression) in
that the changed keyword explicitly defines that the event control only triggers on a change of the result of the
expression. In certain types of expressions, @(expression) may trigger on changes to operands of the expres-
sion that do not affect the result. SystemVerilog allows assignment expressions to be used in an event control,
e.g. @((a = b + c)). The event control is only sensitive to changes in the result of the expression on the
right-hand side of the assignment. It is not sensitive to changes on the left-hand side expression.

[BNF excerpt to be inserted after BNF is approved]
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Section 9
State Machines

9.1 Introduction (informative) 

Control logic, whether for a data path or an interface, is often specified as a Finite State Machine (FSM). Often
this specification is in the form of a ‘bubble’ diagram, where circles represent states and arcs represent transi-
tions. An alternative convention is to have vertical lines representing states and horizontal lines representing
transitions. State machine capture tools often add hierarchy and concurrency to the basic FSM model.

Transitions are usually annotated with an input condition, for a synchronous FSM, or event, for an asynchro-
nous one. In addition, an FSM may be active, i.e. it sets outputs. These outputs may be combinational func-
tions of inputs (Mealy model) or just depend on the state (Moore model). These names have also been applied
to procedural operations associated with a transition (Mealy) or a state (Moore).

To avoid timing hazards, inputs should not change at the same time as state. For an asynchronous FSM this
normally means that input events should arrive well separated. For a synchronous FSM it means that other
inputs should not change at the same time as the clock. Where two machines communicate, this in turn means
that the outputs should not change until the inputs of both machines have been read. Nonblocking assignments
are often used for this. Alternatively, delays can be put in the communication paths.

Verilog-2001 has no specific support for state machines. There are three modeling styles which are often used:
case statements, named events, and implicit. 

SystemVerilog adds several constructs specific to modeling state machines. These include named states and
transitions, with dedicated syntax to distinguish them, and a semantics such that each statement is executed in
a state or transition which can be determined by static analysis. The state is accessible to combinational logic. 

The benefits of the SystemVerilog FSM constructs are readability for the user, including hierarchy and concur-
rency, ease of analysis for tools, and a better trade-off between debug and performance. The style should also
support the software implementation of a state machine without any timing and without the overhead of extra
events.

9.2 State machine constructs

The SystemVerilog state machine definition adds a new declaration type and two new statement types. The
states are declared like an enumeration with a timing control. Note that S is used to represent both currentState
and nextState:

state {S0, S1, S2} S @(posedge clock);

SystemVerilog provides a transition statement, which can be used in a procedural block, such as an
always_comb block. As well as the state declaration, SystemVerilog uses the transition statement in pro-
cedural code The transition statement contains the individual state transitions shown by ->> :

transition (S) 
S0: if (serial == 1) ->>S2;
S2: if (serial == 0) ->> S1; else ->> S0;
S1: ->> S0;

endtransition 

A complete example, referred to as the Wang and Edsall 2 example, is shown below. This Mealy style FSM has

Editor’s note: Per meeting 14, the keyword “state” needs to be changed to something else. It is a commonly used 
name in existing models.
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three states, a single input, and a single output. Its state structure is:

 

Figure 9-1—Simple state machine example

The three examples that follow illustrate some ways the state declaration and transitions can be used. 

The following code illustrates how this state machine can be modeled using SystemVerilog. In this example
the reset is synchronous, because the time control on the state declaration specifies transitions occur on the
clock edge. 

// SystemVerilog version of Wang & Edsall example, synchronous reset 
module FSM1(output found_101, input serial, input clk, input reset);

state {S0, S1, S2} S @(posedge clk);
always_comb begin

found_101 = 0;
if (reset) ->> S.S0;
else transition (S) 

S0: if (serial == 1) ->> S2;
S2: if (serial == 0) ->> S1; else ->> S0;
S1: ->> S0 if (serial == 1) found_101 = 1;

endtransition
end 

endmodule 

Note that the timing control in the example above can include a test for a condition, e.g. @(posedge clock
iff !reset), showing that states change on the rising edge of the clock only if reset is 0. 

The following example, the transition is instantaneous, because there is no timing control with the state decla-

2 T-H. Wang, T. Edsall “Practical FSM Analysis for Verilog”, Proceedings, IVC 98, pp. 52-58. 

S0

S2

S1

1
1

0

0

0 1 found_101 = 1

Editor’s note: poor usage of iff, as discussed in meeting 14.
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ration. Instead, the timing control is specified on the always procedure, with an asynchronous reset. 

// SystemVerilog version of Wang & Edsall example, asynchronous reset 
module FSM2(output logic found_101, input serial, input clock, input reset);

state {S0, S1, S2} S; // transition is instantaneous
always @(posedge clock or posedge reset) begin // asynchronous reset

if (reset) ->> S.S0; 
else transition (S) 

S0: if (serial == 1) ->> S2;
S2: if (serial == 0) ->> S1; else ->> S0;
S1: ->> S0;

endtransition 
end 
always_comb 

if (S.S1 && serial == 1) found_101 = 1;
else found_101 = 0;

endmodule 

In the next example, the transition is nonblocking, with a delay. The reset is asynchronous.  

// SystemVerilog version of Wang & Edsall example, delayed transition
module FSM3(output logic found_101, input serial, input clock, input reset);

state {S0, S1, S2} S #1ns; // transition is nonblocking with delay
always @(posedge clock or posedge reset) begin // asynchronous reset

if (reset) ->> S.S0;
else transition (S) 

S0: if (serial == 1) ->> S2;
S2: if (serial == 0) ->> S1; else ->> S0;
S1: ->> S0;

endtransition 
end 
always_comb 

if (S.S1 && serial == 1) found_101 = 1;
else found_101 = 0;

endmodule 

9.3 State declarations

A SystemVerilog state declaration is syntactically based on an enumerated type:

Syntax 9-14—State declaration syntax

[BNF excerpt to be inserted after BNF is approved]
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Each state name shall be unique to the state declaration, so that if there are several state machines, the state
names can overlap. Each state name can be preceded by a list of sub-states to represent a hierarchical state
machine. The optional control expression is used to modify the nonblocking assignment to the state variable as
described below.

The initial state is the first state listed. This is because the syntax <state variable> ‘=’ <initial state> would be
anomalous, since state variables cannot be assigned. 

The state variable can be read as a string. for display purposes:

$display (“ state = %s”, S);

The semantics differs both from an enumerated type and from a structure. Firstly the state name is not a con-
stant but can be read as a variable that has a bit value which is 1 if the machine is in that state and a 0 if not, so
it can be tested in conditions e.g. if(S.S2 || S.S0).   

Secondly the state variable cannot be assigned directly, but change to a new state is marked by a ->> operator.
This updates the state machine to the new state as if an assignment were used. The optional timing control
makes this assignment nonblocking with the specified delay. If more than one assignment is applied to happen
at the same simulation time, the last one wins (there may be a race). This operator makes it easy to distinguish
state changes from other assignments.

