SystemVerilog 3.0/draft 5 (3/29/02)

SystemVerilog 3.0

Accellera’s Extensions to Verilog®

Editor’ s note:
Draft 5 reflects all changes approved in the HDL ++ meetings 16 through 19 (through March 18, 2002)

Legend:
i indicates text to be deleted
— blue text indicates text that was added
—red text indicates editor notes or things we need to consider at a future meeting

— All strike through text in draft 4 has been deleted. Any strike through text in this draft are for text in draft 4 that has
been approved for deletion.
—All new (in blue) text in draft 4 has been changed to regular text. Any text in bluein this draft is new text added since draft 4.

Sponsor
Accellera

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
the creation and verification of abstract architectural level models

Copyright © 2002 by Accellera
1370 Trancas Street #163
Napa, CA 94558

Phone: (707) 251-9977

Fax: (707) 251-9877

This is an unapproved draft of a proposed Accellera Standard, subject to change. Use of information
contained in the unapproved draft is at your own risk.

Do not copy, fax, reproduce, or distribute without written permission.







Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Table of Contents

Section 1 INtroduction t0 SYSEEMVENTIOQ .....civiuiriiirieirieir e 1
Section 2 Lexical-Conventions LIteral ValUES..........coi it 2
2.1 Introduction (INFOMMBLIVE) .......coveuerieeiriieert sttt bbbt e 2

A W) = = I L8RS Y g - TR 2

2.3 Integer aNd [0QIC HEEIAIS ......cuiviiiieiieeieee bbb 2

P R = 1] 1 = =TSSR 2

2.5 TIME IIEEIAIS ...ttt sttt ettt e ae b e b e s e e et et en e et ene et e neeneeneenene 3

DA SIS {1 aTo 1= =TT 3
27 ATTAY TIEEIAIS ..ottt bbb bbbttt bne 3

2.8 SHTUCIUIE [ITErAlS...c.eieieeie ettt ettt sttt e e st ne e st 3
SECHION 3 DALA TYPES. e terteitietisieierteee et e ee et ettt stestesaesaesbeseeseeseese e e et eseeb e s st eaeebesbeseeas e benteseensenseneenseneenesneasens 5
1G04 R g oo (0wt I (10 107 /=) T 5

I B = =N 1Y oLV 1= TP T TP OSRPR 6

G T 101150 (= g0 e 14 01T 6

34 Other DASIC UBLATYPES. ...c.eeuireeeireetereet ettt bbbt bbbttt e e b 7

T s s o = gTc I o1 T 8

I ST o TU 0= = 0] TR SR 8

3.7 SHIUCLUIES BN UNIONS......cotiiitiieiisieiirieeesiee sttt ettt sttt se s se s st 9

O B O ] oo OO SO ST U PP 9

= oo g IR A N g - 1YL= TSP 11
2 R Voo [0 Tox 1o A T ()0 7= Y= 11

4.2 Packed and UNPECKE BITAYS........ciuerireiireiirieeeeeie ettt ettt et sttt sbenesre e 11

2 T/ 0 1§ T o= 1 =0 o 11

A4 Part SEIECES (SIICES) . .uiieuieciiiet ettt bbbt b e 12
Section 5 Data DECIar GtIONS ......couiiuiiiiieieeieiee ettt st sb ettt ettt et et ne e ene 14
5.1  Introduction (INfOMMBLIVE) .......cceuiriieerieieieet sttt b bbb 14

WA DT = (= = = £ Lo g IS | = T 14

LG T 00 = | TSRS 15

L 1T o =TSP 15

5.5 SCOPE AN [IFEIIME ...ttt bbb 15

Lo ST N\ T= FN (=0 U= 1T I o o o3 T 16
SECLION B ALLTTDULES.....ceiietieeeiee ettt ettt b et b e e b et e st s et e st s bentenen 17
6.1  Introduction (INFOIMELIVE) ........cceiueieerieeeire e e se e e re st te s resre st eaesrenaeneeneeneenennes 17

6.2 Attribute Syntax fOr INLEITACES ........ciiuiiii s 17
Section 7 OperatorS and EXPrESSIONS......c.cuiiiiiireriereeie sttt sttt sees e e ese s eressesbesbeseesaeseebeneenseneenesneens 18
7.1 Introduction (INFOMMBLIVE) .......coceuirieeereeeire ettt b e b ne e s 18

O © o< - (o )Y 0] = PSPPSR PPPPPOPRIO: 19

7.3 Assignment, incrementor and decrementor OPEraiONS. .........ccuvveereeireeerreeseeeseesee e 19

7.4 Operations on 10giC and Dit tYPES ...eivviveeieeciee et st ne e neenes 20

AT R = o]0 1= = 0] £ TSSOSO 20
TS T TSP 21

T.7  SIOM etttk h bbb E b bR £ R R £ R £ R £ R £ R R R £ R R e R e R e R R e bR e bR Rt e bt e b s 21

7.8 Operator precedence and aSSOCIALIVITY ....ciecverieeeririecesese e e sttt e e e eseenes 21

RS T g o= < (o g TSRS 22
Copyright 2002 Accellera. All rights reserved. i

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001
Section 8 Procedural Statementsand CONtrol FIOW........ccciviveiriiieciecreccre et ere s 23
8.1 Introduction (INFOMMBLIVE) .......cieeuirieeereieise ettt se s 23
8.2 Blocking and nonblOCKiNg 8SSIGNIMENLS .........coeirieririririierieresieresee e 24
8.3 SElECHION SLALEIMENES. ... .eeuviceretecreecre it e sttt e te st be et et e e be e e besaeesresasesbesssesbesbeesbesssessesasensesnnesreennesansnnens 25
8.4  TranSItiON SLALEMENES ... .ccvieiteetictiectecee et et st e ste st e e et e st e e sr e e bt e beereebesaeeseesbeessesaeenbesbeenbesbeesesreeneesaeansens 26
8.5 L OOPS SLALEIMENTS. ... .eiteiciteesee st site sttt e rte sttt e st sab e st e st esbe e s be e sbee e ke e satesabeesbeesabeesbeesntenseensneens 26
8.6 JUMP SEBLEIMENES. ... eiiiii et see sttt st ettt e e bttt e st e s be e s s e e sbe e sabe e sbeesabe et e e saeeenbeesnbeeseensneens 26
8.7 Named blocks and StatemMENt |ADEIS........c.ecviiiiiece ettt e enne s 27
RS T o 00 SRS 28
R I B TR o [OOSR 28
8.10 Delay-and EVENE CONMIOL .......ciiiieiieiie e e r et e s ae e ae e e e e aenneneenennes 29
SECION O SEALEMACKINES.....ccuvicticeeecte ettt sttt et et eete et e s be et e sbeeteesbesaaesbesssenbesaeesbeenseensentesreenns 31
9.1 Introduction (INFOMMBLIVE) .......coceueriieeriiieriet sttt bbb e 31
9.2  State MAChINE CONSITUCES.........cieeetiereecieecete e et et e et e etteeeeeebeesaeesbeessessbeesseessseenbesssessaseesnsesnsessseeens 31
(SRS 7= (=X 0 (=0 = = 1 o 0 TS 33
9.4 TranSItiON SLAIEIMENTS .....cccveeitii et cteeeteeeee et e sreebe et e eereeeseesbeesseesbesesaeesssesabessseessseesaeesnsennseesseeens 34
9.5 Hierarchical and concurrent State MAChINES .........eeceeiiieieeereeeee et e et e eree e ebeesreeeebeesbeeseenreeens 36
SECLION L0 PrOCESSES......ccicteeteeitte et et et e ettt ete e st ee e st e e etee st e e aseeebesesbeessseesbesasseeaseesabeesesaseseabessaeeeabessnsenseenseeens 39
10.1 Introduction (INFOMMELIVE) .........ceiuiiriiriiieresie ettt b e et saeb e seebe e 39
10.2 LEeVEl SENSIIVE IOQIC ..uveiiiceiciiee sttt e st sre st e s ae st e seenteseesesaennennenens 39
10.3 LatCh SENSITIVE IOGIC ..ottt ettt e st se s re st e s ae st e seenteseesenaensennenens 40
O I o o TS ST Y7 oo oSS 40
10.5 CONtiNUOUS SSIONIMENES .....ecveeieeteeieeeeite et e steeseeseeseesteestesseestesseesseessesseeeessessessnsesesseessessessessensenses 40
10.6 StatE PrOCESS LADEIS.....cccie ittt ettt e b e sae e s b saeenbesae et e san e benaeenns 41
10.7 DYNAMIC PrOCESSES ...vveeveveeretestessessetestessesesseesesseesessessessensessessensessessesssssssessessessessessessessessessessesessens 41
Section 11 TaskS AN FUNCLIONS........ciccuiiieeecteeee sttt ettt e e et sae e eaesaesbesbeesbesbaessesbeensesssensesreenns 43
11.1 Introduction (INFOMMELIVE) .........c.eiuieiirireiiereite sttt bbb b e e eb e saebesaebe e 43
I = (= SRR 43
IR T o o TSRO 45
= o o I 2 T o v 0 P 47
12.1 Introduction (INFOMMELIVE) .........c.eiuieiriirerieieie ettt b e e sb e s ebeseebe e 47
12.2 THE $rO0t TOP TEVEL ...ttt sttt st b b et b ettt b e 47
2RI Y, oo (81X (Sor K== o 1SS 49
12.4 NESIEA MOUUIES......oeeeteeiee e etee et et s e et e e st e e te e beesateeteesbeseaseesate e bessseeessessnesenseessssesessrenesns 50
12.5 POt AECIAIALIONS ......cooviiieirictiecte ettt ettt et ete e st e e sbe st et e e be b e ebeeebeeaseebeensesbeestesbeeseesnsenbennsessenseenns 51
12,6 TimMEUNIt @NA PIrECISION ..c.vecuiviiiesiiete e seest et ettt e et be bt e s te e e te s e e seeseesesbeeaesresteseeseenseseenseneenens 52
12.7 MOOUIB INSLANCES .....ccveieieriiteeitectee ettt et et ste et e ste s e st e st et e e s be b e ebeeebeeaeeeaeensesbeesaesaeentesasenbesnsenbensennns 53
12.8 POrt CONNECLION TUIES ......covietieitectie ettt ettt et e s e stesteeste st e e s besbe e st e ssbesbeeae e besaeesbesasesbesnsenbesnsebenseenns 53
e NP2 4T o= 0L PSPPSR 54
12 10HIErarChiCal NAIMES ......cccvi ettt ettt s et e e sbe e e be e be e s beebeeeteesaeeeaseenbeeeneeesreesans 55
SECHION L3 INEEIFACES. .. .eccie ettt ettt et e et e e te e s tee st e e s aeesaee e saeesaseesbeeabaeeseesaseensaesteeenbensnneeins 56
13.1 Introduction (INFOMMELIVE) .........c.eiuiuiriiriieiene ettt b e e eb e s eebesaebe e 56
13,2 INEEITACE SYNLAX ...eveueetieeeeeeetee ettt ettt eb bbbt b bbb bbb e b b e e 57
R o KoY 1 a ] 010 = 0l TSR 60
L34 IVIOUPONTS. ..ttt ettt ettt ettt b bbbt b e e b e e b e e b e e b e se ekt e e bt ee e it ee e st e b e bt e b es e e b es e ek e e eb e st ek e seebeneebe e 61
13.5 Tasksand FUNCLIONS IN INEEITACES. ......ccve ittt ettt ettt et e s e e are et eeneeeereeenns 65
13.6 ParameteriZe0 INTEITACES .......eicvee ettt ettt ettt e e ete e et e et esbe e e steesaeeeaseebeeenreenreesnns 70
13.7 ACCESS WITNOUL POITS.......ooecueeiiiectie ettt tee ettt e et e st e e eae e e ate e beebeeesteesaeeenbeenbesenseenreesnns 71
iv Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)
SECLION 14 Par GIMELEN S ....ieitieeteeete et te et et sttt be s et e seebeseebesee st se e st s e esesee s e eaesesbe bt sbeseebebe st eneebeseebesenbesenbenens 73
14.1 Introduction (INFOMMELIVE) .........c.eiueeiiireieriete sttt b e e eb e seebesaebe e 73
FA.2 SYNEBX ..vevereiteeretee ettt st er e e e et h e h e R Rt R R R s R e e R e R Rt R e R et er e ne e e nn e e neeneas 73
Section 15 Configuration [HDrari€S ... e et ne e 75
15.1 Introduction (INFOMMELIVE) .........ceiueiiriiriieiste sttt bbb s eb e seer e snebe e 75
B I o= == RPN 75
15.3 Library Map filES......cc ettt b e bbb e 75
Section 16 System tasksand SySteM fUNCLIONS ......c.cveivceeiiierrce e s e 77
16.1 Introduction (INFOMMELIVE) .........c.eiuiiriiriiieieeie ettt bbb e b seebesaebe e 77
16.2 The $DitS SYStEM FUNCLION ..ottt ettt 77
5= o o I A 0 0 o] o TH L= gl T = ox = T 78
17.1 Introduction (INFOMMELIVE) .........ceiuiiriiriierise sttt b e e b e e b saeb e 78
17.2 "AEFINE MACTOS. ... ettt ettt ettt sttt et s et e s et sbesbesbesee b e se e e e e ensebeeneebesbeseeseensenens 78
SECHION 18 ASSEITIONS ..ttt ettt sttt st sttt et e se et e st et e seea e et e s st ebeebesbesae e et ene e seeeebeneeneeneeneeneens 79
Seetton19 Recommended-itemsfor-deprecation e e 81
F N T Lo N o 4 T 1S 1 = G 83
F N T Lol = T S VAT o o LSS 93
F N T Lo O ] 1S YA S 95
F N T Tc DI =11 o] oo |- o] o)V 97
Copyright 2002 Accellera. All rights reserved. %

