

SUPERLOG® Design Assertion Subset

March 19, 2002

Revision 1.6

Copyright © 2001-2 Co-Design Automation Inc.

This document has been submitted to Accellera under the agreed terms of the �Co-Design
Accellera SUPERLOG DAS Donation Agreement� of 27th February 2002. Usage is only
permitted under the terms of that agreement.

Do not copy, fax, reproduce, or distribute without written permission.

Page 1 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Introduction ... 3
Procedural Assertions.. 3

Syntax.. 4
Immediate Assertions .. 4
Strobed Assertions... 6
Clocked Immediate Assertions .. 7
Clocked Strobed Assertions .. 9
More Expression Sequences.. 9
Antecedent and Consequent .. 10
Resetting Assertions .. 10

Controlling Assertions... 11
Controlling the Steps ... 12

Further Enhancements ... 12

Page 2 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Change History
Version 1.6 of this document has been updated from version 1.5 to reflect the results of the Accellera
SystemVerilog Assertions committee meetings held on

Friday, 3/8/02 (phone)
Wednesday, 3/13/02 (phone and in-person at Verplex in Milpitas, CA)

Introduction
An assertion is a statement that a property must be true. There are two kinds of assertions: concurrent assertions
which state that the property must be always be true, e.g. throughout a simulation, and procedural assertions which
are incorporated in procedural code and apply only for a limited time or under limited conditions.

There are various applications of assertions. They can be included in the design, to document the assumptions made
by the designer and to facilitate "white box" testing. They can be outside the design, either in a testbench to check
the response of the design to the stimulus, or to control a tool such as a stimulus generator or a model checker.

Concurrent assertions can be coded as modules in a library, but this limits the complexity of the property that can be
expressed easily. It is more difficult to code procedural assertions as a library of tasks in Verilog, because events
cannot be arguments, each assertion may need static data, and tasks block.

Procedural Assertions
SUPERLOG Design Assertions Subset provides the following kinds of procedural assertions:

Immediate assertions
Strobed assertions
Clocked immediate assertions
Clocked strobed assertions

These are statements in an initial or always block, or in a task. Immediate assertions can also be in a function.

Page 3 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Syntax

?????

Immediate Assertions
The immediate assert statement is a test of an expression performed when the statement is executed in the

<proc_assertion>::= [<identifier> ':'] <immediate_assert>
| [<identifier> ':'] <strobed_assert>
| [<identifier> ':'] <clocked_immediate_assert>
| [<identifier> ':'] <clocked_strobed_assert>

<immediate_assert>::= 'assert' '('<expression>')'

 <statement_or_null> //pass
 ['else' <statement_or_null>] //fail

<strobed_assert>::= 'assert_strobe' '('<expression>')'

 <restricted_statement_or_null> //pass
 ['else' <restricted_statement_or_null>] //fail

<clocked_immediate_assert> ::= 'assert' [<reset>]

 '(' <formula_expr> ')' <step_control>
 <statement_or_null> //pass
 ['else' <statement_or_null>] //fail

<clocked_strobed_assert> ::= 'assert_strobe' [<reset>]

 '(' <formula_expr> ')' <step_control
 <restricted_statement_or_null>
 ['else' <restricted_statement_or_null>] //fail

<formula_expr> ::= <expr_sequence>
 | <expr_sequence> 'triggers' <formula_expr>

<expr_sequence> ::= <expression>
 | '[' <constant_expression> ']' // skip n steps

| <range> // skip m to n steps
| <expr_sequence> ';' <expr_sequence> // sequence

 | <expr_sequence> '*' '['<constant_expression>']'
//repetition

 | <expr_sequence> '*' <range> // bounded repetition
 | '(' <expr_sequence> ')'

<range> ::= '[' <constant_expression> ':' <constant_expression> ']'

<step_control> ::= '@@' <name>
 | '@@' '(' <event_expressions> ')'

<reset> ::= 'accept' '(' <expression ')' // sync
 | 'accept' <event_control> // async
 | 'reject' '(' <expression ')' // sync
 | 'reject' <event_control> // async

Page 4 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

procedural code. The expression is treated as a condition like in an if statement:
[<identifier> ':'] assert (<expression>) [<pass_statement>] [else <fail_statement>]