9.4 Transition statements

Syntax 9-15—State transition statement syntax

Each change of state shall be written as a transition_to_state. This can be unconditional, in which case the
machine must be specified, or it can be in a transition statement, which also allows the transition to be named.
Thus, each arc of the state diagram (represented by ->>) can be labeled (e.g. S0_S2) as well as each node, as
shown in the modified version of the Wang & Edsall example:

// SystemVerilog version of Wang & Edsall example with named transitions 

Editor’s note: Per meetings 12-15, there are several open issues:
- Need a method of specifying the state values. Syntax proposed is: state {S1=3’b001, S2=3’b010, S3=3’b100} S;
- Need to provide ability to do bit selects of state value, in order to model 1-hot encoding and such
- Need to describe and provide examples of synchronous and asynchronous resets

[BNF excerpt to be inserted after BNF is approved]

[need to add default statement]
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module FSM5(output logic found_101, input serial, input clock, input reset);
state {S0, S1, S2} S @ (posedge clock);

always_comb begin 
found_101 = 0;
if (reset) ->> S.S0;
else transition (S) 

S0:if (serial == 1) S0_S2 ->>S2;
S2:if (serial == 0) S2_S1 ->> S1; else S2_S0 ->> S0;
S1: S1_S0 ->> S0 if (serial == 1) found_101 = 1;

endtransition 
end 

endmodule 

The optional transition name is conceptually rather like an event name, but it differs in that it is not declared
and must be unique in the state machine. A transition name may be used in an event expression elsewhere in
the module e.g. @S0_S2. The timing of such a transition is the same as the event that triggered it e.g.
@(posedge clk).

The state conditions are compared with the state variable, like the case conditions in a case statement. During
execution, if the transition statement does not have a state matching the current state a run time warning
occurs. If more than one state condition is specified, or the default keyword is used, the following transition
cannot be given a name because there is more than one transition implied. The unconditional transition -
>>A.B is an abbreviation for transition(A) default: ->>B; endtransition.

Transition names and entry and exit of states can be used like other event expressions to trigger other always
blocks or for timing checks. The transition is written with the state machine name e.g. 

@S.S0_S2. 

The change to a state can be written: 

@(posedge S.S1) 

and the change from a state can be written: 

@(negedge S.S1) 

Similarly any state change can be written: 

@(S) 

These state change event expressions trigger after the state has changed, i.e. later than the execution of the
transition statement.

A simulator can check that the first transition to be executed is unconditional or contains a default, to model
reset from an unreachable or unknown state.

The following example illustrates using fork and join with transitions on implicit named events, so that all
transitions must have fired, in any order, to continue past the join. 

initial begin 
  fork 
    @S.S0_S2;
    @S.S2_S1;
    @S.S2_S0;
  join 
end 
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The state of state variables can be randomly initialized using an initial block with transitions determined by a
random number. 

9.5 Hierarchical and concurrent state machines

For large state machines it is convenient to structure the state space into states and sub-states.   The states can 
be or-states which are comma separated, or and-states, e.g.

state {STA, {s1, s2, s3} STB, {{s4, s5, s6} c1 and {s7, s8} c2} STC} hsm1 @ 
clock;

This example can be illustrated as follows:

 

Figure 9-2—Hierarchical state machine 

Only one of a set of or states can be active at any time. But all and states are active or inactive simultaneously.
Therefore, s4 and s7 can be active together.

Transitions are allowed from any state to any state, from any sub-state to any other state, and from one sub-
state to another in the same state:

STA:->> STB;
s1:if(input1) ->> STC; else  ->> s2;

Other transitions to sub-states are not allowed. When a state contains or sub-states, entering the state implies
entering the first sub-state. So ->> STB enters s1 as well. The truth value of the state name is the logical or of
the truth values of the sub-states. 

When a state contains and sub-states, entering the state implies entering all the sub-states, as shown by the two
arrows in STC.

Two sub-states within and states can share a transition:

s5 and s7:T2 ->> s6 and s8;

The following example illustrates a more complex state machine of a two-player Reflex game3, with reset

[ Peter to fax to Stu a replacement diagram to for the new example, below ]
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logic and transition statements within a begin...end block. 

// SystemVerilog description of two-player Reflex game. Note that this is
// an abstract model with events for input and enumeration for output

module REFLEX ( input  event ready, stop, go, coin,
                output enum {blue, yellow, red, green, flashing} light) ;

  event timer;

  always #10 ->timer;

  state {
    game_off,
    {
      {wait_ready, wait_go, wait_stop, done} player1 and
      {idle, waiting} player2
    } game_on
  } game;

  always begin: normal

    // Either player may assert coin to start the game, status light turns blue
    @(coin) transition (game) game_off: ->> game_on light = blue; endtransition

    // When player 1 presses ready, the status light turns yellow
    @(ready) transition (game)
      wait_ready and idle: start->> wait_go and waiting light = yellow;
    endtransition

    // When player 2 presses go the status light turns green
    fork : fork1
      @(go) disable fork1;
      repeat (‘L) @timer disable fork1; // if player 2 does not press go in time
      @(stop) begin // stop before go
        transition (game)
          wait_go: ->> game_off light = flashing;
        endtransition
        disable normal;
      end
    join
    transition (game)
      wait_go and waiting: end2->> wait_stop and idle light = green;
    endtransition

    // Player 1 presses stop within L time units
    fork : fork2
      begin @(stop) transition (game)
        wait_stop: ->> game_off light = red;
      endtransition disable fork2; end
      begin repeat (‘L) @(timer) transition (game)
        wait_stop: ->> game_off light = flashing;
      endtransition disable fork2; end
    join

3 “Hierarchical Finite State Machines with Multiple Concurrency Models”, Alain Girault, Bilung Lee, Edward A Lee, IEEE Transactions 
on Computer Aided Design, Vol 18, No 6, June 1999, pp. 742. 
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  end: normal

  always @light $display("%t %s", $realtime, light);

endmodule
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Section 10
Processes

10.1 Introduction (informative) 

Verilog-2001 has always and initial blocks which define static processes.

Verilog-2001 has a continuous assignment to describe combinational logic. However, it is missing a case
statement for multiplexers and there is no name for the driving value if the wire has multiple drivers. 

In an always block which is used to model combinational logic, forgetting an else leads to an unintended latch.
To avoid this mistake, SystemVerilog adds specialized always_comb and always_latch blocks are pro-
vided, which indicate the design intent to synthesis and formal verification tools.  These blocks treat functions
calls as part of the block, and therefore the sensitivity list and restrictions are extended into the functions
called.  Note that this does not apply to tasks. 

In systems modeling, one of the key limitations of Verilog (and VHDL) is the inability to create and delete pro-
cesses dynamically, as happens in an operating system. Verilog has the fork .. join construct, but this still
imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes
introduced by process.

SystemVerilog creates a thread of execution for each initial or always block, for each parallel statement in
a fork/join block, and for each dynamic process. Each continuous assignment may also be considered its
own thread. Execution of each thread is uninterrupted until encountering a blocking statement; @event, #delay,
or wait(expr). 

When dynamic processes are created, there must be an identification system for subsequently deleting them.
This is like the process id in Unix. The process identifier is also used to refer to variables within that process.

10.2 Static process labels

In SystemVerilog, users can name static processes by labeling the outermost statement. 

module processes1;
int b;
always 
a: begin 

#10ns b = 0; 
#10ns b = 1; 

end 
endmodule 

Within a parallel block such as fork ... join, each statement is a different process, and different from the outer
block. In the following example, a, b, c are different processes:

always 
a: fork 

b:task1(); 
c:task2();

join 

Editor’s Note: Per meeting 13, begin...end and fork...join must allow interleaving with other processes in order to be 
backward compatible with Verilog-2001. Peter is to define a new autonomous block construct that does not allow 
interleaving.
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10.3 Level sensitive logic

SystemVerilog provides a special always_comb procedure for modeling combinational logic behavior. For
example:

always_comb 
a =  b & c;

always_comb 
d <= #1ns b & c;

The always_comb procedure provides functionality that is different than a normal always procedure:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have 
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always_comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs 
on a signal in the inferred sensitivity list.

— always_comb is sensitive to changes within the contents of a function, whereas always @* is only sensi-
tive to changes to the arguments of a function.

— Variables on the left-hand side of assignments within an always_comb procedure may not be written to by 
any other processes, whereas always @* permits multiple processes to write to the same variable.