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Vi Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. Much of the syntax and semantics in these extensions
are part of the SUPERL OG Extended Synthesis Subset (ESS) donation made to Accelleraby Co-Design Auto-
mation, Inc. and proven with their products. SUPERLOG was developed by Peter Flake and Simon David-
mann to extend Verilog into the systems space and the verification space and was built on top of the work of
the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 0.0" isthe original Verilog language, first developed by Gateway Design Automation in 1984

— “Verilog 1.0" isthe Open Verilog International (OVI) public version of Verilog released in 1990, which
was standardized by the IEEE in 1995 as |IEEE Std. 1364-1995

— “Verilog 2.0" isthe IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.0” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

The Accellera initiative to extend Verilog is an on going effort under the direction of the Accellera HDL+
Technical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond
SystemVerilog 3.0.

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog adds several new constructsto Verilog-2001, including:
— C datatypesto provide better encapsulation and compactness of code
— int, char, typedef, struct, union, enum
— Enhancements to existing Verilog constructs, to provide tighter specifications
— Extensions to always blocks to include linting type features
— Logic (0, 1, X, Z) and bit (0, 1) data types
— Automatic/static specification on a per variable instance basis
— Procedural break, continue, return
— Interfaces to encapsul ate communication and facilitate “ Communication Oriented” design
— State Machines for designing control logic in compact and readable form
— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

Copyright 2002 Accellera. All rights reserved. 1
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Section 2
Lexical-Conventions Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancementsto literal strings.

2.2 Literal value syntax

[ BNF excerpt to be inserted after BNF is approved]

Syntax 2-1—L.iteral values

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe ( * ), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit.

0, "1, 'X 'x, 'Z, 'z // sets all bits to this value

2.4 Real literals

The default typeisr eal for fixed point format (e.g. 1. 2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal r eal valuestotheshortreal type(eg.shortreal’ (1. 2) ). Casting
is described in section 3.8.

2 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s e-mail
25 Mar 2002




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by atime unit (f s ps ns us s s).
For example:

0. 1ns
40ps

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab

\f form feed

\a bell

\x02 hex number

A string literal can be cast to acharacter, or apacked array, asin Verilog-2001. If the size differs, itisright jus-
tified.

char c¢1 = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be cast to an unpacked array of characters, and a zero termination is added like in C. If the
size differs, it isleft justified.

char ¢3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in section 4.

2.7 Array literals

Arrays literals are similar to C initializers, but with the repeat operator ({{}} ) alowed
int n[1:2][21:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, repeat operators can be
nested:

int n[1:2][1:3] = {2{{3{4}}}};
If the typeis not given by the context, it must be specified with a cast
typedef int [1:3] triple; // 3 integers packed together

b =triple {0,1,2};

2.8 Structure literals

Structure literals are similar to C initializers. Structure literals must have atype, either from context or a cast:

typedef struct {int a; shortreal b;} ab;
ab c;
c = {0, 0.0}; // structure literal type determined fromthe |eft hand context

(¢)

Copyright 2002 Accellera. All rights reserved. 3
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Nested braces should reflect the structure, for example;
ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C aternative{ 1, 1.0, 2, 2.0} isnot alowed.

4 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 3
Data Types

3.1 Introduction (informative)

To provide for clear tranglation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of i nt and | ong without causing
confusion, in SystemVerilog, i nt is32bitsand | ongi nt is64 bits. TheCf | oat typeiscaledshortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 r eal type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It aso has
variable datatypes such asr eg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called | ogi c. See section 3.3.1.

Verilog-2001 provides arbitrary fixed length arithmetic using r eg datatypes. Ther eg type can have bits at X
or Z, however, and so are less efficient than an array of bits because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abi t type which can only have bitswith 0
or 1 values. See section 3.3.1.

Automatic type conversions from asmaller number of bitsto alarger number of bitsinvolve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from alarger
number of bits to a smaller number does cause a warning message. Automatic conversions between logic and
bit do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything else to 0.

User defined types are introduced by t ypedef and must be defined before they are used. Data types can aso
be parameters to modules or interfaces, making them like class templatesin object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See al'so Section 4 on arrays.

Copyright 2002 Accellera. All rights reserved. 5
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

3.2 Data type syntax

[ BNF excerpt to be inserted after BNF is approved]

Syntax 3-2—data types

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1—Integer data types

char 2-state C data type, usually an 8 bit signed integer (ASCII) or a short int (Unicode)
shortint 2-state SystemVerilog data type, 16 bit signed integer

i nt 2-state SystemVerilog data type, 32 bit signed integer

| ongi nt 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer

bi t 2-state SystemVerilog data type, user-defined vector size

| ogi c 4-state SystemVerilog data type, user-defined vector size with different use rules from reg
reg 4-state Verilog-2001 data type, user-defined vector size

i nt eger 4-state Verilog-2001 data type, at least 32 bit signed integer

6 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

3.3.1 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These arel ogi c, r eg and
i nt eger. The other types do not have unknown values and are called 2-state types, for example bi t andi nt .

The difference betweeni nt andi nt eger isthati nt is2-statelogic andi nt eger is4-statelogic. 4-state val-

ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less
memory, and are preferred in some design styles.

3.3.2 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<', etc.

i nt unsigned ui;
int signed si;

The datatypeschar, byt e, shortint,int,integer andl ongi nt default tosi gned. The datatypeshbi t,
reg and | ogi c default to unsi gned, as do arrays of these types.

Note that the si gned keyword is part of Verilog-2001. The unsi gned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See al'so section 7, on operators and expressions.

3.4 Other basic data types

3.4.1 Time data types

Timeis aspecia datatype. It isa 64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by thet i mepr eci si on declaration. It can aso be changed by
a‘timescal e directive.

Theti mepr eci si on declaration affects the local accuracy of delays
modul e m
ti meprecision 0. 1ns;
initial #10.11ns a = 1; // round to #10.1ns according to time precision
endnodul e
Theti neunit declaration is used to set the current time unit. When aliteral time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number is mul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. Aninteger or real variableis cast to atime value by using the integer or real as a delay.
For example
#10.11; // multiply by tine unit and round according to tine precision
See section 12.6 on for more information on setting the time units and time precision.
3.4.2 Real and shortreal data types

Ther eal ! datatypeisfrom Verilog-2001, and isthe same asaC doubl e. Theshor t r eal datatypeisaSys-
temVerilog datatype, and isthesameasaCf | oat .

1 The real and shortreal types are represented as described by |EEE 734-1985, an | EEE standard for floating point numbers.

Copyright 2002 Accellera. All rights reserved. 7
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

3.4.3 Void data type

The voi d data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

3.5 User-defined types

[ BNF excerpt to be inserted after BNF is approved]

The user can define anew type using t ypedef , asin C.
typedef int intP;
This can then be instantiated:
intP a, b;
A type can be used beforeiit is defined, provided it isfirst identified as atype by an empty typedef:
typedef foo;
foo f = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
If the type is defined within an interface it must be re-defined locally before being used.
interface it;
typedef int intP;

endi nterface

it ity
typedef itl.intP intP;

User-defined type names must be used for complex data types in casting (see section 3.7, below), and as
parameters.

3.6 Enumerations

An enumerated type has one of aset of named values.
enum {red, yellow, green} lightl, light2; // ‘anonynous’ type

The values can be cast to integer types, and increment from an initial value of 0. This can be over-ridden.
enum {bronze=3, silver, gold} nedal; // silver=4, gold=5

A sized constant can be used to set the size of the type. All sizes must be the same.

8 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

enum {bronze=4' h3, silver, gold} nedal4; // 4 bits w de

A type name can be given so that the same type can be used in many places.

typedef enum {NO YES} bool ean
bool ean nmyvar; // naned type

The typeis checked in assignments, arguments and relational operators (which check the values). Like C, there
is no overloading of literals, so medal and medal 4 cannot be defined in the same scope, since they contain
the same names.

3.7 Structures and Unions

Structure and union declarations follow the C syntax, but without the optional structure tags beforethe *{ .

struct { bit[7:0] opcode; bit [23:0] addr; }IR // anonynous structure defines
variable IR
IR opcode = 1; // set fieldin IR

Named structure types must always uset ypedef , asthereis no equivalent of the C st r uct adjective, such as
‘struct instruction |IR;’. Someadditiona examples of declaring structure and unions are:

typedef struct {

bit[7:0] opcode

bit [23:0] addr;
} instruction; // named structure type
instruction IR, // define variable

typedef union { int i; shortreal f; } num // named union type
num n;
n.f =0.0; // set nin floating point fornat

typedef struct {

bit isfloat; per Perers
union { int i; shortreal f; } n; // anonynous urien type 11 Mar 2002
} tagged; // naned structure
tagged a[9:0]; // array of them
A structure can be assigned as awhole, and passed to or from afunctlon or task asawhole Notethat itis mef- oo
ficient to copy large structures. A-si . ir-array . in-an-array-of varia pe;_n?aﬁr s
size: 11 Mar 2002

Section 2.8 discusses assigning initia valuesto a structure.

3.8 Casting

A datatype may be changed by using acast (* ) operation.
int’ (2.0 * 3.0)

A decimal number as a data type means a number of hits.
17 (x - 2)

The signedness can also be changed.

Copyright 2002 Accellera. All rights reserved. 9
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

signed (x)
A user-defined type can be used.
nytype’ (fo0o)
A complex data type cannot be used. It must be defined with at ypedef .
When ashortreal isconverted to anint, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 hits, its bit pattern is preserved, which means it can be

converted back to the same value without any loss of information. This technique can also be used for struc-
tures, where the $bi t s attribute gives the size of a structure in bits (the $hits system function is discussed in

section 16.2):

per Stu’'s e-mail
25 Mar 2002

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonynous type

} tagged; // named structure

typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above
taghits t = tagbits'(a[3]); // convert structure to array of bhits
a[4] = tagged't; // convert array of bits back to structure

Editor’ s note: Are parenthesis required around the casted value? The preceding line does not have them, but all other
examples do..