The pass statement is executed if the assertion succeeds, i.e. the expression evaluates to 'true'. As with the 'if'
statement, if the expression evaluates to 'X', 'Z' or '0', then the assertion fails. The pass statement may, for example,
record the number of successes for a coverage log, but may be omitted altogether. If the pass statement is omitted,
then no action is taken if the assert expression is true. The fail statement is executed if the assertion fails (i.e. the
expression does not evaluate to a known, non-zero value) and can be omitted. The optional assertion label (identifier
and colon) creates a notional named block around the assertion statement (or any other SystemVerilog statement)
and can be displayed using the %m format code.
 assert_foo : assert (foo) $display("%m passed"); else $display("%m failed");

If the else is omitted a default error message is written if the assertion fails. The contents of the message may be
tool-specific. For simulation tools, it is recommended that the message include basic information about the assertion
statement and when it failed to facilitate debug, such as
 Run-time Warning: myfile.slg:7 Assertion assert_foo failed at time 105
If the else is present, the default message is still printed when the assertion fails. Additional information may be
displayed after the default message by including a system task to do so, such as $fatal, $error, $warning, $info.
These system tasks indicate the severity, and can contain additional information in the format of $display.
 assert (foo); else $fatal("finish simulation because foo is false");

$fatal displays a Run-time Fatal, which terminates the simulation with an error code. The first argument passed to
$fatal shall be consistent with the argument to $finish.
$error displays a Run-time Error, which cannot be turned off. This shall be the default.$warning displays a Run-
time Warning, which can be turned off.
$info: displays an information message, which can be turned off by "quiet mode".

<assert_msg> ::= <fatal_func> | <msg_func>;

<fatal_func> ::= $fatal'('<finish_num>',' // finish arg

[<format_string>]','[<expr>...]')';
;

<msg_func> ::= <msg_name>'('[<format_string>]','[<expr>...]')'';'

<msg_name> ::= $error | $warning | $info

The display of the default message and additional messages of specific types may be controlled by a command-line
option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it may also be
used to signal a failure to another part of the testbench:

assert (myfunc(a,b)) count1 = count + 1; else ->event1;
assert (y == 0); else flag = 1;

The assert statement serves as guidance to non-simulation tools that the condition should be true. The second
statement above is equivalent to:
 if (y!=0) begin flag = 1; end

Page 5 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Strobed Assertions
If an immediate assertion is in code triggered by a timing control that happens at the same time as a blocking
assignment to the data being tested, there is a risk of the wrong value being sampled. For example:
 always @(posedge clock) a = a + 1; // blocking assignment
 always @(posedge clock) begin

 assert (a < b);

 end

This can be solved by using a strobed assertion, which waits in the background until the end of the time slot, like the
$strobe system task.
 always @(posedge clock) begin

 cas:assert_strobe (a < b);

 end

Strobed assertions can have pass or fail statements like immediate assertions. However, they are restricted to
another assertion statement, a system task call, a statement preceded by a delay control or an event control, or
sequential block containing them. This is because the statement happens after the assertion is evaluated, at the end
of the time slot, and hence they must not create more events at that time slot or change values. Statements which
cause additional events to occur at the current time shall be an error.

The example below illustrates the effect of blocking and non-blocking assignments on immediate and strobed
assertions. The immediate assertions are like $display statements and the strobed assertions are like $strobe
statements:

module test;
reg [3:0] a=0; c=0, d=0;
reg clk = 0;
wire b;

initial begin
 #10 clk = 1;
 forever #5 clk = !clk; // posedge clk at 10,20,30,40...
end

assign b = a+1;

always @(posedge clk) begin
 a1: assert(c<3); // fails at time 40
 c = c+1;
 a2: assert(c<3); // fails at time 30
 a <= a+1;
 a3: assert(a<3); // fails at time 40
 a4: assert(b<3); // fails at time 40
 a5: assert_strobe(a<3); // fails at time 30
 a6: assert_strobe(b<3); // fails at time 30
end

always @(a) begin // models transient behavior on comb. nets
 d = a+2; // spikes to 2 at 0, 3 at 10, 4 at 20
 assert(d<3); // fails at time 10
 d = d-1; // settles to 1 at 0, 2 at 10, 3 at 20

Page 6 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

 assert(d<3); // fails at time 20
end

always @(d) assert_strobe (d<3); // fails at time 20

endmodule

Clocked Immediate Assertions
A sequence of expressions can be asserted by specifying a sequential regular expression in the assert statement,
along with a step control to specify the timing between evaluations of the sequential regular expression.
 always @(posedge clock or negedge reset)
 assert (a; b; c) @@ (posedge clock); // note the @@ token to distinguish the step control

