
Proposal: Change the name of section 13 to:
Implicit Ports and Interfaces

Proposal: Changes to section 13.1 (highlighted):

The instantiation and communication between blocks of a digital system is a critical area that can affect
everything from ease of RTL coding, to hardware-software partitioning, to performance analysis, to bus
implementation choices and protocol checking. The .name and .* implicit port instantiation capabilities of
SystemVerilog greatly simplify the task of instantiating large logic blocks into a higher level model if the
port name matches the name of the connecting net. The interface construct in SystemVerilog was created
specifically to encapsulate the communication between blocks, allowing a smooth migration from abstract
system-level design through successive refinement down to lower-level register-transfer and structural
views of the design. By encapsulating the communication between blocks, the interface construct also
facilitates design re-use. The inclusion of such a useful language featureinterface capabilities is one of the
major advantages of SystemVerilog over Verilog-2001.

Proposal: Move the rest of section 13.1 to an interface-introduction section after a newly inserted section
13.2 to introduce and explain implicit port instantiation

Proposal: Insert a new section 13.2 to describe implicit port instantiations as shown below:
13.2 Implicit .name Port Instantiation Syntax

Proposal: Insert a new section 13.2 to describe implicit port instantiations as shown below:
13.2 Implicit .* Port Instantiation Syntax

Proposal: Change and show in section 13.2, the following BNF production (based on the Verilog-2001
BNF) for port_connections:

A.4.1 Module instantiation

module_instantiation ::=
 module_identifier [parameter_value_assignment]
 module_instance { , module_instance } ;
parameter_value_assignment ::= # (list_of_parameter_assignments)
list_of_parameter_assignments ::=
 ordered_parameter_assignment { , ordered_parameter_assignment }
 | named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression
named_parameter_assignment ::= .parameter_identifier ([expression])
module_instance ::= name_of_instance ([list_of_port_connections])
name_of_instance ::= module_instance_identifier [range]
list_of_port_connections ::=
 ordered_port_connection { , ordered_port_connection }
 | named_port_connection { , named_port_connection }
 | dot_port_connection { { , named_port_connection }{ , dot_port_connection } }
 | dot_star_connection { , named_port_connection }
ordered_port_connection ::= { attribute_instance } [expression]
named_port_connection ::= { attribute_instance } .port_identifier ([expression])
dot_port_connection ::= { attribute_instance } .port_identifier
dot_star_connection ::= { attribute_instance } .*

Probably needs to include named_interface connection and ordered_interface_connection

Proposed wording for the new section 13.1 Implicit Port Instantiation Syntax:

(NOTE: the example and much of the wording for this part of the proposal came straight from one of my
HDLCON-2002 papers - If there is a problem related to this material being published elsewhere, then we
need to scrap this example and text and come up with an independent example and description).

SystemVerilog introduces the capability of instantiating modules with highly abbreviated and efficient
implicit port connections. Implicit port connections are intended to facilitate the process of instantiating
large sub-blocks into upper-level modules without having to type multiple lines of named port connections
where the sub-blocks are instantiated. Implicit port connections reduce the verbose nature of most higher-
level modules by limiting the number of named ports that actually have to be listed when a module is
instantiated. At the same time, since only those nets or busses that do not match a port name must be listed
in the module instantiation, only those port connections that must be made to a dissimilarly sized or named
net or bus are emphasized and not hidden in a sea of unremarkable named port connections.

With a careful naming convention, instantiating large logic blocks into a higher level module can now be
greatly facilitated by using SystemVerilog implicit port connections.

SystemVerilog introduces the new port connection token: .*

When a sub-block is instantiated into a module, and if the sub-block port names match the size and name of
the module nets or busses that are connected to the sub-block ports, implicit port connections can be made
using the .* token.

When using the .* implicit port connection token, any sub-block port that does not match in size or name
to the module net or bus connected to the port, shall be connected using a named-port connection. It shall
not be permitted to mix implicit port connections (.* connections) with positional port connections.

Implicit port connections shall follow these rules:

• Implicit ports shall not be used in an instantiated sub-block with positional ports.
• Implicit ports may be used in an instantiated sub-block with named ports. For the purposes of this

document, the term "implicit port declarations" may or may not include named port connections.
• It is permitted to have sub-block instantiations with positional ports and sub-block instantiations with

named ports and sub-block instantiations with implicit ports all instantiated in the same upper-level
module.

• If implicit port connections are used to instantiate a sub-block, the .* token must be placed first in the
instantiated port list, before any other named ports, if any, are listed.

• The port name on an instantiated sub-block must match the net or bus name of the connecting module.
• The port size on an instantiated sub-block must match the net or bus size of the connecting module.
• Any individual port in an implicitly instantiated module that does not match both size and name of the

net or bus of the upper-level module, shall be instantiated by name.
• If a port on an instantiated sub-block is unconnected in the upper-level module, the port shall be

explicitly listed as a named port with empty parentheses showing there is no connection to the port.
• All nets or busses in the upper-level module that connect to implicit ports must either be explicitly

declared as a scalar-net, vector-net, or as a port on the upper-level module.