Note that the bi t datatype loses X values. If these are to be preserved, the logic type should be used instead.
The size of aunion in bitsisthe size of itslargest member. The size of alogic in bitsis 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsi gned can also be used.

10 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 4
Arrays

4.1 Introduction (informative)

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are tegie vectors, they can be
assigned as a single unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, al datatypes can be declared as arrays. Ther eg, wi r e and all other net types can also have a
vector width declared. A dimension declared before the object nameis referred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] r1 [1:256]; /1 [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

Dense arrays of small data types such as bits can be stored packed (8 bits to a byte) or unpacked (1 bit to a
word). This choice affects the efficiency of operations such as addition of bit vectors or selection of individual
bits, and is similar to the Verilog-2001 notions of vect or ed and scal ar ed. Assignments and arithmetic oper-
ations are allowed for packed arrays but not for unpacked. The vect ored and scal ar ed modifiers shall
behave as defined in the IEEE Verilog standard. They may be used by software implementations to optimize
performance.

Packed arrays can only be made of the single bit types: bi t, | ogi c, r eg, wi r e, and the other net types. The
dimensions are written to the left of the variable for a packed array, and to the right for an unpacked array.

bit [7:0] cl; // packed array
bit u [7:0]; /1 unpacked array

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 hit arithmetic. The maximum size of a packed array may be limited, but shall be at |east
65536 (219) bits.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: char,
byte, shortint,int,longint,andinteger. Aninteger type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to O,
such that the right-most index is 0.

byte c2; /1 same as bit [7:0] c2;
integer il; // sanme as logic signed [31:0] i1;

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size, where access must be by index.

Copyright 2002 Accellera. All rights reserved. 11
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)

can be used as follows:

joe[9] =joe[8] + 1; // 4 byte add
joe[7][3:2] =joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([ 3: 0] in the preceding example)
vary more rapidly than the dimensions following the name ([ 1: 10] in the preceding example). When used,
the first dimensions ([ 3: 0] ) follow the second dimensions ([ 1: 10] ).

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] fool [1:5]; // 1 to 10 varies nost rapidly; conpatible with

Veril og-2001 arrays
bit foo2 [1:5] [1:10]; // 1 to 10 varies nost rapidly, conpatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies nost rapidly

bit [1:5] [1:6] food [1:7] [1:8]; /1 1 to 6 varies nost rapidly, followed by
l1to5 then 1lto 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with t ypedef :

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies nost rapidly

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones:

bit [9:0] foo06;
foo5 = fool[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If an index expression is of typelogicvector ad-state type, and the array is of typetoegicvector a 4-state type,
an X or Z in the index expression will cause aread to return X, and a write to issue a run-time warning. If an

index expression is of typeltogicvecter a4-state type, but the array is et of typelogic a 2-state type, an X or Z
in theindex expression wit shall generate a run-time warning and be treated as 0. If an index expression is out

of bounds, a run-time warning may be generated. Fhischeck-can-be turned-off for-efficieney-
Out of range index values shall beillegal for both reading from and writing to an array of 2-state variables,

such asi nt . Theresult of an out of range index valueis indeterminate. Implementations shall generate awarn-
ing if an out of range index occurs for aread or write operation.

4.4 Part selects (slices)

An expression can select part of a packed array, or indeed any integer type, which is assumed to be numbered
downto O:

int j =0;
shortint nsh = j[31:16];

The size of the part must be constant, but the position may be variable. The syntax of Verilog-2001 is used:

12 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s e-mail
25 Mar 2002




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

int i = bitvec[j +: Kk]; // k must be constant.
a = {(b[c -: d]), e}; /1 d must be constant

Slices (part selects) of an array can only apply to one dimension, but other dimensions may have single index
valuesin an expression.

Copyright 2002 Accellera. All rights reserved. 13
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of datain SystemVerilog: macros (see section 17), literals (see section 2), parameters
(see section 14), constants, variables, nets, and attributes (see section 6)

C constants are either literals, macros or enumerations. Thereisalso aconst , keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, localparams, specparams or macros. Verilog 2001 also has
variables and nets. Variables must be written by procedura statements and nets must be written by continuous
assignments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to atask, function or named block and de-allocated on exit). C has the keywords st ati c
and aut 0. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows st ati ¢ to override a default of aut omat i ¢ for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

[ BNF excerpt to be inserted after BNF is approved]

Syntax 5-3—Data declaration syntax

14 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

5.3 Constants

Constants are named data items which never change. SystemVerilog alows any data type to be declared as
constant, with the const keyword.

const char colon = ":"
A constant expression contains literals and other named constants.

SystemVerilog enhancements to par amet er constant declarations are presented in section 14. SystemVerilog
does not change | ocal par amand specpar amconstants declarations. A const form of constant differs from

al ocal par amconstant in that the | ocal par ammust be set during elaboration, whereas a const can be set pe;i]e;ﬁm
during simulation, such as in an automatic task.- 11 Mar 2002

I Editor’ s note: Suggest integrating contents of section 14 here, and deleting section 14.

5.4 Variables

A variable declaration consists of a datatype followed by one or more instances.
shortint s1, s2[0:9];

A variable can be declared with an initializer, which must be a constant expression:
int i =0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after smulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur
beforeany i ni ti al or al ways blocks are started and so does not generate an event. If an event is needed, an
i nitial block should be used to assign the initial values.

5.5 Scope and lifetime

Any data declared outside amodule, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function islocal in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside a function, whichislocal to afile.

Data declared in an automatic task, function or block hasthe lifetime of the call or activation and alocal scope.
Thisisroughly equivalent to a C automatic variable. Data declared in a dynamic process is also automatic.

Datadeclared in a static task, function or block defaults to a static lifetime and alocal scope. If aninitidizer is
used, the keyword st at i ¢ must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to accessit.

Verilog-2001 allows tasks and functions to be declared as aut onat i ¢, making all storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
asaut omat i c. Data declared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block.

Copyright 2002 Accellera. All rights reserved. 15
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

SystemVerilog also allows data to be explicitly declared as st at i c. Data declared to be st at i ¢ in an auto-
matic task, function or in a process has a static lifetime but and a scope local to the block. Thisislike C static
data declared within afunction.

nodul e nsl ;
int st0; // static
initial begin
int stl; //static
static int st2; //static
automatic int autol; //automatic
end
task automatic t1();
int auto2; //autommatic
static int st3; //static
automatic int auto3; //automatic
endt ask
endnodul e

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 11 on tasks and functions.

5.6-Net-declarations

: . . :

5.6 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through modul e ports.
The resultant value of multiple driversis determined by the resolution function of the net type. The value can
be overridden by af or ce statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment is implied.

A register r eg variable can only be written by one or more procedural statements, including procedural (quasi-
) continuous assignments. The last write determines the value. The f or ce statement overrides the assi gn
statement which overrides the normal assignments. A register r eg variable cannot be written through a port.

A | ogi ¢ variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. A | ogi ¢ variable can be written through a port. It
shall be an error to have a continuous assignment and a procedural assignment write to the same| ogi ¢ vari-
able, even through ports. The assi gn statement overrides normal procedural assignmentsto al ogi ¢ variable,
until deassigned.

Note the difference between anet declaration with assignment and a variable initialization:
wire w = vara & varb; // continuous assi gnnent

reg r = consta & constb; // initial assignnment
logic v = consta & constb; // initial assignnent

16 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

per mtg. 19
18 Mar 2002




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 6
Attributes
6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Fhe SystemVerilog extends the attribute syntax to support interfaces. Fhe SystemVerilog also
defines adefault data type for attributes.

6.2 Attribute syntax for interfaces

[ BNF excerpt to be inserted after BNF is approved]

Syntax 6-5—Interface attribute syntax

An example of defining an attribute for an interface declaration is:
(* interface_att = 10 *) interface busl.... endinterface

The default type of an attribute with no valueis bit, with avalue of 1. Otherwise, the attribute takes the type of
the expression.

The modport declaration can be preceded by an attribute instance, like any other interface item.—

Copyright 2002 Accellera. All rights reserved. 17
Thisis an unapproved Accellera Standards Draft, subject to change.

per Peter’ se-mail
after mtg. 19
19 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and o -
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper- | P57 ° S
atorsis preserved in SystemVerilog. This allows efficient code generation.

Verilog does not have assignment operators or incrementor and decrementor operators. SystemVerilog
includes the C assignment operators, such as +=, and the C incrementor and decrementor operators, ++ and - - .

Verilog-2001 added signed nets and registers r eg variables, and signed based literals. There is a differencein
the rules for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-
2001 rules.

Editor’s note: Suggest the preceding paragraph be moved to normative section 7.7.

per Stu’'s e-mail
25 Mar 2002

18 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

7.2 Operator syntax

[ BNF excerpt to be inserted after BNF is approved]

Syntax 7-6—Operator syntax

7.3 Assignment, incrementor and decrementor operations

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe- o -
cial bitwise assignment operators; +=, - =, *=, / =, %, &, | =, A=, <<=, >>=, <<<=, and >>>=. Assignment peer M“af%%“?
operators may only be used with blocking assignments.

In SystemVerilog, an expression can include ablocking assignment, provided it does not have atiming control.
Note that such an asagnment must be enclosed in parentheses to avoid common m|stakes such as using a=b
fora==b, ora| =b fora! = v-onky ,

it ((a=b)) b = (at+=1);

a=(b=(c=05));

Copyright 2002 Accellera. All rights reserved. 19
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

SystemVerilog also includes the C incrementor and decrementor operators ++i , --i ,i ++, and i - - (provided
thereis no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments.

7.4 Operations on logic and bit types

When a binary operator has one operand of type bi t and another of typel ogi c, theresult is of typel ogi c. If
one operand is of typei nt and the other of typei nt eger, theresult is of typei nt eger.

The operators ! = and == return an X if either operand contains an X or a Z, as in Verilog-2001. Thisis con-
verted to a 0 if the result is converted to type bi t, e.g. inani f statement. Fhe-operators!==-and===+nateh

The unary reduction operators (& ~& | ~| ~ ~") can be applied to any packed type, including multi-dimen-
sional packed arrays. The operators shall return asingle value of type| ogi c if the packed typeisfour valued,
and of type bi t if the packed type istwo valued.

int i;

bit b = & ;
integer j;
logic c = & ;

7.5 Real operators

Operands of typeshor t r eal have the same operation restrictions as Verilogr eal operands. The unary oper-
ators++ and - - may have operands of typer eal andshortreal (theincrementisby 1.0).

per Stu’'s e-mail
25 Mar 2002

per Stu’'s e-mail
25 Mar 2002

Editor’s note: Preceding change made to emphasize what is different in SystemVerilog.
QUESTION: What assignment operators are legal/illegal with real operands?

20 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera

Extensions to Verilog-2001

SystemVerilog 3.0/draft 5 (3/29/02)

If any operand isr eal , the result isr eal , except before the ? in the ternary operator. If no operand isr eal
and any operand isshortreal , theresultisshortreal .

Real operands can also be used in the following expressions:

str.real val

/1 structure or union nenber

realarray[intval] // array el ement

7.6 Size

The number of bits of an expression is determined by the operands and the context, following the samerules as

i Verilog-2061. In SystemVerilog, casting can be used to set the size context of an intermediate value.

A-toel-may-wara With Verilog, some tools may issue a warning when the left and right hand sides of an
assignment are different sizes. Using the SystemVerilog size casting, these warnings can be prevented-by

usihg-casts.

7.7 Sign

Thefollowing unary operators give the signedness of the operand: ~ ++ -- + - . All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

7.8 Operator precedence and associativity

Operator precedence and associativity islisted in table 7-2, below. The highest precedence is listed first.