 // from the pass statement

A sequential regular expression is a semicolon-delimited list of expressions. The first expression in the list is
evaluated immediately when the assert statement is executed. The other subsequent expressions are evaluated one at
a time on successive occurrences of the step control event expression. In the above example, the expression 'a' is
evaluated immediately, just as for an immediate assertion, with 'b' being evaluated on the next posedge clock and 'c'
evaluated on the posedge after that. The immediate clocked assertion expressions are evaluated among the first
active events in the timestep in which the explicit event is triggered.

The '@@' token is introduced to distinguish the step control from an ordinary event control at the start of the pass
statement. Consider the following:
 always @(posedge clock)
 assert (a)

 @(posedge clock) // This is an event control in the pass statement
 $display("Hello at time %t",$time);

In this example, the "@(posedge clock)" in the pass statement causes the display action to occur on the next
posedge clock after the assertion succeeds. Therefore, a new token is required to distinguish the assertion sequence
step control from the pass statement. Specifying an explicit step control for a sequence makes it possible to use
clocked assertions in combinational always blocks:
 always @(foo,bar)
 assert (a;b;c) @@(posedge clk); // look for a when foo or bar change,

 // then look for b on next posedge clk
The assertion
 always @(posedge clk)
 a1: assert (a;b;c) @@(posedge clk);
is nearly equivalent to
 always @(posedge clk)
 a2: assert (a) @@(posedge clk) // no semicolon

 @(posedge clk) a3: assert (b;c) @@(posedge clk);

The assertion a1 and the combination of assertions a2 and a3 both evaluate the same sequence, but splitting the
sequence between two assertions allows the user to execute different fail statements depending on where the
assertion fails. For example, it may be deemed an error if 'a' is not true now, but only a warning if 'b' is not true on
the next clock edge. Another way of expressing the same behavior is
 always @(posedge clk)
 a4: assert (a) // no semicolon
 a5: assert(1;b;c) @@(posedge clk); // b evaluated on next posedge clk, then c on next posedge clk
 else $warning("b or c not found"); // else clause for a5
 else $error("a not found immediately"); // else clause for a4

Page 7 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

In this example, assertion a5 evaluates the first expression in the sequence immediately. The value '1' is always true,
so on the next posedge of clk, it will evaluate 'b'. This is a convenient notation for specifying a sequence that begins
on the next clock.

Note that to avoid races, the variables read in clocked immediate assertions should be written by non-blocking
assignments.

A clocked assertion can be triggered twice at the same timestep, and the first expression in the sequence will be re-
evaluated. This could happen in a zero-delay loop, but is not recommended practice.

A clocked assertion may also be re-triggered at the next timestep, before the sequence has expired. Any single
assertion shall only be spawned once at a particular timestep.

If the step control event occurs multiple times at the same timestep the evaluation shall not progress through the
sequence. Instead, the current expression in the sequence is re-evaluated. Consider:

 module top;
 reg clk = 0;
 reg a,b,c;

initial begin
 #10 clk = 1;
 forever begin
 clk = 0;
 clk = 1; // 2 posedges clk at 10,20,30,40...
 #5 clk = 0;
 #5 clk = 1;
 end
end

 always @(posedge clk)
 assert(a;b;c) @@(posedge clk); // 'a' is evaluated only once at 10, 'b' once at 20, 'c' once at 30

Note that the step control expression may be any valid event expression in SystemVerilog. The following assertions
all use valid step control expressions:

bit clk;
event ev1;

always @(posedge clk or negedge reset) begin

 assert (a;b;c) @@(negedge clk); // sequence sampled on negedge clk
 assert (a;b;c) @@(clk); // sequence sampled on any edge of clk
 assert (a;b;c) @@(ev1); // sequence sampled when event ev1 fires
 end

This flexibility also allows nested assertions to use different clocks:

 always @(posedge clk) begin
 assert (a;b) @@(posedge clk) // on posedge clk
 assert (1;c;d) @@(negedge clk); // look for c and d on negedge clk