Software tools may perform additional checks to warn if the behavior within an always_comb procedure does
not represent combinational logic, such as if latched behavior may be inferred.

10.4 Latch sensitive logic

SystemVerilog also provides a special always_latch procedure for modeling latched logic behavior. For
example:

always_latch  
if(ck) q <= d;

The always_latch procedure differs from a normal always procedure in the following ways:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have 
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checks to warn if the behavior within an always_latch procedure
does not represent latched logic.

10.5 Edge sensitive logic

The SystemVerilog always_ff procedure can be used to model synthesizable sequential logic behavior. For
example:
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always_ff @(posedge clock iff reset == 0 or posedge reset) begin
r1 <= reset ? 0 : r2 + 1;
...

end 

The always_ff block imposes the restriction that only one event control is allowed. Software tools may per-
form additional checks to warn if the behavior within an always_ff procedure does not represent sequential
logic.

10.6 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables. In SystemVerilog, continuous
assignments can drive nets, logic variables, and any other type of variables, except reg variables. Nets can
be driven by multiple continuous assignments, or a mixture of primitives and continuous assignments. logic
variables and other data types can only be driven by one continuous assignment or one primitive output. It
shall be an error for a variable driven by a continuous assignment or primitive output to have an initializer in
the declaration or any procedural assignment.

10.7 Dynamic processes

The SystemVerilog dynamic process adds capability that behaves like a fork without a join. A dynamic pro-
cess is started as a separate thread, and execution of the current procedure or task continues while the process
is executing. The process does not block the flow of execution of statements within the procedure or task.
Dynamic processes allow the creation of multi-threaded processes, as opposed to multiple procedures, which
are static parallel processes. 

A dynamic process can be created by the process keyword, which is used as follows:

process statement

SystemVerilog 3.0 does not provide a mechanism to disable a process once it has been started. 

For example, the following task initiates an endless loop and returns immediately to the caller: 

task monitorBus(input int data);
process forever @strobe $display("data %h", data);

endtask 

The following example illustrates using a dynamic process to model a pipeline. 

// pipeline module 

module p(input clk, flush, input int x_in, y_in, z_in);
  parameter int latency = 6, throughput = 2;
  int z_out;
  int processes = 0;
  
  always begin 
    while (!flush) begin 
      process begin 
        int v2, v3, v4, v5; // lifetime matches process
        processes++;
        v2 = x_in + y_in;
        v3 = x_in - z_in;
        v4 = v2 * v3;
        v5 = v4 * x_in;
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        repeat(latency) @ (posedge clk);
        z_out <= v5;
        processes--;
      end
      repeat(throughput) @(posedge clk);
    end 
    wait(processes == 0); //wait for flush
  end 
endmodule 

In the preceeding example, the while loop contains a delay of two clock cycles, from the repeat statement,
and this determines the pipeline throughput. Each iteration spawns a process which lasts six clock cycles, the
latency of the pipeline. The variable processes keeps a count of the number of currently active processes.
The pipeline flush is not complete until this count has fallen to zero.
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Section 11
Tasks and Functions

11.1 Introduction (informative) 

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for all calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statements in a task or function without requiring a begin...end or fork...join block

— Returning from a task or function before reaching the end of the task or function

11.2 Tasks

Syntax 11-16—Task syntax

A Verilog task declaration either has the formal arguments in parentheses (like ANSI C) or in declarations and
directions: 

task mytask1( output int x, input string y);
...

endtask

[BNF excerpt to be inserted after BNF is approved]
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task mytask2;
output x;
input y;
int x;
string y;
...

endtask

Each formal argument has one of the following directions:

input  // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

task mytask3(a, b, output logic [15:0] u, v);
...

endtask

Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog-2001. SystemVerilog allows
packed arrays to be specified as formal arguments to a task, for example: 

task mytask4(input [3:0][7:0] a, b, output [3:0][7:0] y);
...

endtask

Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by allowing specific formal arguments and local
variables to be declared as automatic within a static task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin .... end can be omitted. If begin .... end is omitted, statements are executed sequen-
tially, the same as if they were enclosed in a begin .... end group.

The optional return statement can be used to exit the task before the endtask keyword.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 4  (3/8/02)

Copyright 2001 Accellera. All rights reserved. 45
This is an unapproved Accellera Standards Draft, subject to change.

11.3 Functions

Syntax 11-17—Function syntax

A Verilog function declaration either has the formal arguments in parentheses (like ANSI C) or in declarations
and directions: 

function logic [15:0] myfunc1(int x, int y);
...

endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
...

endfunction

SystemVerilog extends Verilog functions to allow the formal arguments to be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

input  // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

Function declarations default to the formal direction input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3(int a, int b, output logic [15:0] u, v);
...

endfunction

Each formal argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog-2001. SystemVerilog allows
packed arrays to be specified as formal arguments to a function, for example: 

function [3:0][7:0] myfunc4(input [3:0][7:0] a, b);

[BNF excerpt to be inserted after BNF is approved]
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...
endfunction

In Verilog, functions must return values. SystemVerilog allows functions to be declared as type void, which
does not have a return value. A value can be returned by assigning the function name to a value, as in Verilog,
or by using return with a value. The return statement overrides any value assigned to the function name.
When the return statement is used, non-void functions must specify an expression with the return. 

myfunc1 = 16’hbeef; //return value is assigned to function name 

return 16’hbeef; //return value is specified using return statement 

In SystemVerilog a hierarchical name used inside the function and beginning with the function name is inter-
preted as a member of the return value, assuming that the return value is a structure or union.  If the function
name is used outside the function, the function name indicates the scope of the whole function.  If the function
name is used within a hierarchical name it also indicates the scope of the whole function.

Function calls are expressions unless of type void, which are statements:

a = b + myfunc1(c, d);
myprint(a);

function void myprint (int a); 
...

endfunction 

With SystemVerilog,, a non-void function call can also be used as a statement, but this may result in a warning
message.
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Section 12
Hierarchy

12.1 Introduction (informative) 

Verilog-2001 has a simple organization. All data, functions and tasks are in modules except for system tasks
and functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of
other modules. Any uninstantiated module is at the top level. This does not apply to libraries, which therefore
have a different status and a different procedure for analyzing them. A hierarchical name can be used to spec-
ify any named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a
lot of effort is spent in maintaining port lists.

In Verilog-2001, only net, reg, integer and time data types can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries

— Relaxed rules on port declarations

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 13)

An important enlacement in SystemVerilog is the ability to pass any data type through module ports, including
nets, all variable types including reals, arrays, and structures.

12.2 The $root top level 

In SystemVerilog there is a top level called $root, which is the whole source text. This allows declarations
outside any named modules or interfaces, unlike Verilog-2001.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration
and the order of elaboration must be defined. 

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared before it is used in text order.

If there is no explicit top level instantiation, then all uninstantiated modules become implicitly instantiated
within the top level. This is compatible with Verilog-2001.

The following paragraphs compare the $root top level and modules. 

The $root top level:

— has a single occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

— task and function definitions are in a global name space and can be accessed throughout the hierarchy

— may not contain initial or always procedures

Editor’s note: Open issue from meetings 11 and 12: Should where globals are declared be constrained?
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— may contain procedural statements, which will be executed one time, as if in an initial procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order 

— variable and net definitions are in the module instance name space and are local to that scope

— task and function definitions are in the module instance name space and are local to that scope

— may contain any number of initial and always procedures

— may not contain procedural statements that are not within an initial procedure, always procedure, task, or 
function

12.3 Module declarations

Syntax 12-18—Module declaration syntax

Note that a module declaration may appear after its use in the text:

module m1(...); ... endmodule

Editor’s note: Peter to provide a practical example of using $root (per meetings 12 & 13).