Table 7-2—Operator precedence and associativity

0 Tl left
Unary ! ~ ++ -- + - & ~& && | ~| || » - right
** left
% left
t - left
<< >> <L >>> |eft
< <= > >= |eft
== 1= === 1== left
& left
~on left
I left
&& left
N left
2 right
= += *= [= Y% &= N= = <<= >>= <<= >>>= none
{.} concatenation

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

21

per Stu’'s e-mail
25 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Note that & is higher precedence than », following the Verilog standard.

7.9 Concatenation

Braces ({ } ) are used to show concatenation, asin Verilog. The concatenation is treated as a packed vector of
bi ts (or | ogi c if any operand isof typel ogi c¢). It can be used on the left hand side of an assignment or in an

expression:

logic logl, log2, Io0g3;
{logl, log2, lo0g3} = 3’ blli,
{logl, log2, 10og3} = {1'bl, 1'bl, 1'bl}; // same effect as 3’ blll

Software tools may generate a warning if the concatenation width on one side of an assignment is different p%rSS,fA”; gggg“

than the expression on the other side. The following examples may give warning of size mismatch:

bit [1:0] packedbits = {1,1}; // right hand side is 64 bits
int i = {1 bl, 1'bl}; //right hand side is 2 bits

Editor’s note: The concatenation {1,1} isillegal in Verilog, which only permits sized literals in concatenation. If
unsized literals are allowed in SystemVerilog, this new feature needs to be described.

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

,1}; I/ no size warning, bit can be set to 1

bit unpackedbits [1:0] {1
{1'b1,1" bl}; //no size warning, int can be set to 1'bl

i nt unpackedints [1:0]

Multiple concatenation can be used for initializersaswell e.g. {3{1}} for {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .

22 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by one of:
initial //dothisstatement once
al ways, al ways_conb, al ways_| atch, al ways_ff //loop forever (see section 10 on processes)
t ask // do these statements whenever the task is called

functi on // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Seqguential and parallel blocks

— Timing control
Verilog procedural statementsareini niti al oral ways blocks, tasks or functions.

Verilog includes most of the statement types of C, except for do...whi | e, br eak, conti nue and got o.
Verilog has the r epeat statement which C does not, and the di sabl e. The use of the Verilog di sabl e to
carry out the functionality of break and continue requires the user to invent block names, and introduces the
opportunity for error.

SystemVerilog adds C-like br eak, cont i nue andr et ur n functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-likedo...whi | e loop for this capability.

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-7—Statement syntax

Copyright 2002 Accellera. All rights reserved. 23
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s e-mail
28 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

8.2 Blocking and nonblocking assignments

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-8—Blocking and nonblocking assignment syntax

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;

@ r = a
r =@ a
r <= @ a;

SystemVerilog also alows atime unit to specified in the assignment statement, as follows:

#lns r = a;
r = #1ns a;
r <= #lns a;

per Stu’'s e-mail
. . : . . 28 Mar 2002
It shall beillegal to make nonblocking assignments to automatic variables-are-not-aHowed.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the | eft-

hand side is smaller than the right hand side, and information may be lost, a warning is can be given. Nen- pgrss,fﬂ“; 56%15‘”

24 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

8.3 Selection statements

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-9—Selection statement syntax

Heniees InVerilog, ani f (expressi on) isevauated asa
boolean sothat |fthe r&eultof theexpre&ﬂon |sO or X, thetest is considered false. With SystemVerilog, nul |

orvoi d or {} areaso false-and-any-othervaluesare-true.

SystemVerllog adds the keywords uni que and priorit y, which can be used beforean i f . tr-the-case-of-an
al - If either keyword is used it is shall be a run-
time warn| ng for no cond|t|on to match unlessthere isan epr|C|t el se. For example:

unique if((a==0) || (a==1)) $display(" 0 or 1");
else if (a == 2) $display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) $display(" 0 or 1");
else if (a[2] == 0) $display("2 or 3");
el se $display(" 4 to 7"); //covers all other possible values, so no warning

A uni que i f indicates that there should not be any overlap in aseriesof i f ...el se...i f conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that thereis a
potential overlap in the conditions.

Apriority if indicatesthat aseriesof i f ...el se...i f conditions shall be evaluated in the order listed. In
the preceding example, if the variable ‘a’ had a value of 0, it would satisfy both the first and second condi-
tions, requiring priority logic.

In Verilog-2001, there are three types of case statements, introduced by case, casez and casex. With Sys-
temVerilog, each of these can be qualified by priority oruni que. Apriority case shal actsonthefirst
match only. A uni que case shall guarantees no overlapping case values, allowing the caseitemsto be evalu-
atedin parallel. If thecaseisqualifiedaspri ority oruni que, the ssimulator shall issues awarning message
if an unexpected case value is found. The-userdoesnotneed By specifying uni que or priority, it isnot
necessary to code adef aul t case to trap unexpected case values.

Copyright 2002 Accellera. All rights reserved. 25
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s e-mail
28 Mar 2002

per Stu’'s e-mail
28 Mar 2002

per Stu’'s e-mail
28 Mar 2002




Accellera

SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001
For example
bit[2:0] a

uni que case(a) // values 3,5,6,7 will cause a run-tinme warning
0,1: $display(" 0 or 1 ");
2: $display("2");
4: $display("4");

endcase

priority casez(a)
2’ b00?: $display(" 0 or 1 ");
2’ b0??: $display(" 2 or 3 ");
default: $display(" 4 to 7")
endcase

Theuni que and pri ori t y keywords shall determine the simulation behavior. It is recommended that synthe-
sisfollow simulation behavior where possible. Attributes may also be used to determine synthesis behavior.

8.4 Transition statements

The transition statement is used in state machine modeling, and discussed in section 9 on state machines.

8.5 Loops statements

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-10—Loop statement syntax

Verilog-2001 providesf or, whi | e, r epeat andf or ever loops. SystemVerilog adds ado...whi | e loop:

do statenent while(condition) // as C

The condition can be any expression which can be treated as aboolean. It is evaluated after the statement.

8.6 Jump statements

[ BNF excerpt to be inserted after BNF is approved]

26 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Syntax 8-11—Jump statement syntax

SystemVerilog adds the C jump statements br eak, cont i nue andr et ur n.
br eak /1 out of loop as C
continue // skip to end of loop as C
return expression /1l exit froma function
return // exit froma task or void function

Note that SystemVerilog does not include the C got o statement.

8.7 Named blocks and statement labels

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-12—Blocks and labels syntax

Verilog-2001 allows a begi n...end or f or k...j oi n statement block to be named. A named block is used to
identify the entire statement block. A named block creates a new hierarchy scope. The block name is specified
after the begi n or f or k keyword, preceded by a colon. For example:

begi n : bl ockA /1 Verilog-2001 naned bl ock

end

SystemVerilog alows a matching block name to be specified after the block end or j oi n keyword, preceded
by a colon. This can help document which end or j oi n is associated with which begi n or f or k when there
are nested blocks. A name at the end of the block is not required. It is shall be an error if the name at theend is
different than the block name at the beginning.

begi n: bl ockB /'l block nane after the begin or fork

end;.BIockB
SystemVerilog allows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. A statement label does not create a hierarchy scope. The label name is specified before the

statement, followed by a colon.

| abel A: st at enent

A begin...end or f ork...j oi n block is considered a statement, and can have a statement label before the
block. Thisis not the same as a block name, however, because it does not create a hierarchy scope.

label B: fork // label before the begin or fork

join : labelB

Copyright 2002 Accellera. All rights reserved. 27
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s e-mail
28 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

A label at the end of the block is not required. It is shall be an error if the label at the end is different than the
label at the beginning.

It shall beillegal to have both alabel before abegi n or f or k and a block name after the begi n or for k. A
label cannot appear before the end or j oi n, as these keywords do not form a statement.

8.8 Processes

Eachinitial and al ways block is a process. Each branch of af or k within such a block is also a process.
These are static processes and they can be explicitly named with a statement label as shown above.

A new (dynamic) process can be created by the process keyword. This forks off a statement without waiting
for completion:

process stat enent

See Section 10 for more information about processes.

8.9 Disable

SystemVerilog has br eak and cont i nue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue aloop, but is more awkward than using
br eak or conti nue. Thedi sabl e isalso alowed to disable a named block, which does not contain the di s-

abl e statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block is aloop body, it actslike acont i nue. If the block is not currently executing, the
di sabl e has no effect. The di sabl e, break and cont i nue statements shall not affect any nonblocking
assignments which have been started.

It shall beillegal to disable a function because the return value would be uncertain. However a function may
disableits calling block.

SystemVerilog hasr et ur n from atask, but di sabl e isalso supported. If di sabl e isapplied to anamed task,
all current executions of the task are disabled.

nodul e ...
al ways al waysl: begin ... tl1: taskl( ); ... end

endnodul e
al ways begin
disable ul.alwaysl.tl; // exit taskl, which was called from alwaysl

(static)
end

28 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

| 8.10 Belayand Event control per Stu’s e-mail
28 Mar 2002

[ BNF excerpt to be inserted after BNF is approved]

Syntax 8-13—Delay and event control syntax

per Stu’'s e-mail
28 Mar 2002

Any change in avariable or net can be detected using the @event control, asin Verilog. If the expression eval-
uates to aresult of more than one hit, a change on any of the bits of the result (including an x to z change) will
trigger the event control.

SystemVerilog adds the-feHewing-erhancement: ani f f qualifier to the @event control.

modul e latch (output logic [31:0] y, input [31:0] a, input enable);

always @a iff enable == 1)
y <= a; [//llatch is in transparent node
endnodul e

The event expression only triggers if the expression after thei f f istrue, in this case when rst ==0. Note that
such an expression is evaluated when clk changes not when rst changes. Also note that i f f has precedence
over or . This can be made clearer by the use of parentheses.

per Stu’'s e-mail

If avariable or net is not of type | ogi c, then posedge and negedge refer to transitions from 0 and to O | "557 /1. 5002

respectively. If the variable or net is a dense packed array or structure, it is zero if all elements are 0.

per Stu’'s e-mail
28 Mar 2002

@ myvar) /1 triggers on any change to nyvar

@ changed nyvar) // triggers on any change to myvar

per Stu’'s e-mail
28 Mar 2002

shmtte=ehonce e g theeveneante
that the changed keyword explicitly defines that the event control only triggers on a change of the result of the

| expression. In certain types of expressions, @ expression) mmay can trigger on changes to operands of the
expression that do not affect the resullt.

Copyright 2002 Accellera. All rights reserved. 29
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

SystemVerilog allows assignment expressions to be used in an event control, eg. @(a = b + c)).The
event control is shall only be sensitive to changes in the result of the expression on the right-hand side of the
assignment. It is shall not be sensitive to changes on the | eft-hand side expression.

30 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 9
State Machines

Editor’s note: This section not yet indexed.

9.1 Introduction (informative)

Control logic, whether for a data path or an interface, is often specified as a Finite State Machine (FSM). Often
this specification isin the form of a‘bubble’ diagram, where circles represent states and arcs represent transi-
tions. An aternative convention is to have vertical lines representing states and horizontal lines representing
transitions. State machine capture tools often add hierarchy and concurrency to the basic FSM model.

Transitions are usually annotated with an input condition, for a synchronous FSM, or event, for an asynchro-
nous one. In addition, an FSM may be active, i.e. it sets outputs. These outputs may be combinational func-
tions of inputs (Mealy model) or just depend on the state (Moore model). These names have also been applied
to procedural operations associated with atransition (Mealy) or a state (Moore).

To avoid timing hazards, inputs should not change at the same time as state. For an asynchronous FSM this
normally means that input events should arrive well separated. For a synchronous FSM it means that other
inputs should not change at the same time as the clock. Where two machines communicate, thisin turn means
that the outputs should not change until the inputs of both machines have been read. Nonblocking assignments
are often used for this. Alternatively, delays can be put in the communication paths.

Verilog-2001 has no specific support for state machines. There are three modeling styles which are often used:
case statements, named events, and implicit.