Page 8 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

 assert (e;f) @@(posedge clk2)
 assert (1;g;h) @@(ev1);
 end

Clocked Strobed Assertions
Another way to avoid races is to use the same constructs with strobed assertions:
 always @(posedge clock) begin

 assert_strobe (a; b; c) @@(posedge clk); // a is sampled at end of current time step, b at end of next
clock time step

 end

This is also equivalent to
 assert_strobe (a) // no semicolon
 assert_strobe (1;b; c) @@(posedge clk); // pass statement, if first one OK

This is also equivalent to:
 assert_strobe (a) // no semicolon

 assert_strobe (1;b) @@(posedge clk) // pass statement, if first one OK
 a6: assert_strobe (1;c) @@(posedge clk); // pass statement, if second one OK

Note that assertion a6 will not evaluate until the successful completion of (a;b), which is why only a single '1' is
required to specify that c be evaluated on the next posedge clk.

Strobed assertions with explicit clocks can be used in always blocks that model combinational logic and therefore
do not have a clock and are subject to glitches.

Even if a clocked strobed assertion is triggered twice at the same clock cycle, it only executes once at the end of the
time step. A clocked strobed assertion may be re-triggered at the next clock cycle, before the sequence has expired.

More Expression Sequences
A number of steps can be skipped either by writing expressions which are always true:
 assert (a;1;1;c) @@(posedge clk); // two steps between a and c

or by using the notation [n] to count the number of steps:
 assert (a;[2];c) @@(posedge clk); // two steps between a and c
 assert (a;[1];[1];c) @@(posedge clk); // two steps between a and c

Note that in [n], the n must be a literal or a constant expression. The number of steps to be skipped may also be
expressed using [min:max], where the minimum number of steps may be greater than or equal to zero. Both min and
max must be a literal or constant expression.
 assert (a;[0:10];b) @@(posedge clk); // b occurs between the next and 11th clock edges, inclusive
If an expression must be repeated a defined number of times, this can be expressed with a trailing *[n]. If it can be
repeated a minimum or maximum number of times, this can be expressed with a trailing *[min : max]. These
repetition counts must also be literals or constant expressions:
 assert (a; b)*[5]; // a;b;a;b;a;b;a;b;a;b
 assert (a; b)*[1:2]; // (a;b) or (a;b;a;b)

Page 9 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Note that (a*[0:3];b;c) is equivalent to (b;c) or (a;b;c) or (a;a;b;c) or (a;a;a;b;c). This means that a sequence
a;ab;a;b;c; will pass. The expression sequence is not equivalent to ((a && !b)* [0:3];b;c), which would fail the
same sequence.

Antecedent and Consequent
An assertion is usually only applicable under a certain condition, called an antecedent. One way of specifying a
condition is to use procedural code - if or case. For example:
 if (a) assert (1;b;c) @@ (posedge clk); // only apply assertion if a is true
Another way is to use the triggers keyword in the assertion itself. The following is equivalent to the example
above:
 assert (a triggers (1;b;c)) @@ (posedge clk); // only check b;c if a is true

If a is false when the assertion is applied, the assertion is aborted. It neither passes nor fails. If the antecedent a is
true, the rest of the assertion, called the consequent, is applied.

The benefit of using the second form is that the antecedent can be a sequence. For example:
 assert ((a;b) triggers (1;c)) @@ (posedge clk); // only check c if a is true then b is true

This technique can conveniently used for assertions that are not embedded in procedural code, but are stand-alone
concurrent statements
 always @(posedge clock)

 assert_strobe ((a;b;a;b) triggers (c;d)) @@(posedge clk);

Note that the antecedent (a;b;a;b) is retriggerable, so that the input sequence ababab requires two instances of the
consequent (c;d) i.e. cdcd.

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

���
���
���
���
���

��
��
��
��
��

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

clk

a

b

c

d

Resetting Assertions
A named assertion can be disabled like any other named SUPERLOG block. If this is done before the expression
sequence has finished, it means that neither the pass statement nor the fail statement is executed.
 disable cas;

Note that if the disable is applied at the same simulation time step as the last clock step of a sequence, there is a race
in the case of an immediate assertion, but a strobed assertion is always disabled.