[BNF excerpt to be inserted after BNF is approved]
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module m2(...); ... endmodule

module m3(...); 

m1 i1(...); // instantiates the local m1 declared below
m2 i4(...); // instantiates m2 - no local declaration
module m1(...); ... endmodule

endmodule 

m1 i2(...); // instantiates the first m1

12.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope. 

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

// This example shows a D-type flip-flop made of NAND gates
module dff_flat(input d, ck, pr, clr, output q, nq);
wire q1, nq1, q2, nq2;

    nand g1b (nq1, d, clr, q1);
    nand g1a (q1, ck, nq2, nq1);

    nand g2b (nq2, ck, clr, q2);
    nand g2a (q2, nq1, pr, nq2);

    nand g3a (q, nq2, clr, nq);
    nand g3b (nq, q1, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.
module dff_nested(input d, ck, pr, clr, output q, nq);
wire q1, nq1, nq2;

    module ff1;
        nand g1b (nq1, d, clr, q1);
        nand g1a (q1, ck, nq2, nq1);
    endmodule 
    ff1 i1;

    module ff2;
        wire q2; // This wire can be encapsulated in ff2
        nand g2b (nq2, ck, clr, q2);
        nand g2a (q2, nq1, pr, nq2);
    endmodule 
    ff2 i2;

    module ff3;
        nand g3a (q, nq2, clr, nq);
        nand g3b (nq, q1, pr, q);
    endmodule 
    ff3 i3;
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endmodule 

The nested module declarations can also be used to create a library of modules that is local to part of a design. 

module part1(....);
module and2(input a; input b; output z);
....
endmodule 
module or2(input a; input b; output z);
....
endmodule 
....
and2 u1(....), u2(....), u3(....);
.....

endmodule 

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

12.5 Port declarations

Editor’s note: Open issue from meeting 11: Need to discuss if an extern module declaration should be added. Per 
meeting 13, Kevin is to write a proposal.

[BNF excerpt to be inserted after BNF is approved]
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Syntax 12-19—Port declaration syntax

A port can be a declaration of a wire, an interface, an event, or a variable. 

module mh1 (input wire w0, output wire w1);
assign w1 = w0;

endmodule 

If no direction is specified the port type defaults to an interface. If a direction is specified the port type defaults
to a wire.

A port may also have its own name specified, and an expression of nets or variables. Such a port name does not
share the name space with the other module items. Names in the expression must be declared later, or be nets
or variables within interfaces instantiated in the module.

module mh (input .in(w[0]), output .out(w[1]));
wire [1:0] w;
always_comb w[1] = w[0];

endmodule 

Note that the direction provides an optional check against writing to an input or not writing to an output. If no
type or direction is given to a port, it inherits them from the last specified type and direction. 

module mh3 (input char a, b);
...
endmodule 

If there is no previous type or direction specified in the port list, then the ports are treated as port expressions
and the types must be declared later (as in Verilog-2001).

module mh4( x, y);
int x;
char y;

endmodule 

12.6 Port types and directions

The default type of a port is a net, and nets can have multiple drivers which are resolved according to the reso-
lution function. A driver can be an output port of an instantiation, or a continuous assignment.

If the port is of type logic or any other data type, it is a variable, which has the value of the last assignment to
it. If the port is an inout, then these assignments can be inside or outside the module. If the port is an output,
they can only be inside the module. This is the way to model a port which meant to be a single driver. 

12.7 Time unit and precision

The time unit can be set by the timeunit keyword to a time which must be a power of 10 units e.g.

timeunit 100ps;

The time unit is determined by: 

1) If a timeunit has been specified in the current module, then the time unit is set to module’s time units.

2) Else, if the module definition is nested, then the time unit is inherited from the enclosing module.
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3) Else, if a ‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has a time unit, then the time unit set to the time units of the root module.

5) Else, the simulator’s default time units are used.

The simulator’s default time units follow the rules of the IEEE Verilog standard.

The time precision is set by the timeprecision keyword to a time which must be a power of 10 units e.g.

timeprecision 100fs;

If the timeprecision is not specified, then the precision is determined following the same precedence as
with time units. 

It is an error to set a precision larger than the current unit.

12.8 Module instances

Syntax 12-20—Module instance syntax

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one
declared later. Actual parameters and port connections can be named or ordered. They can be nets, variables,
or other kinds of interfaces, events, or expressions. See below for the connection rules.

12.9 Port connection rules

If a port declaration has a variable data type such as logic, then its direction controls how it can be connected,
as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the initial 
value corresponding to the data type

[BNF excerpt to be inserted after BNF is approved]

Editor’s note: Open issue from meeting 11: Cliff to propose a .* inherited port connection syntax, like Intel’s IHDL.
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— An output can be connected to a variable (or a concatenation) of a compatible data type, and has shared 
variable behavior if multiple outputs are connected (last write wins); An output logic can be connected 
to a net (to provide a resolution function in the case of multiple drivers)

— An inout can be connected to a variable (or a concatenation) of the same data type

If a port declaration has a wire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the value 
’z

— An output can be connected to a wire (or a concatenation) or left unconnected, but NOT to a logic vari-
able

— An inout can be connected to a wire (or a concatenation) or left unconnected, but NOT to a logic vari-
able

Note that where the data types differ between the port declaration and connection, an initial value change event
may be caused at time zero.

If a port declaration has a generic interface type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows: 

— If the port is a net vector, then the Verilog connection rules for nets are followed.

— If the port is an inout port variable, then a port connection must have the same size and representation on 
both sides of the port. It shall be an error if there is a mismatch.

— If the port is an input or an output variable, then the Verilog assignment rules are followed.

12.10 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
name.

Types include modules, interfaces, and data types. Instances include tasks, functions, procedures, variables,
constants and labels as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $root is the name of the top level of the hierarchy.

Names are initially global. A new scope is defined by:

— a module or interface

— a task or function

— a sequential or parallel block

— a structure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
Again the declaration in the closest enclosing scope is matched.

Editor’s note: Peter to provide clarification of type name space versus instance name spaces (per meeting 12).
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12.11 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by dots, where
an instance name may be an array element.

$root.mymodule.u1 // absolute name
u1.struct1.field1  // u1 must be visible locally or above, includes global.
adder1[5].sum

Nested identifiers can be read (in expressions), written (in assignments or task calls) or triggered off (in event
expressions). They can also be used as type, task or function names. See section 13 on interfaces.
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Section 13
Interfaces

13.1 Introduction (informative) 

The communication between blocks of a digital system is a critical area that can affect everything from hard-
ware-software partitioning to performance analysis to bus implementation choices and protocol checking. The
interface construct in SystemVerilog was created specifically to encapsulate the communication between
blocks, allowing a smooth migration from abstract system-level design through successive refinement down to
lower-level register-transfer and structural views of the design. By encapsulating the communication between
blocks, the interface construct also facilitates design re-use. The inclusion of such a useful language feature is
one of the major advantages of SystemVerilog.

At its lowest level, an interface is a named bundle of nets or variables.  The interface is instantiated in a design
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names.  The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability. 

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template.  An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
at all.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modport construct is provided.  As the name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. initial or always blocks)
and continuous assignments, which are useful for system-level modelling and test bench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can also be built into the interface. 

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific.  A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modelled by forkjoin tasks, which can be defined in more than one module and executed concurrently.

Changes to this section are per e-mails from Cliff Cummings (12/16/01) and Tom Fitzpatrick (02/01/02)
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13.2 Interface syntax 

The interface construct provides a new hierarchical structure.  It can contain smaller interfaces and can be
passed through ports.

An interface is declared as follows:

interface <identifier>; <interface_items> endinterface [: <name>] 

An interface can be instantiated hierarchically like a module with or without ports.  For example:

myinterface #(100) scalar1, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, as is illustrated in the examples below.