SystemVerilog adds severa constructs specific to modeling state machines. These include named states and
transitions, with dedicated syntax to distinguish them, and a semantics such that each statement is executed in
astate or transition which can be determined by static analysis. The state is accessible to combinational logic.

The benefits of the SystemVerilog FSM constructs are readability for the user, including hierarchy and concur-
rency, ease of analysis for tools, and a better trade-off between debug and performance. The style should also
support the software implementation of a state machine without any timing and without the overhead of extra
events.

9.2 State machine constructs

The SystemVerilog state machine definition adds a new declaration type and two new statement types. The
states are declared like an enumeration with atiming control. Note that Sis used to represent both currentState
and nextState:

state {SO, S1, S2} S @ posedge cl ock);

Editor’ s note: Per meeting 14, the keyword “state” needs to be changed to something else. It isa commonly used
name in existing models.

SystemVerilog provides a transition statement, which can be used in a procedural block, such as an
al ways_conb block. Aswell as the state declaration, SystemVerilog usesthet r ansi t i on statement in pro-
cedural code Thet ransi ti on statement contains the individual state transitions shown by - >> :

transition (S)

SO: if (serial == 1) ->>82;
S2: if (serial == 0) ->> S1; else ->> S0;
S1: ->> S0;

endtransition

Copyright 2002 Accellera. All rights reserved. 31
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

A complete example, referred to as the Wang and Edsall 2 example, is shown below. ThisMealy style FSM has
three states, a single input, and a single output. Its state structure is:

1 0\l found_101=1

N,

Figure 9-1—Simple state machine example

The three examples that follow illustrate some ways the state declaration and transitions can be used.

The following code illustrates how this state machine can be modeled using SystemVerilog. In this example
the reset is synchronous, because the time control on the state declaration specifies transitions occur on the
clock edge.

/1l SystenVeril og version of Wang & Edsall exanpl e, synchronous reset
nmodul e FSML( out put found_101, input serial, input clk, input reset);
state {SO, S1, S2} S @ posedge clKk);
al ways_conb begin
found_101 = O;
if (reset) ->> S SO;
el se transition (S)

SO: if (serial == 1) ->> S2;
S2: if (serial == 0) ->> S1; else ->> SO;
S1: ->> S0 if (serial == 1) found 101 = 1;
endtransition
end
endnodul e

Note that the timing control in the example above can include atest for a condition, e.g. @ posedge cl ock
i ff !reset), showing that states change on the rising edge of the clock only if reset is 0.

Editor’ s note: poor usage of iff, as discussed in meeting 14.

2TH. Wang, T. Edsall “Practical FSM Analysisfor Verilog”, Proceedings, IV C 98, pp. 52-58.

32 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

The following example, the transition is instantaneous, because there is no timing control with the state decla-
ration. Instead, the timing control is specified on the always procedure, with an asynchronous reset.

/1 SystenVerilog version of Wang & Edsal | exanpl e, asynchronous reset
nodul e FSM2(out put | ogic found_ 101, input serial, input clock, input reset);
state {SO, S1, S2} S; // transition is instantaneous
al ways @ posedge cl ock or posedge reset) begin // asynchronous reset
if (reset) ->> S SO
el se transition (S

SO: if (serial == 1) ->> S2
S2: if (serial ==0) ->> S1; else ->> SO
S1: ->> S0
endtransi tion
end
al ways_conb
if (S.S1 & serial == 1) found 101 = 1;
el se found_101 = 0
endnodul e

In the next example, the transition is nonblocking, with adelay. The reset is asynchronous.

/1 SystenVerilog version of Wang & Edsal| exanple, delayed transition
nmodul e FSM3(out put | ogi c found_101, input serial, input clock, input reset);
state {SO, S1, S2} S #lns; // transition is nonbl ocking w th del ay
al ways @ posedge cl ock or posedge reset) begin // asynchronous reset
if (reset) ->> S SO
el se transition (S

SO: if (serial == 1) ->> S2
S2: if (serial == 0) ->> S1; else ->> SO;
S1: ->> S0
endtransition
end
al ways_conb
if (S.S1 & serial == 1) found 101 = 1;
el se found_101 = 0
endnodul e

9.3 State declarations

A SystemVerilog state declaration is syntactically based on an enumerated type:

[ BNF excerpt to be inserted after BNF is approved]

Syntax 9-14—State declaration syntax

Copyright 2002 Accellera. All rights reserved. 33
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Each state name shall be unique to the state declaration, so that if there are severa state machines, the state
names can overlap. Each state name can be preceded by a list of sub-states to represent a hierarchical state
machine. The optional control expression is used to modify the nonblocking assignment to the state variable as
described below.

Theinitial stateisthe first state listed. Thisis because the syntax <state variable> ‘=" <initial state> would be
anomalous, since state variables cannot be assigned.

The state variable can be read as a string. for display purposes:
$display (“ state = %", S);

The semantics differs both from an enumerated type and from a structure. Firstly the state name is not a con-
stant but can be read as avariable that has a bit value which is 1 if the machineisin that state and a0 if not, so
it can betested in conditionse.g.i f(S. S2 || S. SO).

Secondly the state variable cannot be assigned directly, but change to a new state is marked by a - >> operator.
This updates the state machine to the new state as if an assignment were used. The optional timing control
makes this assignment nonblocking with the specified delay. If more than one assignment is applied to happen
at the same simulation time, the last one wins (there may be arace). This operator makes it easy to distinguish
state changes from other assignments.

Editor’s note: Per meetings 12-15, there are several open issues:

- Need a method of specifying the state values. Syntax proposed is: state { S1=3'b001, S2=3'b010, S3=3'b100} S;
- Need to provide ability to do bit selects of state value, in order to model 1-hot encoding and such

- Need to describe and provide examples of synchronous and asynchronous resets

9.4 Transition statements

[ BNF excerpt to be inserted after BNF is approved]

[need to add default statenment]

Syntax 9-15—State transition statement syntax

Each change of state shall be written as a transition_to_state. This can be unconditional, in which case the
machine must be specified, or it can be in atransition statement, which also allows the transition to be named.
Thus, each arc of the state diagram (represented by - >>) can belabeled (e.g. SO_S2) aswell as each node, as
shown in the modified version of the Wang & Edsall example:

/1 SystenVerilog version of Wang & Edsall exanple with named transitions

34 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

modul e FSMb(out put | ogic found_101, input serial, input clock, input reset);
state {SO, S1, S2} S @ (posedge cl ock);

al ways_conb begin
found_101 = O;
if (reset) ->> S. SO;
el se transition (S)

SO:if (serial == 1) SO_S2 ->>82;
S2:if (serial == 0) S2_S1 ->> S1; else S2_S0 ->> SO;
S1: S1 S0 ->> S0 if (serial == 1) found_101 = 1;
endtransition
end
endnodul e

The optional transition name is conceptually rather like an event name, but it differsin that it is not declared
and must be unique in the state machine. A transition name may be used in an event expression elsewhere in
the module e.g. @0_S2. The timing of such a transition is the same as the event that triggered it e.g.
@ posedge cl k).

The state conditions are compared with the state variable, like the case conditions in a case statement. During
execution, if the transition statement does not have a state matching the current state a run time warning
occurs. If more than one state condition is specified, or the def aul t keyword is used, the following transition
cannot be given a name because there is more than one transition implied. The unconditional transition -
>>A. Bisanabbreviationfortransition(A) default: ->>B; endtransition.

Transition names and entry and exit of states can be used like other event expressions to trigger other al ways
blocks or for timing checks. The transition is written with the state machine name e.g.

@. S0_S2.

The change to a state can be written:
@ posedge S. S1)

and the change from a state can be written:
@ negedge S. S1)

Similarly any state change can be written;
@s)

These state change event expressions trigger after the state has changed, i.e. later than the execution of the
transition statement.

A simulator can check that the first transition to be executed is unconditional or contains adef aul t , to model
reset from an unreachable or unknown state.

The following example illustrates using f or k and j oi n with transitions on implicit named events, so that all
transitions must have fired, in any order, to continue past the join.

initial begin
fork
@5. S0_S2;
@b. S2_S1;
@b. S2_S0;
join
end

Copyright 2002 Accellera. All rights reserved. 35
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

The state of state variables can be randomly initialized using an initial block with transitions determined by a
random number.

9.5 Hierarchical and concurrent state machines

For large state machines it is convenient to structure the state space into states and sub-states. The states can
be or-states which are comma separated, or and-states, e.g.

state {STA, {sl1, s2, s3} STB, {{s4, sb5, s6} cl and {s7, s8} c2} STC} hsnl @
cl ock;

This example can beillustrated as follows:

[ Peter tofax to Stu areplacement diagram to for the new example, below ]

Figure 9-2—Hierarchical state machine
Only one of aset of or states can be active at any time. But all and states are active or inactive simultaneously.
Therefore, s4 and s7 can be active together.

Transitions are alowed from any state to any state, from any sub-state to any other state, and from one sub-
state to another in the same state:

STA: - >> STB;
sl:if(inputl) ->> STC, else ->> s2;

Other transitions to sub-states are not allowed. When a state contains or sub-states, entering the state implies
entering the first sub-state. So - >> STB enterss1 aswell. The truth value of the state name isthe logical or of
the truth values of the sub-states.

When a state contains and sub-states, entering the state implies entering all the sub-states, as shown by the two
arrowsin STC.

Two sub-states within and states can share atransition:
s5 and s7: T2 ->> s6 and s8;

The following example illustrates a more complex state machine of a two-player Reflex game®, with reset

36 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

logic and transition statements within abegi n...end block.

/1 SystenVerilog description of two-player Reflex gane. Note that this is
/1 an abstract nodel with events for input and enuneration for output

nmodul e REFLEX ( i nput event ready, stop, go, coin,
out put enum {blue, yellow, red, green, flashing} |ight)

event tiner;
al ways #10 ->ti ner;

state {
game_off,
{
{wait_ready, wait_go, wait_stop, done} playerl and
{idle, waiting} player2
} gane_on
} gare;

al ways begi n: nornal

/'l Either player nay assert coin to start the gane, status |ight turns bl ue
@coin) transition (gane) game_off: ->> game_on |ight = blue; endtransition

/1 \When player 1 presses ready, the status light turns yellow
@ready) transition (gane)

wait_ready and idle: start->> wait_go and waiting |ight = yell ow
endtransition

/1 \When player 2 presses go the status light turns green
fork : forkl
@go) disable forkl;
repeat (‘L) @iner disable forkl; // if player 2 does not press go in tine
@stop) begin // stop before go
transition (gane)
wait _go: ->> gane_off |ight = flashing;
endtransition
di sabl e nornal ;
end
join
transition (gane)
wait_go and waiting: end2->> wait_stop and idle |ight = green;
endtransition

/1 Player 1 presses stop within L tinme units
fork : fork2
begin @stop) transition (gane)
wait_stop: ->> gane_off |ight = red;
endtransition disable fork2; end
begin repeat (‘L) @tiner) transition (gane)
wai t _stop: ->> gane_off light = flashing;
endtransition disable fork2; end
join

3 “Hierarchical Finite State Machines with Multiple Concurrency Models’, Alain Girault, Bilung Lee, Edward A Lee, |EEE Transactions
on Computer Aided Design, Vol 18, No 6, June 1999, pp. 742.

Copyright 2002 Accellera. All rights reserved. 37
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

end: nornma
always @ight $display("% %", $realtine, light);

endnodul e

38 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 10
Processes

10.1 Introduction (informative)

Verilog-2001 has al ways andi ni ti al blocks which define static processes.

In an al ways block which is used to model combinational logic, forgetting an el se leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized al ways_conb and al ways_| at ch blocks-are
provided, which indicate the design intent to simulation, synthesis and formal verification tools. SystemVer-

llog alsoaddsan al V\ays ff blocktomdlcatesequennal Iog|c ?heseb#eek&treaﬁuneﬂenseaHsa&par%eHhe

In systems modeling, one of the key limitations of Verilog {ane-VHBL} isthe inability to create and-delete pro-
cesses dynamically, as happens in an operating system. Verilog has the f or k .. j oi n construct, but this still
imposes a static limit.