Consider the example of a Complex Arithmetic Logic Unit (CALU) as shown in figure XXX
Figure XXX - Block Diagram of a Complex Arithmetic Logic Unit (CALU)

(A black & white version of this gif diagram will be provided if we pass this enhancement and decide to
keep this example)

This CALU design has nine instantiated sub-blocks. If the sub-block module port lists are carefully named
so that the port names match the names of the top-level CALU module nets or busses that are connected to
the instantiated ports, implicit port connections can be used when the sub-blocks are instantiated into the
CALU.

Below are the Verilog-1995-style module headers and port names for the nine sub-blocks that are
instantiated into the CALU module:

module multop1 (mop1, data, ld_multop1, clk, rst_n);
 output [15:0] mop1;
 input [15:0] data;
 input ld_multop1, clk, rst_n;
 // RTL code for the multiplier operand1 register
endmodule

module multiplier (mult, mop1, data);
 output [31:0] mult;
 input [15:0] mop1, data;
 // RTL code for the multiplier output register
endmodule

module multoutreg (multout, mult, ld_multout, clk, rst_n);
 output [31:0] multout;
 input [31:0] mult;
 input ld_multout, clk, rst_n;
 // RTL code for the multiplier output register
endmodule

module barrel_shifter (bs, data, bs_lshft, ld_bs, clk, rst_n);
 output [31:0] bs;
 input [15:0] data;
 input [4:0] bs_lshft;
 input ld_bs, clk, rst_n;
 // RTL code for the barrel shifter
endmodule

module mux2 (y, i1, i0, sel1);
 output [31:0] y;
 input [31:0] i1, i0;
 input sel1;
 // RTL code for a 2-to-1 mux
endmodule

module alu (alu_out, zero, neg, alu_in, acc, alu_op);
 output [31:0] alu_out;
 output zero, neg;
 input [31:0] alu_in, acc;
 input [2:0] alu_op;
 // RTL code for the ALU
endmodule

module accumulator (acc, alu_out, ld_acc, clk, rst_n);
 output [31:0] acc;
 input [31:0] alu_out;
 input ld_acc, clk, rst_n;
 // RTL code for the accumulator register
endmodule

module shifter (data, acc, shft_lshft, ld_shft, en_shft, clk, rst_n);
 output [15:0] data;
 input [31:0] acc;
 input [1:0] shft_lshft;
 input ld_shft, en_shft, clk, rst_n;
 // RTL code for the shifter
endmodule

module tribuf (data, acc, en_acc);
 parameter SIZE=16;

 output [SIZE-1:0] data;
 input [SIZE-1:0] acc;
 input en_acc;
 // RTL code for the tristate buffer
endmodule

When these modules are instantiated into a Verilog-1995-style or Verilog-2001-style CALU module with
named port connections, the correct CALU module code is shown below:

module calu1 (data, bs_lshft, alu_op, shft_lshft, calu_muxsel,
 en_shft, ld_acc, ld_bs, ld_multop1, ld_multout,
 ld_shft, en_acc, clk, rst_n);
 inout [15:0] data;
 input [4:0] bs_lshft;
 input [2:0] alu_op;
 input [1:0] shft_lshft;
 input calu_muxsel, en_shft, ld_acc, ld_bs;
 input ld_multop1, ld_multout, ld_shft, en_acc;
 input clk, rst_n;
 wire [31:0] acc, alu_in, alu_out, bs, mult, multout;
 wire [15:0] mop1;

 multop1 multop1 (.mop1(mop1), .data(data),
 .ld_multop1(ld_multop1),
 .clk(clk), .rst_n(rst_n));
 multiplier multiplier (.mult(mult), .mop1(mop1),
 .data(data));
 multoutreg multoutreg (.multout(multout),
 .mult(mult),
 .ld_multout(ld_multout),
 .clk(clk), .rst_n(rst_n));
 barrel_shifter barrel_shifter (.bs(bs), .data(data),
 .bs_lshft(bs_lshft),
 .ld_bs(ld_bs),
 .clk(clk), .rst_n(rst_n));
 mux2 mux (.y(alu_in),
 .i0(multout),
 .i1(acc),
 .sel1(calu_muxsel));
 alu alu (.alu_out(alu_out),
 .zero(), .neg(), .alu_in(alu_in),
 .acc(acc), .alu_op(alu_op));
 accumulator accumulator (.acc(acc), .alu_out(alu_out),
 .ld_acc(ld_acc), .clk(clk),
 .rst_n(rst_n));
 shifter shifter (.data(data), .acc(acc),
 .shft_lshft(shft_lshft),
 .ld_shft(ld_shft),
 .en_shft(en_shft),
 .clk(clk), .rst_n(rst_n));
 tribuf tribuf (.data(data), .acc(acc[15:0]),
 .en_acc(en_acc));
endmodule