13.2.1 Example without using interfaces 

This example shows a simple bus implemented without interfaces.  Note that the logic type can replace wire
and reg if no resolution of multiple drivers is needed.

module memMod( input bit req,
bit clk,
bit start,
logic[1:0] mode,
logic[7:0] addr,

inout logic[7:0] data,
output bit gnt,

bit rdy );
logic avail;

[BNF excerpt to be inserted after BNF is approved]
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...
endmodule 

module cpuMod(
input bit clk,

bit gnt,
bit rdy,

inout logic [7:0] data,
output bit req,

bit start,
logic[7:0] addr,
logic[1:0] mode );

...
endmodule 

module top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;
logic [1:0] mode;
logic [7:0] addr, data;

memMod mem(req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode);

endmodule 

13.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets.  When an interface
is used as a port, the variables and nets in it are assumed to be inout ports.  The following interface example
shows the basic syntax for defining, instantiating and connecting an interface.  Usage of the SystemVerilog
interface capability can significantly reduce the amount of code required to model port connections.

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a, // Use the simple_bus interface
              input bit clk);

logic avail;
// a.req is the req signal in the ’simple_bus’ interface
always @(posedge clk) a.gnt <= a.req & avail;

endmodule 

module cpuMod(simple_bus b, input bit clk);
...

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf; // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance
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cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name

endmodule 

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in
the memMod and cpuMod module headers, then implicit port declarations also could have been used to instan-
tiate the memMod and cpuMod modules into the top module, as shown below: 

module memMod (simple_bus sb_intf, input bit clk);
...

endmodule

module cpuMod (simple_bus sb_intf, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf;

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections

endmodule

13.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface is referred to as a "generic" inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion: 

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);

...
endmodule 

module cpuMod(interface b, input bit clk);
...

endmodule 

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

endinterface: simple_bus

module top;
logic clk = 0;

simple_bus sb_intf; // Instantiate the interface

Editor’s note: The following paragraph and example is per Cliff’s e-mail of 12/16/01, and is pending approval of the 
.* implicit port connection syntax.
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// Connect the sb_intf instance of the simple_bus
// interface to the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule 

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below:

module memMod (interface a, input bit clk);
... 

endmodule

module cpuMod (interface b, input bit clk);
... 

endmodule

module top;
logic clk = 0;

simple_bus sb_intf;

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections

endmodule

13.3 Ports in interfaces 

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wire d;

endinterface 

The wires a, b and c can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

endinterface: simple_bus

Editor’s note: The following paragraph and example is per Cliff’s e-mail of 12/16/01, and is pending approval of the 
.* implicit port connection syntax.
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module memMod(simple_bus a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’simple_bus’ interface

endmodule 

module cpuMod(simple_bus b);
...

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf1(clk); // Instantiate the interface
simple_bus sb_intf2(clk); // Instantiate the interface

memMod mem1(.a(sb_intf1)); // Connect bus 1 to memory 1
cpuMod cpu1(.b(sb_intf1));
memMod mem2(.a(sb_intf2)); // Connect bus 2 to memory 2
cpuMod cpu2(.b(sb_intf2));

endmodule 

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

13.4 Modports 

To bundle module ports there are modport lists with directions declared within the interface.  The keyword
modport indicates that the directions are declared as if inside the module.

interface i2;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface 

The modport list name (master or slave) can be specified in the module header, where the modport name acts
as a direction and the interface name as a type:

module m  (i2.master i);
...

endmodule 

module s  (i2.slave i);
...

endmodule 

module top;
i2 i;

m u1(.i(i));
s u2(.i(i));

endmodule 

Editor’s note: The following paragraph is per Cliff’s e-mail of 12/16/01, and is pending approval of the .* implicit 
port connection syntax.
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The modport list name (master or slave) can also be specified in the port connection with the module instance,
where the modport name is hierarchical from the interface instance:

module m (i2 i);
...

endmodule 

module s (i2 i);
...

endmodule 

module top;
i2 i;

m u1(.i(i.master));
s u2(.i(i.master));

endmodule 

The syntax of interface_name.modport_name instance_name is really a hierarchical type fol-
lowed by an instance.  Note that this can be generalized to any interface with a given modport name by writ-
ing interface.modport_name instance_name.

In a hierarchical interface, the directions in a modport declaration can themselves be modport plus name:

interface i1;
interface i3;

wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface 
i3 ch1, ch2;
modport master2 (ch1.master, ch2.master);

endinterface 

Note that if no modport is specified in the module header or in the port connection, then all the wires and vari-
ables in the interface are accessible with direction inout, as in the examples above.

13.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod (simple_bus.slave a); // interface name and modport name
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logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule 

module cpuMod (simple_bus.master b);
...

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

  memMod mem(.a(sb_intf)); // Connect the interface to the module instance
  cpuMod cpu(.b(sb_intf));

endmodule 

13.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions.  It uses the modport name in
the module instantiation.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule 

module cpuMod(simple_bus b);
...

endmodule 

module top;
logic clk = 0;

  simple_bus sb_intf(clk); // Instantiate the interface
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initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule 

13.4.3 An example of connecting a port bundle to a generic interface 

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instanti-
ation.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule 

module cpuMod(interface b);
...

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule 

13.5 Tasks and Functions in Interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
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these tasks are declared as import tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern in the interface, or as export in a modport.  

Tasks (not functions) may be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU.  Such multiple task definitions are allowed by a forkjoin extern declaration in the interface.

13.5.1 An example of using tasks in an interface 

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask: masterRead

task slaveRead; // slaveRead method
// ...

endtask: slaveRead

endinterface: simple_bus

module memMod(interface a); // Uses any interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)
a.slaveRead;

endmodule 

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
...

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave);  // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

endmodule 
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13.5.2 An example of using tasks in modports 

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite()); 
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[7:0] raddr),

 task masterWrite(input logic[7:0] waddr));
// import requires the full task prototype

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask 

task slaveRead; // slaveRead method
// ...

endtask 

task masterWrite(input logic[7:0] waddr);
//...

endtask 

task slaveWrite;
//...

endtask 

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else 

a.slaveWrite;
endmodule 

module cpuMod(interface b);
enum {read, write} instr = $rand();
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logic [7:0] raddr = $rand();

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...
else 

b.masterWrite(raddr);

endmodule 

module omniMod(interface b);
//...

endmodule: omniMod

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave);  // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task
omniMod omni(sb_intf); // has access to all master and slave tasks 

endmodule 

13.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another using modports to
control task access.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write()); 
           // export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
           // import requires the full task prototype

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.Read; // Read method
avail = 0;
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...
avail = 1;

endtask 

task a.Write;
avail = 0;
...
avail = 1;

endtask 

endmodule 

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
...

else 
b.Write(raddr);

endmodule 

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave);  // exports the Read and Write tasks
cpuMod cpu(sb_intf.master); // imports the Read and Write tasks

endmodule 

13.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name.  However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
So that these can still export their read and write tasks, the tasks must be declared in the interface using the
extern forkjoin keywords.  Normally only one module responds to the task call, e.g. the one containing
the appropriate address.  Only then should the task write to the result variables. Note multiple export of func-
tions is not allowed because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin.  The multiple task export mechanism can also be used to count the instances of a particu-
lar modport that are connected to each interface instance.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode; 
logic start, rdy;
int slaves;
// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves( );
extern forkjoin task Read(input logic[7:0] raddr);
extern forkjoin task Write(input logic[7:0] waddr);
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modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write()); 
// export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
// import requires the full task prototype

initial begin 
slaves = 0;
countSlaves;
$display ("number of slaves = %d", slaves);

end 

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.countSlaves;
a.slaves++;

endtask 

task a.Read; // Read method
avail = 0;
...
avail = 1;

endtask 

task a.Write;
avail = 0;
...
avail = 1;

endtask 

endmodule 

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
// ...