SystemVerilog has both static processes, introduced by al ways, i ni tial or fork, and dynamic processes
introduced by pr ocess.

W&t(@epe—sysiemVenlog creatsathread of executlon for each| nitial or al ways block for each paraIIeI
statement in a f or k...j oi n block and for each dynamic process. Each continuous assignment may also be
considered its own thread. Execution of each thread may be interrupted between statements at a semicolon,
but a single statement (not a block) containing no user task or function cal is uninterrupted. This alows
atomic test-and-set using assignment operatorsin an if statement.-

per Peter’'s
e-mail
11 Mar 2002

per Stu’s
e-mail
28 Mar 2002

per Stu’'s
e-mail
28 Mar 2002

per Peter’s e-
mail re. mtg. 19
19 Mar 2002

Editor’s note: Some of the above paragraph seems like it should be in the normative text, as well. Where?

per Stu’'s
e-mail
28 Mar 2002

Editor’s note: Draft 4 section 10.2 is now 10.6, per Stu’s e-mail 28 Mar 2002

10.2 Level sensitive logic

SystemVerilog provides a special al ways_conb procedure for modeling combinational logic behavior. For
example:

al ways_conb
a= b &c;

al ways_conb
d <= #1ns b & c;

Theal ways_conb procedure provides functionality that is different than a normal always procedure:
— Thereisan inferred sensitivity list that includes every variable read by the procedure.

Copyright 2002 Accellera. All rights reserved. 39
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001
— The variables written on the |eft-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after al i ni ti al and al ways blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog al ways_conb procedure differs from the Verilog-2001 al ways @ in the following ways:

— al ways_conb automatically executes once at time zero, whereas al ways @ waits until a change occurs
on asignal intheinferred sensitivity list.

— al ways_conb is sensitive to changes within the contents of a function, whereasal ways @ isonly sensi-
tive to changes to the arguments of afunction.

— Variables on the | eft-hand side of assignmentswithin an al ways_conb procedure may not be written to by
any other processes, whereasal ways @ permits multiple processes to write to the same variable.

Software tools can perform additional checksto warn if the behavior within an al ways_conb procedure does
not represent combinational logic, such asif latched behavior may be inferred.

10.3 Latch sensitive logic

SystemVerilog aso provides a specia al ways_| at ch procedure for modeling latched logic behavior. For
example:

al ways_| atch
if(ck) g <= d;

Theal ways_| at ch procedure differsfrom anormal al ways procedure in the following ways:
— Thereisaninferred sensitivity list that includes every variable read by the procedure.
— The variables written on the |eft-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after al i ni ti al and al ways blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checksto warn if the behavior within an always_latch procedure does
not represent latched logic.

10.4 Edge sensitive logic

The SystemVerilog al ways_ff procedure can be used to model synthesizable sequential logic behavior. For
example:

al ways ff @posedge clock iff reset == 0 or posedge reset) begin
rl <=reset 20 : r2 + 1,

end
Theal ways_ff block imposes the restriction that only one event control is allowed. Software tools may per-

form additional checksto warn if the behavior within an al ways_f f procedure does not represent sequential
logic.

10.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

A SystemVerilog removes this restriction, and permits continuous assignments €an to drive nets, | ogi ¢ vari-

40 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

ables, and any other type of variables, except r eg variables. Nets can be driven by multiple continuous assign-
ments, or a mixture of primitives and continuous assignments. | ogi ¢ variables and other data types can only
be driven by one continuous assignment or one primitive output. It shall be an error for a variable driven by a
continuous assignment or primitive output to have an initializer in the declaration or any procedural assign-
ment.

10.6 Static Process labels

In SystemVerilog, users-can-name-statie processes can be named by labeling the outermost statement. A label
before the process statement serves as an identifier of the process. This process identifier can be used to refer
to variables within that process.

nodul e processesl;

int b;
al ways
a foo: begin //the begin...end statement group is named foo
#10ns b = 0;
#10ns b = 1,
end
endnodul e

Within aparallel block such asfork ... join, each statement is a different process, and different from the outer
block. In the following example, a, b, ¢ are different processes:

al ways
a: fork //the fork...join statenent group is naned a
b: taskl();
c: task2();
join

10.7 Dynamic processes

The SystemVerilog dynamic process adds capability that behaveslike af or k without aj oi n. A dynamic pro-
cessis started as a separate thread, and execution of the current procedure or task continues while the process
is executing. The process does not block the flow of execution of statements within the procedure or task.
Dynamic processes alow the creation of multi-threaded processes, as opposed to multiple procedures, which
are static parallel processes.

A dynamic process €an shall be created by the pr ocess keyword, which is used as follows:

pr ocess statement

For example, the following task initiates an endless loop and returnsimmediately to the caller. The task can be
launched any number of times to display a selected location at every strobe.-

task mnonitorMen(input int address);
process forever @trobe $display("address % data %", men{address] )
endt ask

The following example illustrates using a dynamic process to model a pipeline.

/1 pipeline nodul e

Copyright 2002 Accellera. All rights reserved. 41
Thisis an unapproved Accellera Standards Draft, subject to change.

per Stu’'s
e-mail
28 Mar 2002

per Stu’'s
e-mail
28 Mar 2002

per Stu’'s
e-mail
28 Mar 2002

per Peter’s
e-mail
11 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

nmodul e p(input clk, flush, input int x_in, y_in, z_in);
paraneter int latency = 6, throughput = 2;
int z_out;
int processes = 0;

al ways begin
while (!flush) begin
process begin
int v2, v3, v4, v5; // lifetinme nmatches process
processes++;

v2 = x_in +y_in;
v3 = x_in - z_in;
v4d = v2 * v3;

v = v4 * x_in;

repeat (I atency) @ (posedge clk);
zZ_out <= v5;

processes--;
end
repeat (t hroughput) @ posedge cl k) ;
end
wai t (processes == 0); //wait for flush
end
endnodul e

In the preceeding example, the whi | e loop contains a delay of two clock cycles, from ther epeat statement,
and this determines the pipeline throughput. Each iteration spawns a process which lasts six clock cycles, the
latency of the pipeline. The variable pr ocesses keeps a count of the number of currently active processes.
The pipeline flush is not complete until this count has fallen to zero.

SystemVerilog 3.0 does not provide a mechanism to disable a process once it has been started, but all instances
of anamed block within a dynamic process can be disabled by referring to a named block.

42 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

per Peter’'s
e-mail
27 Mar 2002




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 11
Tasks and Functions

Editor’ s note: Except as noted in a margin, changes in this draft are non-technical clean-up by Stu, for clarity.

11.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for al calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statementsin atask or function without requiring abegi n...end or f or k...j oi n block

— Returning from atask or function before reaching the end of the task or function

11.2 Tasks

[ BNF excerpt to be inserted after BNF is approved]

Syntax 11-16—Task syntax

A Verilog task declaration either has the formal arguments in parentheses (like ANSI C) or in declarations and

directions: per mtg. 20
25 Mar 2002

task nytaskl (output int x, input strg logic y);

Copyright 2002 Accellera. All rights reserved. 43
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

endt ask
task mytask2;
out put Xx;
i nput vy;
int x;
string vy;
endt ask
Each formal argument has one of the following directions:
i nput  // copy valuein at beginning
out put // copy value out at end
i nout // copy in at beginning and out at end
With SystemVerilog, there is a default direction of i nput if no direction has been specified. Once a direction

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

task mytask3(a, b, output logic [15:0] u, v);

end.t éék
Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is | ogi ¢, which is compatible with Verilog. SystemVerilog allows packed
arrays to be specified as formal arguments to atask, for example:

task mytask4(input [3:0][7:0] a, b, output [3:0][7:0] vy);

end.t .a.sk
Verilog-2001 allows tasks to be declared as aut omat i ¢, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by alowing specific formal arguments and local
variablesto be declared as aut omat i ¢ within astatic task, or by declaring specific formal arguments and local
variablesas st at i ¢ within an automatic task.
With SystemVerilog, multiple statements can be written between the task declaration and endt ask, which
means that the begi n .... end can be omitted. If begi n .... end is omitted, statements are executed sequen-
tialy, the same as if they were enclosed in abegi n .... end group.

In Verilog, atask exitswhen the endt ask isreached. With SystemVerilog, the eptienal r et ur n statement can
be used to exit the task before the endt ask keyword.

44 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

11.3 Functions

[ BNF excerpt to be inserted after BNF is approved]

Syntax 11-17—Function syntax
A Verilog function declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations
and directions:
function logic [15:0] nyfuncl(int x, int y);
endfunction
function logic [15:0] nyfunc2
i nput int x;
input int vy;

endf uncti on

SystemVerilog extends Verilog functionsto allow the formal argumentsto be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

i nput  // copy valuein at beginning

out put // copy value out at end

i nout // copy in at beginning and out at end
Function declarations default to the formal directioni nput if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] nyfunc3(int a, int b, output logic [15:0] u, Vv);

end;c ijﬁcti on
Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is | ogi ¢, which is compatible with Verilog. SystemVerilog allows packed

arrays to be specified as formal arguments to a function, for example:

function [3:0][7:0] nyfunc4(input [3:0][7:0] a, b);

Copyright 2002 Accellera. All rights reserved. 45
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

endf uncti on

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] nyfuncl (input foo);
nyfuncl = 16" hbeef; //return value is assigned to function nane
endf uncti on

SystemVerilog allows functions to be declared as type voi d, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by usingr et urn
with avalue. Ther et ur n statement shall overrides any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] nyfunc2 (input foo);
return 16’ hbeef; //return value is specified using return statenent
endf uncti on
In SystemVerilog, a function can return can be a structure or union. In this case, a hierarchical name used
inside the function and beginning with the function name is interpreted as a member of the return value;
[ ' - If the function name is used outside the function, the
name indicates the scope of the whole function. If the function nameis used within a hierarchical name, it al'so
indicates the scope of the whole function.
Function calls are expressions unless of type voi d, which are statements:
a = b + nyfuncl(c, d); //call nmyfuncl (defined above) as an expression
myprint(a); //call myprint (defined below) as a statenent
function void nyprint (int a);

endf uncti on

With SystemVerilog,, a non-void function call can also be used as a statement, but this can result in awarning
message.

46 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 12
Hierarchy

Editor’ s note: Except as noted in a margin, changes in this draft are non-technical clean-up by Stu, for clarity.

12.1 Introduction (informative)

Verilog-2001 has a simple organization. All data, functions and tasks are in modules except for system tasks
and functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of
other modules. Any uninstantiated module is at the top level. This does not apply to libraries, which therefore
have a different status and a different procedure for analyzing them. A hierarchical name can be used to spec-
ify any named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a
lot of effort is spent in maintaining port lists.

In Verilog-2001, only net, r eg, i nt eger andti ne datatypes can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested modul e declarations, to aid in representing self-contained models and libraries
— Relaxed rules on port declarations

— Simplified named port connections

— Implicit port connections, using . *

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 13)

An important enlacement in SystemVerilog isthe ability to pass any data type through module ports, including
nets, and all variable typesincluding reals, arrays, and structures.

12.2 The $root top level

In SystemVerilog there is atop level called $r oot , which is the whole source text. This allows declarations
outside any named modules or interfaces, unlike Verilog-2001.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration
and the order of elaboration must be defined.

Editor’s note: Where is “the order of elaboration” defined?

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared before it is used in text order.

H-there-ts-re-explicittep-teve-instantiatien-ther-A module can be explicity instantiated in the $root top-level.
All uninstantiated modules become implicitly instantiated within the top level, Fhis-which is compatible with
Verilog-2002.

The following paragraphs compare the $root top level and modules.