Below are the Verilog-2001-style module headers and port names for the nine sub-blocks that are
instantiated into the CALU module (note that the Verilog-1995-style sub-blocks would also work with
implicit port instantiation):

module multop1 (
 output [15:0] mop1,
 input [15:0] data,
 input ld_multop1, clk, rst_n);

 // RTL code for the multiplier operand1 register
endmodule

module multiplier (
 output [31:0] mult,
 input [15:0] mop1, data);
 // RTL code for the multiplier output register
endmodule

module multoutreg (
 output [31:0] multout,
 input [31:0] mult,
 input ld_multout, clk, rst_n);
 // RTL code for the multiplier output register
endmodule

module barrel_shifter (
 output [31:0] bs,
 input [15:0] data,
 input [4:0] bs_lshft,
 input ld_bs, clk, rst_n);
 // RTL code for the barrel shifter
endmodule

module mux2 (
 output [31:0] y,
 input [31:0] i1, i0,
 input sel1);
 // RTL code for a 2-to-1 mux
endmodule

module alu (
 output [31:0] alu_out,
 output zero, neg,
 input [31:0] alu_in, acc,
 input [2:0] alu_op);
 // RTL code for the ALU
endmodule

module accumulator (
 output [31:0] acc,
 input [31:0] alu_out,
 input ld_acc, clk, rst_n);
 // RTL code for the accumulator register
endmodule

module shifter (
 output [15:0] data,
 input [31:0] acc,
 input [1:0] shft_lshft,
 input ld_shft, en_shft, clk, rst_n);
 // RTL code for the shifter
endmodule

module tribuf #(parameter SIZE=16)
 (output [SIZE-1:0] data,
 input [SIZE-1:0] acc,
 input en_acc);
 // RTL code for the tristate buffer
endmodule

When these modules are instantiated into a SystemVerilog-style CALU module with implicit port
connections, the correct CALU module code is shown below:

module calu2 (
 inout [15:0] data,
 input [4:0] bs_lshft,
 input [2:0] alu_op,
 input [1:0] shft_lshft,
 input calu_muxsel, en_shft, ld_acc, ld_bs,
 input ld_multop1, ld_multout, ld_shft, en_acc,
 input clk, rst_n);

 wire [31:0] acc, alu_in, alu_out, bs, mult, multout;
 wire [15:0] mop1;

 multop1 multop1 (.*);
 multiplier multiplier (.*);
 multoutreg multoutreg (.*);
 barrel_shifter barrel_shifter (.*);
 mux2 mux (.y(alu_in), .i0(multout),
 .i1(acc), .sel1(calu_muxsel));
 alu alu (.*, .zero(), .neg());
 accumulator accumulator (.*);
 shifter shifter (.*);
 tribuf tribuf (.*, .acc(acc[15:0]));
endmodule

In the example code for the calu2 module, note that all of the busses and nets that are connected to the
ports of both the multop1 and multiplier modules have names and sizes that match the port names and
sizes on the instantiated modules. There is a 16-bit bus named mop1 that is driven by the multop1 register
into the multiplier module. Since this bus is not a declared port on the calu2 module, it must be
explicitly declared in the calu2 module in order to take advantage of the .* notation. Similarly, the 32-bit
mult bus, driven by the multiplier module is also an internal bus and must be explicitly declared in the
calu2 module. All of the other ports that are connected to the multop1 register and the multiplier
instance are connected to busses and nets that are explicitly declared as ports on the calu2 module and
therefore they do not require a separate explicit net declaration.

In the example code for the calu2 module, note that a generic 32-bit-wide, 2-to-1 mux has been
instantiated. Since none of the ports on this sub-block match the net or bus names of the calu2 module, all
of the ports must either be connected by name or by position.

In the example code for the calu2 module, note that the alu has two unused outputs, zero and neg. The
unused ports must be listed with empty connections when using the implicit port connection token (.*) to
make the rest of the connections.

In the example code for the calu2 module, note that the tribuf module has a 16-bit input port named
acc but it is connected to a 32-bit bus also named acc. Since the port and bus sizes do not match, a named
connection is required to show which bits of the 32-bit acc bus are connected to the 16-bit acc port.
SystemVerilog does not assume that the low-order bits of a same-named port and bus are connected. That
information must be provided in the named port connection.

For all of the other sub-blocks in the example code for the calu2 module, any instance port that is
connected to a calu2 module port requires no additional explicit net declaration, while all of the instance
ports of sub-blocks that are connected to calu2 internal busses require explicit net declarations within the
calu2 module.

Implicit port connections are not very useful for a gate-level netlist where multiple copies of library gate
primitives are instantiated and connected to nets with names that do not match the primitive port names, but
implicit port instantiations are exceptionally useful for instantiating large logic sub-blocks into a higher-
level model.