else 
b.Write(raddr);

endmodule 

module top;
logic clk = 0;
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simple_bus sb_intf(clk); // Instantiate the interface

memMod mem1(sb_intf.slave); //exports the countSlaves, Read and Write tasks
memMod mem2(sb_intf.slave); //exports the countSlaves, Read and Write tasks
cpuMod cpu(sb_intf.master); //imports the Read and Write tasks

endmodule 

13.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-
ule definitions. This example shows how to use parameters in interface definitions. 

interface simple_bus #(parameter AWIDTH = 8, DWIDTH = 8;)
                      (input bit clk); // Define the interface

logic req, gnt;
logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode; 
logic start, rdy;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite()); 
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[AWIDTH-1:0] raddr),

 task masterWrite(input logic[AWIDTH-1:0] waddr));
// import requires the full task prototype

task masterRead(input logic[AWIDTH-1:0] raddr); // masterRead method
...

endtask 

task slaveRead; // slaveRead method
...

endtask 

task masterWrite(input logic[AWIDTH-1:0] waddr);
...

endtask 

task slaveWrite;
...

endtask 

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

always @(posedge b.clk) // the clk signal from the interface
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a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else 
a.slaveWrite;

endmodule 

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...

else 
b.masterWrite(raddr);

endmodule 

module top;

logic clk = 0;

simple_bus sb_intf(clk); // Instantiate default interface
simple_bus #(.DWIDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave);  // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

memMod memW(wide_intf.slave); // 16-bit wide memory
cpuMod cpuW(wide_intf.master); // 16-bit wide cpu

endmodule 

13.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to access internal state information about the interface, then these methods may be called from different points
in the design to share information.

This example is equivalent to the SystemC example of “portless channel access”.

/*
This example is equivalent to the SystemC example of "portless channel access"
*/
interface intf_mutex;

task lock ();
...

endtask 

function unlock();
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...
endfunction 

endinterface 

function int f(input int i);
return(i); // just returns arg

endfunction 

function int g(input int i);
return(i); // just returns arg

endfunction 

module mod1(input int in, output int out);

intf_mutex mutex;

always begin 
#10 mutex.lock();
@(in) out = f(in);
mutex.unlock;

end 

always begin 
#10 mutex.lock();
@(in) out = g(in);
mutex.unlock;

end 
endmodule
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Section 14
Parameters

14.1 Introduction (informative) 

Verilog-2001 has parameters, which are typically used either for controlling the dimensions of arrays, or for
controlling delays. The parameter values can be set in three ways. They must be given a default value when
declared. This can be overridden by the instantiation of the module, and this in turn can be overridden by a
defparam statement. The latter can have a hierarchical name so that it does not need to be in the same module
as the instantiation. 

SystemVerilog extends the Verilog parameter to include type. This provides polymorphism for modules and
interfaces.

14.2 Syntax

Syntax 14-21—Parameter declaration syntax

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type logic of arbitrary size for Verilog-2001 compatibility and interoperability. 

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

module ma #( parameter p1 = 1; parameter type p2 = shortint; )
(input logic [p1:0] i, output logic [p1:0] o);

p2 j = 0; // type of j is set by a parameter, which is shortint unless 
redefined 

always @(i) begin 
o = i; 
j++; 

end 
endmodule 

module mb;

[BNF excerpt to be inserted after BNF is approved]
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logic [3:0] i,o;
ma  #(.p1(3), .p2(int)) u1(i,o); //redefines p2 to a type of int 

endmodule 
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Section 15
Configuration libraries 

15.1 Introduction (informative) 

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

15.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

15.3 Library map files 

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. The mapping information can be specified in the $root top level. 
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Section 16
System tasks and system functions 

16.1 Introduction (informative) 

SystemVerilog adds a system function to determine the bit size of a value.

16.2 The $bits system function

The $bits system function returns the number of bits required to hold a value. A 4 state value counts as one bit,
so $bits on an integer returns 32.
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Section 17
Compiler Directives

17.1 Introduction (informative) 

Verilog-2001 provides the ‘define text substitution macro compiler directive. A macro can contain argu-
ments, whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)

‘NAND(3) i1 (y, a, b); //‘NAND(3) macro substitutes with: nand #(3)

‘NAND(3:4:5) i2 (o, c, d); //‘NAND(3:4:5) macro substitutes with: nand 
#(3:4:5)

SystemVerilog enhances the capabilities of the ‘define compiler directive to support strings as macro argu-
ments

17.2 ‘define macros 

The ‘define macro text can include a backslash ( \ ) at the end of a line to show continuation on the next line. 

The macro text can also include an isolated quote, which must be preceded by a back tick, `". This allows
macro arguments to be included in strings. If the strings are to contain \", the macro text should be written
`\`". Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, ``, to allow identifiers to be constructed from arguments,
e.g.

‘define foo(f) f‘‘_suffix

Note that there must be no space before the parenthesis otherwise it is treated as macro text. This expands

foo(bar)

to

bar_suffix

The ‘include directive can be followed by a macro instead of a literal string:

‘define f1 "/home/foo/myfile"
‘include ‘f1
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Section 18
Assertions

Editor’s note: This section is currently in a separate document, and will be added once approved.
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Section 19
Recommended items for deprecation

Editor’s note: Cliff is to provide a list of recommended constructs to be deprecated.



Accellera
SystemVerilog 3.0/draft 4  (3/8/02) Extensions to Verilog-2001

80 Copyright 2001 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 4  (3/8/02)

Copyright 2001 Accellera. All rights reserved. 81
This is an unapproved Accellera Standards Draft, subject to change.

Annex A

Formal Syntax 

(Normative) 

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are: 

— Keywords and punctuation are in bold text.

— Syntactic categories are named in non-bold text. 

— Italics do not form part of the category, so type_identifier has the same syntax as identifier 

— A vertical bar ( | ) separates alternatives.

— Square brackets ( [ ] ) enclose optional items.

— Braces ( { } ) enclose items which may be repeated zero or more times.

A.1 Source text 

source_text ::= [unit] [precision] {declaration_or_statement}

declaration_or_statement ::= 
library_declaration

| include_statement
| config_declaration
| module_declaration 
| interface_declaration
| task_declaration
| function_declaration
| udp_declaration
| module_instantiation
| interface_instantiation
| event_declaration
| net_declaration
| data_declaration
| statement

library_declaration ::=
library library_identifier file_path_spec ; 

include_statement ::=
include file_path_spec ; 

config_declaration ::=
config config_identifier ; design_statement

{config_rule_statement} endconfig 

design_statement ::=
design {[library_identifier].cell_identifier}

Editor’s note: The following BNF is a subset of the IEEE 1364 Verilog-2001 BNF, and reflects what is different 
between SystemVerilog and Verilog-2001. A complete BNF is being created, and will replace this section once 
approved.
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config_rule_statement ::=
default liblist_clause

| cell_clause liblist_clause
| cell_clause use_clause
| inst_clause liblist_clause
| inst_clause use_clause

cell_clause ::= cell library_identifier . cell_identifier

inst_clause ::= instance name

liblist_clause::= liblist {library_identifier}

use_clause ::= use [library_identifier.] cell_identifier 

module_declaration ::= 
module_keyword identifier [parameter_port_list] 