An alternative way to reset the assertions is to use the accept or reject keywords. Acceptance means that the
assertion succeeds, and the pass statement is executed. Rejection means that the assertion fails and the fail statement
is executed. These keywords can be used either with a Boolean expression for synchronous reset, or with an event
control for asynchronous reset. The following examples use an explicit clock:

a7: assert reject (!busy) (a;b;c) @@(posedge clk); // busy must be 1
 assert accept (sync_reset) (a;b;c) @@(posedge clk);

assert reject @(negedge busy) (a;b;c) @@(posedge clk);

Page 10 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

 assert accept @(posedge async_reset) (a;b;c) @@(posedge clk);
assert_strobe reject (!busy) (a;b;c) @@(posedge clock); // busy must be 1

 assert_strobe accept (sync_reset) (a;b;c) @@(posedge clock);
assert_strobe reject @(negedge busy) (a;b;c) @@(posedge clock);

 assert_strobe accept @(posedge async_reset) (a;b;c) @@(posedge clock);

The effect of a synchronous reject expression is to logically and the inverse of the reject expression with each
element in the sequence. Therefore, assertion a7 above is equivalent to
 assert (a && busy; b && busy; c && busy) @@(posedge clk);

If an asynchronous reset occurs simultaneously with the last clock step, there is a race in the case of an immediate
assertion and the reset action always happens in the case of a strobed assertion.

Other examples of synchronous accept/reject are shown here:

always @(posedge clk)
 if (fifoFsmState == READ)
 assert accept(ack) (dataValid * [15]) @@(posedge clk);

Once the fifo goes to READ state, the dataValid must be held high for 15 cycles or when the ack goes high,
whichever comes first.

always @(arbiterState or request)
 if (arbiterState == GRANT)
 assert reject(~request) ((arbiterState==GRANT)*[5]) @@(posedge clk);

Once the arbiter goes to GRANT state, it must stay in that state for at least next 5 cycles during which the request
signal cannot be lowered. If request goes low, the assertion fails.

Issue For Discussion:
If an assertion is named, could it be accepted or rejected explicitly from a different block, similar to disable?
Example:

 always @(posedge clk)
 if(state == READ)
 a8: assert (!as;!ds;rdy*[0:10];!rdy;rdy) @@(posedge clk);

 always @(posedge clk)
 case(arbState)
 ...
 UNFAIR: reject a8;
 endcase

Controlling Assertions
System functions are provided to limit assertion checking to part of the design and part of the simulation time.

$assertoff (hierarchical_names) // name of module instance or individual assertion
$asserton (hierarchical_names) // name of module instance or individual assertion

Assertions are on by default until turned off. If the list of names is empty, it is taken to refer to all assertions.

The effect of turning assertions off is to stop the check and both the pass and fail statements. Assertions already
started are not affected. They can be turned off individually by disable statements.

Page 11 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

Controlling the Steps
To control the stepping of always blocks, SystemVerilog has the following enhancement from Verilog:
 @(posedge clk iff enable == 1)

The event expression only triggers if the expression after the iff is 1, in this case when enable ==1. Note that such
an expression is evaluated when clk changes not when enable changes. Also note that iff has precedence over or, so
that the iff needs to be repeated for each ored event to which it applies.

Since this feature is a valid event expression, it can be used to control the stepping of an assertion sequence. In
effect, this allows a "gated clock" to control the assertion without the user having to declare the gated clock
explicitly. Because this could have significant impact on the ability of Formal Verification tools to evaluate the
assertion successfully, it is recommended that this construct be used only for simulation.

System Functions
Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is "one-hot." The following system functions are included to facilitate such common
assertion functionality:

$onehot (<expression>)// only one bit of <expression> is high
$in (member, list) // member appears in the list

Item for Discussion:
What other common actions are done in assertions that should have accompanying system functions?

Concern: Must be implemented in a way that does not impact simulation performance.
Orthogonal to the rest of the document.

Page 12 of 12 SUPERLOG_DAS_1.6_Accellera Edited March 19, 2002
 © 2001-2 Co-Design Automation, Inc. Accellera Copy

	Introduction3Procedural Assertions3Syntax4Immediate Assertions5Strobed Assertions6Clocked Immediate Assertions7Clocked Strobed Assertions9More Expression Sequences9Antecedent and Consequent10Resetting Assertions10Controlling Assertions11Controlling the S
	Change History
	Introduction
	Procedural Assertions
	Syntax
	Immediate Assertions
	Strobed Assertions
	Clocked Immediate Assertions
	Clocked Strobed Assertions
	More Expression Sequences
	Antecedent and Consequent
	Resetting Assertions

	Controlling Assertions
	Controlling the Steps

	System Functions