The $root top level:
— hasasingle occurrence

Copyright 2002 Accellera. All rights reserved. 47
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001
— can be distributed across any number of files
— variable and net definitions are in a global name space and can be accessed throughout the hierarchy
— task and function definitions are in a globa name space and can be accessed throughout the hierarchy
— may not containi ni tial or al ways procedures

— may contain procedural statements, which will be executed onetime, asif inani ni ti al procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the module instance name space and are local to that scope

— task and function definitions are in the modul e instance name space and are local to that scope

— may contain any number of i ni ti al and al ways procedures

— may not contain procedural statementsthat are not withinani ni ti al procedure, al ways procedure, task,
or function

Wh_en an identifier is_referenced within a scope, SystemVerilog follows the Verilog dpware name search rules

dnti-the reet-of-the-hierarehy-is+eached, and then searchesin the $root global name space. Anidentifier in the
global name space can be explicitly selected by pre-pending $r oot . to the identifier name. For example, a
global variable named system reset can be explicitly referenced from any level of hierarchy using
$root . systemreset .—

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions:

typedef int nyint;

function void main ();

nyint i,j,k;

$display ("entering main...");

left (K);

right (i,j,k);

$display ("ending... i=%9d, j=90d, k=%@d", i, j, k);

endf uncti on

function void left (output nyint k);
k = 34;
$display ("entering left");

endf unction

function void right (output nmyint i, j, input nyint k);
$display ("entering right");
i = k/2
j = k+i;

endf uncti on

mai n() ;

48 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

per Peter’'s
e-mail
20 Mar 2002

per Peter’s
e-mail
19 Mar 2002




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

12.3 Module declarations

[ BNF excerpt to be inserted after BNF is approved]

Syntax 12-18—Module declaration syntax

In Verilog, amodule must be declared apart from other modules, and can only be instantiated within another
module. Nete-that-A module declaration may appear after itsuse isinstantiated in the source text:

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-
level space, outside of other modules.

nmodule ml(...); ... endnodul e
module n2(...); ... endnodul e
nmodule nB(...);

mL il(...); // instantiates the local ml decl ared bel ow
n2 i4(...); // instantiates n2 - no | ocal declaration
modul e ml(...); ... endnodule// nested nodul e decl aration
[/ mlL nmodul e nane is in n3”s nanme space
endnodul e

mL i2(...); /! nodule instance in the $root space
/] instantiates the first nodule mlL that is not nested in another
nodul e

Copyright 2002 Accellera. All rights reserved. 49
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

12.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

/'l This exanple shows a D-type flip-flop nade of NAND gates
nmodul e dff _flat(input d, ck, pr, clr, output q, nq);
wire gl, ngl, g2, ng2

nand glb (ngl, d, clr, ql)
nand gla (g1, ck, ng2, nqgl);

nand g2b (ng2, ck, clr, q2);
nand g2a (92, ngl, pr, nq2);

nand g3a (g, ng2, clr, nq)
nand g3b (ng, ql, pr, q);
endnodul e

/1 This exanple shows how the flip-flop can be structured into 3 RS | atches
nodul e dff _nested(input d, ck, pr, clr, output g, nq);
wire gl, ngl, nqg2

modul e ff1l
nand glb (nql, d, clr, ql);
nand gla (ql, ck, ng2, nql)
endnodul e
ff1iia;

modul e ff2
wire g2; // This wire can be encapsulated in ff2
nand g2b (ng2, ck, clr, g2)
nand g2a (g2, ngl, pr, ng2)

endnodul e

ff2 iz2;

nmodul e ff3
nand g3a (g, ng2, clr, nq);
nand g3b (ng, ql1, pr, Q);
endnodul e
ff3i3;
endnodul e

The nested module declarations can al so be used to create a library of modulesthat islocal to part of adesign.

nmodul e part1(....);
nodul e and2(input a; input b; output z);
endnodul e
nmodul e or2(input a; input b; output z);

50 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

endnodul e

and2 ul(....), u2(....), u3(....):

endnodul e

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

Editor’s note: Open issue from meeting 11: Need to discuss if an extern module declaration should be added. Per
meeting 13, Kevin isto write a proposal.

12.5 Port declarations

[ BNF excerpt to be inserted after BNF is approved]

Syntax 12-19—Port declaration syntax

With SystemVerilog, a port can be a declaration of awire net , an interface, an event, er avariable of any type,
a packed array, a structure or aunion.

| Editor’s note: Please verify what | added to the types of port declarations.

nmodul e mhl (input wire wO, output wire wl);
assign wl = wo;
endnodul e

Copyright 2002 Accellera. All rights reserved. 51
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

If no direction is specified, the port type defaults to an interface. If a direction is specified, the port type
defaultstoawi re.

If no type or direction is given to aport, it inherits them from the last specified type and direction.

nmodul e mh3 (i nput char a, b);

éﬁanndule
If there is no previous type or direction specified in the port list, then the ports are treated as port expressions
and the types must be declared later (asin Verilog).

per mtg. 20
25 Mar 2002

Editor’s note: The above seems to conflict with two paragraphs before, which says if no direction is specified, the
default is an interface.

modul e mh4(x, y);
int x;
char v;
endnodul e

Netethat A software tool can use the port direction prevides-an-optional to check against writing to an input
port or not writing to an output port.

| Editor’s note: The previous section discussed default port types and directions, so | deleted the subsection title

, Ports which are of a nets type can have multiple drivers, which are
resolved according to the net’s resolution function. A driver can be an out put port of an instantiation, or a
continuous assignment.

If the port is of typel ogi ¢ or any other datatype, it isavariable, which has the value of the last assignment to
it. If theportisani nout , then these assignments can beinside or outside the module. If the port isan out put ,

they-ean then these assignments shall only be inside the module. This is-the provides a way to model a port
which meant to be asingle driver.

12.6 Time unit and precision

The time unit can be set by thet i meuni t keyword to atime which must be a power of 10 unitse.g.
tinmeunit 100ps;
The time unit is determined by:
1) If atimeunit has been specified in the current module, then the time unit is set to modul€e's time units.

2) Else, if the module definition is nested, then the time unit isinherited from the enclosing module.

52 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

3) Elsg if a‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has atime unit, then the time unit set to the time units of the root module.

5) Else, the smulator’s default time units are used.
The simulator’s default time units follow the rules of the HEEE-Verilog standarel.
Thetime precision isset by thet i mepr eci si on keyword to a time which must be a power of 10 units e.g.
ti meprecision 100fs;

If the ti mepreci si on is not specified, then the precision is determined following the same precedence as
with time units.

Itisan error to set aprecision larger than the current unit.

12.7 Module instances

[ BNF excerpt to be inserted after BNF is approved]

Syntax 12-20—Module instance syntax

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previoudly declared or one
declared later. Actual parameters and port connections can be named or ordered. They can be nets, variables,
or other kinds of interfaces, events, or expressions. See below for the connection rules.

Editor’ s note: Open issue from meeting 20: Cliff to send wording for .* and .name port connections.

12.8 Port connection rules

If aport declaration has avariable data type such as| ogi c, then its direction controls how it can be connected,

Copyright 2002 Accellera. All rights reserved. 53
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

asfollows:

— Ani nput can be connected to any expression of a compatible datatype. If unconnected, it has the initial
value corresponding to the data type

— Anout put can be connected to a variable (or a concatenation) of a compatible data type, and has shared
variable behavior if multiple outputs are connected (last writewins); Anout put | ogi ¢ can be connected
to anet (to provide aresolution function in the case of multiple drivers)

— Ani nout can be connected to avariable (or a concatenation) of the same data type

If a port declaration has awi r e type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— Aninput can be connected to any expression of a compatible datatype. If unconnected, it has the value
'z

— Anout put can be connected to awire net type (or a concatenation of net types) or left unconnected, but
not to al ogi ¢ variable

— Ani nout can be connected to awire net type (or a concatenation of net types) or left unconnected, but not
toal ogi c variable

Note that where the data types differ between the port declaration and connection, an initial value change event
may be caused at time zero.

If a port declaration has a generic i nt er f ace type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows:
— If the port is anet vector, then the Verilog connection rules for nets are followed.

— Iftheportisani nout port variable, then aport connection must have the same size and representation on
both sides of the port. It shall be an error if there is a mismatch.

— Iftheportisani nput or anout put variable, then the Verilog assignment rules are followed.

12.9 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
name. Type names include modules, interfaces, and data types. Instance names include tasks, functions, proce-
dures, variables, constants and labels as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $r oot isthe name of the top level of the hierarchy.

Names areinitially global. A new scope is defined by:
— amodule or interface

— atask or function

— asequential or parallel block

— astructure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
Again The declaration in the closest enclosing scope is matched.

54 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

12.10 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by dets periods,
where an instance name may be an array element.

$root . nynodul e. ul // absol ute nane

ul.structl.fieldl // ul nust be visible locally or above, including globally
adder 1[ 5] . sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names. See-section-13-on-nterfaces:

Copyright 2002 Accellera. All rights reserved. 55
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Section 13
Interfaces

Editor’s note: This section not yet indexed.

13.1 Introduction (informative)

The communication between blocks of a digital system is a critical areathat can affect everything from hard-
ware-software partitioning to performance analysis to bus implementation choices and protocol checking. The
interface construct in SystemVerilog was created specifically to encapsulate the communication between
blocks, allowing a smooth migration from abstract system-level design through successive refinement down to
lower-level register-transfer and structural views of the design. By encapsulating the communication between
blocks, the interface construct aso facilitates design re-use. The inclusion of such a useful language feature is
one of the major advantages of SystemVerilog.

Atitslowest level, an interface is anamed bundle of nets or variables. Theinterfaceisinstantiated in adesign
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
arejust repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of adescription and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don't need to change
atall.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modpor t construct is provided. Asthe name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. i ni ti al or al ways blocks)
and continuous assignments, which are useful for system-level modelling and test bench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can also be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modelled by forkjoin tasks, which can be defined in more than one module and executed concurrently.

56 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

13.2 Interface syntax

[ BNF excerpt to be inserted after BNF is approved]

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
task and function prototypes with the definition in one module (server/dave) and the call in another (client/
master).

Aninterfaceis declared as follows:
interface <identifier> <interface_itens> endinterface [: <nane> <identifier>]
An interface can be instantiated hierarchically like amodule with or without ports. For example;
nyinterface #(100) scalarl, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface isto bundle wires, asisillustrated in the examples bel ow.

13.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

nmodul e memvbd( i nput bit req,
bit clk,
bit start,

Copyright 2002 Accellera. All rights reserved. 57
Thisis an unapproved Accellera Standards Draft, subject to change.

per Peter’'s
e-mail
11 Mar 2002

per Peter’'s
e-mail
11 Mar 2002




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

| ogi c[ 1: 0] node,
| ogic[7:0] addr,

i nout | ogi c[7:0] data,
out put bit gnt,
bit rdy );
| ogic avail;
endnodul e
nodul e cpuMod(
i nput bit clk,
bit gnt,
bit rdy,
i nout logic [7:0] data
out put bit req,
bit start,

| ogic[7:0] addr
| ogic[1:0] node );

endnodul e

nmodul e top
logic req, gnt, start, rdy; // req is logic not bit here
logic clk =0

logic [1:0] node
logic [7:0] addr, data;

memvbd nmem(req, clk, start, node, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, node);

endnodul e

13.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and netsin it are assumed to bei nout ports. The following interface example
shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog
interface capability can significantly reduce the amount of code required to model port connections.

interface sinmple_bus; // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
I ogic [1:0] node
logic start, rdy;
endi nterface: sinple_bus

nodul e memvbd(si npl e_bus a, // Use the sinple_bus interface
i nput bit clk);
| ogic avail;
/Il a.req is the req signal in the 'sinple_bus’ interface
al ways @ posedge clk) a.gnt <= a.req & avail
endnodul e

nodul e cpuMbd(si npl e_bus b, input bit clk);
endnodul e

58 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)
nmodul e top
logic clk =0

sinple_bus sb_intf; // Instantiate the interface

memvbd mem(sb_intf, clk); // Connect the interface to the nodul e instance
cpuMbd cpu(.b(sb_intf), .clk(clk)); // Either by position or by nane

endnodul e

Editor’s note: The following paragraph and example is per Cliff’s e-mail of 12/16/01, and is pending approval of the
¥ implicit port connection syntax.