[( port_list )] ; [unit] [precision]
{module_item} endmodule 

| module_keyword identifier [parameter_port_list] 
[( port_decls )] ; [unit] [precision]
{non_port_module_item} endmodule 

module_keyword ::= module | macromodule 

port_list ::= port { , port }                                 

port ::=
port_expression

| . identifier ( [port_expression] ) 

port_decls ::= port_declaration { , port_declaration } 

port_declaration ::=
attribute_instance port_declaration

| direction] [port_type] variables
| interface variables
| interface . identifier variables
| identifier variables
| identifier . identifier variables
| direction . identifier ( port_expression ) 

direction ::= input | output | inout 

port_type ::=
data_type {const_range}

| net_type [signing] { packed_dimension }
| event 

port_expression::=
indexed_identifier 

| { indexed_identifier { , indexed_identifier } } 

module_item ::=
io_declaration

| non_port_module_item

non_port_module_item ::= 
attribute_instance non_port_module_item

| module_or_generate_item
| module_declaration 
| interface_declaration
| parameter_declaration
| specparam_declaration
| specify_block
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module_or_generate_item ::= 
event_declaration

| module_instantiation
| primitive_instantiation
| interface_or_generate_item
| generated_instantiation

interface_declaration ::= 
interface identifier [parameter_port_list] ; [ ( port_list ) ] ; [unit][precision]

{ interface_item }
endinterface [: identifier]

| interface identifier [parameter_port_list] ; 
[ ( port_decls ) ] ; [unit][precision]
{ non_port_interface_item } 

endinterface [: identifier]

interface_item ::=
io_declaration

| non_port_interface_item

non_port_interface_item ::= 
attribute_instance non_port_interface_item

| interface_declaration
| parameter_declaration
| specparam_declaration
| interface_or_generate_item
| generated_instantiation

interface_or_generate_item::=
event_declaration

| net_declaration
| interface_instantiation
| data_declaration 
| task_declaration
| function_declaration
| modport_declaration
| initial_statement
| always_statement
| continuous_assign

parameter_port_list ::= 
# ( parameter_declaration {parameter_declaration} ) 

unit ::= [ timeunit [time_literal] ; ] 

precision ::= [ timeprecision [time_literal] ; ]

modport_declaration ::= modport modport_item{, modport_item} ; 

modport_item ::= identifier ( modport_port{, modport_port} ) 

modport_port ::= 
[direction] [port_type] identifier

| identifier . identifier

A.2 Data, Event and Net declarations

parameter_declaration ::= 
parameter [data_type] initial_assignments ; 

| parameter [signing] {packed_dimension} initial_assignments ; 
| parameter type type_assignments ; 
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specparam_declaration ::= 
param [data_type] initial_assignments ; 

| param [signing] {packed_dimension} initial_assignments ; 

param ::= localparam | specparam 

net_declaration ::= 
net_type [strength] [vector_or_scalar] [signing] {packed_dimension}

[delay_values] vars_or_assigns ; 

event_declaration ::= event variables ; 

net_type ::= wire | wand | wor | supply0 | supply1 | tri | tri0 | tri1 | triand | trior | trireg 

strength ::=
( strength0 , strength1 ) 

| ( strength1, strength0 ) 
| ( charge_strength ) 

strength0 ::= supply0 | strong0 | pull0 | weak0 | highz0 

strength1 ::= supply1 | strong1 | pull1 | weak1 | highz1 

charge_strength ::= large | medium | small 

vector_or_scalar ::= vectored | scalared 

delay_values ::= 
# delay_value

| # ( delay_value [, delay_value [, delay_value]] ) 

initial_assignments ::= initial_assignment { , initial_assignment }

initial_assignment ::= identifier = expression

type_assignments ::= type_assignment { , type_assignment }

type_assignment ::= identifier = data_type

data_declaration ::= 
variable_declaration

| constant_declaration
| type_declaration
| state_declaration

variable_declaration::= [ lifetime ] data_type vars_or_assigns ; 

lifetime ::= static | automatic 

constant_declaration::= const data_type  initial_assignments ; 

type_declaration ::= 
typedef data_type variable ; 

| typedef identifier {[constant_expression]} . type_identifier variable ; 

state_declaration::= state { state_list } identifier [ delay_or_event ] ; 

state_list ::= and_states | or_states

and_states ::= state and state { and state }

or_states ::= state , state { , state }

state ::= [ { state_list } ] identifier

vars_or_assigns ::= var_or_assign { , var_or_assign }

var_or_assign ::=  variable [ = constant_expression ]

variables ::= variable { , variable }

variable ::= identifier { unpacked_dimension }

unpacked_dimension ::= packed_dimension

simple_type ::= integer_type | non_integer_type | type_identifier



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 4  (3/8/02)

Copyright 2001 Accellera. All rights reserved. 85
This is an unapproved Accellera Standards Draft, subject to change.

A.3 Tasks and Functions

task_declaration ::=
task [automatic] tf_name ; 

{ task_item_declaration } { statement } 
endtask [: identifier]

| task [automatic] tf_name ( task_formals ) ; 
{ data_declaration } { statement } 

endtask [: identifier]

task_item_declaration ::=
direction [ data_type ] variables ; 

| data_declaration

task_formals ::=  [ task_formal {, task_formal } ]

task_formal ::= 
[port] [direction] [data_type] variable

| port event variable

task_prototype ::= task ( [ task_proto_formal {, task_proto_formal} ) 

named_task_proto ::= task identifier ( [ task_proto_formal {, task_proto_formal} ) 

task_proto_formal ::=
[port] direction data_type [variable]

| port event variable

function_declaration ::=
function [automatic] data_type tf_name ; 

{fn_item_declaration} 
{ statement }

endfunction [: identifier : ]
| function [automatic] data_type tf_name ( fn_formals ) ; 

{data_declaration} 
{ statement }

endfunction [: identifier : ] 

fn_item_declaration ::= 
[direction] [ data_type ] variables ; 

| data_declaration

tf_name ::= identifier [ . identifier ]

fn_formals ::= [ fn_formal { , fn_formal } ]

fn_formal ::= [direction] [data_type] variable

fn_prototype ::= function data_type ( fn_proto_formals ) 

named_fn_proto::= function data_typeidentifier ( fn_proto_formals ) 

fn_proto_formals ::= [ fn_proto_formal { , fn_proto_formal } ]

fn_proto_formal ::=
[direction] data_type [variable] 

| variable

A.4 Data Types

data_type ::= 
integer_type [signing] {packed_dimension}

| type_identifier} {packed_dimension}
| non_integer_type



Accellera
SystemVerilog 3.0/draft 4  (3/8/02) Extensions to Verilog-2001

86 Copyright 2001 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

| struct { { struct_union_member } } 
| union { { struct_union_member } } 
| enum { enum_member } 
| void 

integer_type ::= bit | logic | reg | byte | char | shortint | int | longint | integer 

non_integer_type ::= time | shortreal | real | $built-in

signing ::= [ signed ] | [ unsigned ] 

packed_dimension ::= [ constant_expression : constant_expression ] 

struct_union_member ::= data_type variables ; 

enum_member ::= 
identifier

| identifier = constant_expression

A.5 Instantiations

generated_instantiation ::= generate {generate_item} endgenerate 

generate_item_or_null ::= generate_item | ; 

generate_item ::=
generate_conditional_statement

| generate_case_statement
| generate_loop_statement
| generate_block
| module_or_generate_item /* if in module */ 

| interface_or_generate_item /* if in interface */

generate_conditional_statement ::=
if’ ( constant_expression ) generate_item_or_null
[ else generate_item_or_null ]

generate_case_statement ::=
case ( constant_expression ) 

generate_case_item {generate_case_item}
endcase 

generate_case_item ::=
constant_expression {, constant_expression : generate_item_or_null

generate_loop_statement ::= 
for ( genvar_decl_or_assign ; expression ; genvar_expr_or_assign ) 

generate_named_block

genvar_decl_or_assign ::= [genvar] identifier = constant_expression

genvar_expr_or_assign ::= unary_expression | operator_assignment

generate_named_block ::=
begin : identifier {generate_item} end 

| identifier : generate_block

generate_block ::= begin [: identifier] {generate_item} end 

module_instantiation ::=
module_identifier [ parameter_values ] named_instance {, named_instance } ; 

interface_instantiation ::=
interface_identifier [ parameter_values ] named_instance {, named_instance } ; 

udp_instantiation ::=
identifier [strength] [delay_values] primitive_instance {; primitive_instance} ; 
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gate_instantiation ::=
gate [strength] [delay_values] primitive_instance {; primitive_instance} ; 

gate ::= 
and | nand | or | nor | xor | xnor | buf’ | not | bufif0 | bufif1 | notif0 | notif1 

| cmos | rcmos | nmos | rnmos | pmos | rpmos 
| tranif0 | rtranif0 | tranif1 | rtranif1 | tran | rtran 

parameter_values ::=
# ( expression {, expression } ) 

| # ( named_param_val { , named_param_val} ) 

named_param_val ::= . identifier ( expression ) 

named_instance ::= identifier {[ expression : expression ]} [ ( port_connections ) ] 

primitive_instance ::= [identifier] {[ expression : expression ]} [ ( port_connections ) ] 

port_connections ::=
[ expression ] { , [expression] } 

| named_port_connection { , named_port_connection }

named_port_connection ::= . identifier ( expression ) 

A.6 Procedural Statements

initial_statement ::= initial statement

always_statement ::= always statement

combinational_statement ::= always_comb statement

latch_statement ::= always_latch statement 

ff_statement ::= always_ff statement

statement_or_null ::= statement  | ; 

statement ::= 
blocking_assignment ; 

| non_blocking_assignment ; 
| selection 
| loop
| jump
| delay_control statement_or_null
| event_control statement_or_null
| wait ( expression ) statement_or_null
| process statement
| disable name ; 
| sequential_block
| parallel_block
| –> event_name ; 
| transition_to_state statement_or_null
| expression ; 
| proc_continuous_assign ; 
| identifier : statement

selection ::=
[ up ] if ( expression ) statement_or_null 
[ else statement_or_nulll ]

| [ up ] case ( expression ) case_item { case_item } endcase 
| transition ( name ) transition { transition } endtransition 

up ::= unique | priority 
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case ::= case | casez | casex 

loop ::=
forever statement

| repeat ( expression ) statement_or_null
| while ( expression ) statement_or_null
| for ( [declare_or_assign] ; [expression] ; [expression_or_assign] ) statement_or_null
| do statement while ( expression ) 

jump ::=
return [ expression ] ; 

| break ; 
| continue ; 

declare_or_assign ::= 
lvalue = expression

| data_type identifier = expression

declare_or_exp ::= 
unary_expression
| data_type identifier

blocking_assignment ::= 
operator_assignment

| lvalue = delay_or_event expression

operator_assignment ::= lvalue assignment_operator expression

assignment_operator ::= = | *= | /= | %= | += | – = | <<= | >>= | &= | ^= | |= 

non_blocking_assignment ::= lvalue <= [ delay_or_event ] expression

delay_or_event ::= 
delay_control

| [ repeat ( expression ) ] event_control

case_item ::=  
expression { , expression } : statement_or_null

| default [ : ] statement_or_null

transition ::= 
state_conditions : statement_or_null

| default [ : ] statement_or_null

state_conditions ::= state_condition { , state_condition }

state_condition ::= state_identifier { and state_identifier }

sequential_block ::= begin [ : identifier ] {statement} end [ : identifier]

parallel_block ::= fork [ : identifier ] {statement} join [ : identifier]

transition_to_state ::= 
–>> machine_name . state_identifier 

| –>> machine_name . ( state_condition ) 
| [transition_identifier] –>> state_condition

proc_continuous_assign ::=
assign name_or_names = expression

| deassign name
| force name_or_names = expression
| release name

A.7 Names

name_or_names ::= name | { name { , name } } 
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name ::= indexed_identifier { . indexed_identifier }

indexed_identifier ::= identifier [ [ constant_expression [ : constant_expression ] ] ]

A.8 Delay and Event Controls

delay_control ::= 
# number

| # name
| # ( expression ) 

event_control ::= 
@ name

| @ ( event_expressions ) 
| @* 

event_expressions ::= 
event_expression { or event_expression }
| event_expression { , event_expression }

event_expression ::= 
[ edge ] expression [ iff expression ]

| ( [ edge ] expression [ iff expression ] ) 

edge ::= posedge | negedge | changed 

A.9 Expressions

expression ::= 
unary_expression

| expression binary_operator expression
| expression ? expression : expression
| ( operator_assignment ) 

unary_expression ::= [unary_operator] lvalue

unary_operator ::= + | – | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~ | bump_operator

lvalue ::= postfix_expression

postfix_expression ::= 
primary [ bump_operator ]

| postfix_expression . identifier
| postfix_expression -> identifier
| postfix_expression [ expression ] 
| postfix_expression [ expression : expression ] 
| postfix_expression ( [ expression { , expression } ] ) 
| postfix_expression bump_operator

bump_operator ::= + + | – – 

binary_operator ::=
+ | – | * | / | % | == | != | === | !== | < | <= | > | >= | << | >> | <<< | >>> | && | || | & | | | ^ | ~^ | ^~ 

primary ::= 
identifier 

| literal
| data_type
| ( expression ) 
| { expression { , expression } } 
| { expression { expression } } 
| simple_type '( expression ) 
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| simple_type ’{ expression { , expression } } 
| simple_type ’{ expression { expression } } 

A.10 Literals

literal ::= 
string_literal

| number
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X 

string_literal::= " value " 

number ::= 
integer

| [integer] ’ base value
| real

base ::= ’b | ’d | ’h | ’o | ’sb | ’sd | ’sh | ’so 

time_literal ::= integer [ . integer ] time_unit

time_unit ::= s | ms | us | ns | ps | fs 
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Annex B

Keywords

SystemVerilog reserves the following keywords:

† keywords not in the Verilog-2001 standard

always
always_comb† 
always_ff†

always_latch†

and
assign
automatic
begin
bit†

break†

buf
bufif0
bufif1
byte†

case
casex
casez
cell
changed†

char†

class†

cmos
config
const†

continue†

deassign
default
defparam
design
disable
do†

else
end
endcase
endconfig
endfunction
endgenerate
endinterface†

endmodule
endprimitive

endspecify
endtable
endtask
endtransition†

enum†

event
for
force
forever
fork
function
generate
genvar
highz0
highz1
if
iff†

ifnone
incdir
include
initial
inout
input
instance
int†

integer
interface†

join
large
liblist
library
localparam
logic†

longint†

longreal†

macromodule
medium
modport†

module
nand

negedge
nmos
nor
noshowcancelled
not
notif0
notif1
or
output
parameter
pmos
posedge
primitive
process†

priority†

pull0
pull1
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
rcmos
real
realtime
reg
release
repeat
return
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
shortint†

shortreal†

showcancelled
signed
small
specify

specparam
state†

static†

strong0
strong1
struct†

supply0
supply1
table
task
time
timeprecision†

timeunit†

tran
tranif0
tranif1
transition†

tri
tri0
tri1
triand
trior
trireg
type†

typedef†

union†

unique†

unsigned
use
vectored
wait
wand
weak0
weak1
while
wire
wor
xnor
xor
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Annex C

Glossary

Editor’s note: Stu to provide a list of terms for the glossary. Peter to write the definitions of the terms.
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Annex D

Bibliography

Editor’s note: This annex to be completed before the final draft.