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in the
memM od and cpuM od module headers, then implicit port declarations aso could have been used to instantiate
the memMod and cpuMod modules into the top module, as shown below:

modul e memvbd (sinple_bus sb_intf, input bit clk);

endﬁﬁaule

nmodul e cpuMbd (sinple_bus sb_intf, input bit clk);

endnodul e

nodul e top

logic clk =0

sinpl e_bus sb_intf;

memvbd nmem (.*); // inplicit port connections
cpuMod cpu (.*); [// inplicit port connections

endnodul e

13.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface isreferred to as a“ generic” inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion:

/1 memvbd and cpuMbd can use any interface
nmodul e menmVbd (interface a, input bit clk);

endnodul e
nodul e cpuMbd(interface b, input bit clk);
endnodul e
interface sinple_bus; // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;

logic [1:0] node
logic start, rdy;

Copyright 2002 Accellera. All rights reserved. 59
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

endi nterface: sinple_bus

nodul e top
logic clk =0

sinmple_bus sb_intf; // Instantiate the interface

/1 Connect the sb_intf instance of the sinple_bus
Il interface to the generic interfaces of the

/1 memvbd and cpuMbd nodul es

memvbd nmem (. a(sb_intf), .clk(clk));

cpuMod cpu (.b(sb_intf), .clk(clk));

endnodul e

Editor’ s note: The following paragraph and example is per Cliff’s e-mail of 12/16/01, and is pending approval of the
¥ implicit port connection syntax.

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below:

nodul e memvbd (interface a, input bit clk);
endﬁﬁaule
nmodul e cpuMod (interface b, input bit clk);
endﬁﬁaule
nmodul e top

logic clk =0

sinpl e_bus sb_intf;

menmvod mem (.*, .a(sb_intf)); // partial inplicit port connections
cpuMd cpu (.*, .b(sb_intf)); // partial inplicit port connections

endnodul e

13.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wire d;
endi nterface

Thewires a, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface sinple_bus (input bit clk); // Define the interface

60 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;
endi nterface: sinple_bus

nmodul e memvbd(si npl e_bus a); // Uses just the interface
| ogic avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // a.reqis in the 'sinple_bus’ interface
endnodul e
nmodul e cpuMbd(si npl e_bus b);
endnodul e
nmodul e top

logic clk =0

sinple_bus sb_intfl(clk); // Instantiate the interface
sinple_bus sb_intf2(clk); // Instantiate the interface

memivbd nmentl(.a(sb_intfl)); // Connect bus 1 to menory 1
cpuMod cpul(.b(sb_intfl));
memvbd nmenR(.a(sb_intf2)); // Connect bus 2 to nmenory 2
cpuMod cpu2(.b(sb_intf2))

endnodul e

Editor’s note: The following paragraph is per Cliff's e-mail of 12/16/01, and is pending approval of the .* implicit
port connection syntax.

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

13.4 Modports

To bundle module ports there are nodpor t lists with directions declared within the interface. The keyword
nmodport indicates that the directions are declared asif inside the module.

interface i?2;
wire a, b, ¢, d
nodport master (input a, b, output c, d);
nodport slave (output a, b, input c, d);
endi nterface

Thenodport list name (master or save) can be specified in the modul e header, where the modpor t name acts
as adirection and the interface name as a type:

nodule m (i2.master i);
endnodul e
nodule s (i2.slave i)

endnodul e

Copyright 2002 Accellera. All rights reserved. 61
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

nmodul e top
121
mul(.i(i));
s u2(.i(i));

endnodul e

Thenodport list name (master or slave) can also be specified in the port connection with the module instance,
where the nodpor t nameis hierarchical from the interface instance:

nodule m(i2i);
endﬁﬁaule
nodule s (i2i);
endﬁﬁaule
nmodul e top

21

mul(.i(i.nmaster));
s u2(.i(i.nmaster));
endnodul e

The syntax of i nt erface_nane. nodport _nane i nstance_nane is redly a hierarchical type fol-
lowed by an instance. Note that this can be generalized to any interface with a given nodpor t name by writ-
ing i nterface. nodport _nane i nstance_nane.

In ahierarchical interface, the directionsin anodport declaration can themselves be nodpor t plus name:

interface il;
interface i3
wire a, b, ¢, d;
nodport master (input a, b, output c, d);
nmodport slave (output a, b, input c, d);
endi nterface
i3 chl, ch2
nodport nmaster2 (chl. master, ch2.master)
endi nterface

Notethat if no modpor t isspecified in the module header or in the port connection, then all the wires and vari-
ablesin the interface are accessible with direction i nout , asin the examples above.

13.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions asin port declarations. It uses
the modport name in the module definition.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
I ogic [1:0] node
logic start, rdy;

nodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data);

62 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data);
endi nterface: sinple_bus

nmodul e memvbd (sinple_bus.slave a); // interface nane and nodport name
| ogic avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endnodul e
nmodul e cpuMbd (sinpl e_bus. master b);
endnodul e
nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 cl k++

menmivbd nen(.a(sb_intf)); // Connect the interface to the nodul e i nstance

cpuMod cpu(.b(sb_intf));

endnodul e

13.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in

the modul e instantiation.

interface sinple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
logic start, rdy;

nmodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data);

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data);

endi nterface: sinple_bus

modul e memvbd(si npl e_bus a); // Uses just the interface nane
| ogic avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endnodul e

nmodul e cpuMbd(si npl e_bus b);

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

63



Accellera

SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001
endﬁﬁaule
nodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface
initial repeat(10) #10 cl k++

menmvbd nen(sb_intf.slave); // Connect the nodport to the nodul e i nstance
cpuMod cpu(sb_intf. master);

endnodul e

13.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

nmodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data);
nodport nmaster (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data);
endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses just the interface
| ogic avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endnodul e
nmodul e cpuMbd(interface b);
endnodul e
nodul e top
logic clk =0

sinmple_bus sb_intf(clk); // Instantiate the interface

memvbd nen(sb_intf.slave); // Connect the nodport to the nodul e i nstance
cpuMod cpu(sb_intf. master);

endnodul e

64 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

13.5 Tasks and Functions in Interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a nodport
these tasks are declared asi nport tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
ext er n intheinterface, or asexport inanodport .

Tasks (not functions) may be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by af or kj oi n ext er n declaration in the interface.

13.5.1 An example of using tasks in an interface

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

task masterRead(input logic[7:0] raddr); // masterRead mnet hod
11
endt ask: naster Read

task slaveRead; // sl aveRead nethod
/1
endt ask: sl aveRead

endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses any interface
| ogi c avail;

al ways @posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

al ways @a. start)
a. sl aveRead,;
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr;
al ways @ posedge b. cl k)
if (instr == read)
b. mast er Read(raddr); // call the Interface nethod

endnodul e

nmodul e top;
logic clk = 0;

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nmem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

Copyright 2002 Accellera. All rights reserved. 65
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

endnodul e

13.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

nmodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data
i mport task slaveRead(),
task slaveWite());
/1 inport into nodule that uses the nodport

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data
i mport task masterRead(input |ogic[7:0] raddr),
task masterWite(input logic[7:0] waddr));
/1 inport requires the full task prototype

task masterRead(input logic[7:0] raddr); // masterRead mnet hod
11
endt ask

task slaveRead; // slaveRead nethod
I
endt ask

task masterWite(input logic[7:0] waddr);
/...
endt ask

task slaveWite;
/...
endt ask

endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

al ways @a. start)
if (a.node[0] == 1'b0)
a. sl aveRead,;
el se
a.slaveWite;
endnodul e

66 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

nmodul e cpuMbd(interface b);
enum {read, wite} instr = $rand();
logic [7:0] raddr = $rand();

al ways @ posedge b. cl k)
if (instr == read)
b. mast er Read(raddr); // call the Interface nethod
11
el se
b. masterWite(raddr);

endnodul e

nodul e omi Mod(i nterface b);
/...
endnodul e: ommi Mod

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nmem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task
omi Mod omi (sb_intf); // has access to all master and sl ave tasks

endnodul e

13.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another using modports to
control task access.

interface sinple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
logic start, rdy;

nmodport sl ave( input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data
export task Read()
task Wite());
/1 export from nodul e that uses the nodport

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data
import task Read(input logic[7:0] raddr),
task Wite(input logic[7:0] waddr));
/1 inport requires the full task prototype

endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface keyword
| ogic avail;

Copyright 2002 Accellera. All rights reserved. 67
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

task a. Read; // Read net hod

avail =0
avail = 1;
endt ask

task a. Wite;

avail =0

avail = 1;
endt ask
endnodul e

nodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)
if (instr == read)
b. Read(raddr); // call the slave method via the interface

el se
b. Wite(raddr);

endnodul e

nodul e top
logic clk =0

sinmple_bus sb_intf(clk); // Instantiate the interface

memvbd nenm(sb_intf.slave); // exports the Read and Wite tasks
cpuMod cpu(sb_intf.master); // inports the Read and Wite tasks

endnodul e

13.5.4 An example of multiple task exports

It isnormally an error for more than one module to export the same task name. However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
So that these can still export their read and write tasks, the tasks must be declared in the interface using the
ext er n f or kj oi n keywords. Normally only one modul e respondsto the task call, e.g. the one containing the
appropriate address. Only then should the task write to the result variables. Note multiple export of functions
is not allowed because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
ext ern forkj oi n. The multiple task export mechanism can also be used to count the instances of a particu-
lar modport that are connected to each interface instance.

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;
int slaves;
/] tasks executed concurrently as a fork/join block

68 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

extern forkjoin task count Sl aves( );
extern forkjoin task Read(input |ogic[7:0] raddr);
extern forkjoin task Wite(input |ogic[7:0] waddr);

nodport slave( input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data
export task Read(),
task Wite());
/1 export from nodul e that uses the nodport

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data
i mport task Read(input logic[7:0] raddr),
task Wite(input logic[7:0] waddr));
/1 inport requires the full task prototype

initial begin

sl aves = 0;

count Sl aves

$di spl ay ("nunber of slaves = %", slaves);
end

endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses just the interface keyword
| ogi c avail;

task a.count Sl aves
a. sl aves++;
endt ask

task a.Read; // Read net hod

avail =0
avail = 1;
endt ask

task a. Wite;

avail =0

avail = 1;
endt ask
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)

if (instr == read)
b. Read(raddr); // call the slave nmethod via the interface
11
el se

b. Wite(raddr);

endnodul e

Copyright 2002 Accellera. All rights reserved. 69
Thisis an unapproved Accellera Standards Draft, subject to change.



SystemVerilog 3.0/draft 5 (3/29/02)

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); //
memvbd nmeml(sb_intf. sl ave);
memvbd nmenm2(sb_intf. sl ave);
cpuMod cpu(sb_intf.master);

endnodul e

13.6 Parameterized interfaces

Accellera
Extensions to Verilog-2001

Instantiate the interface

/l exports the countSlaves, Read and Wite tasks
/l exports the countSlaves, Read and Wite tasks
/linmports the Read and Wite tasks

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-
ule definitions. This example shows how to use parametersin interface definitions.

interface sinple_bus #(parameter AWDTH = 8, DWDTH = 8;)

(input bit clk);

| ogic req, gnt;
|l ogic [ AWDTH 1: 0] addr;
logic [DWDTH 1:0] data;

!/l Define the interface

| ogic [1:0] node

logic start, rdy;

nodport slave( input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data

i mport task slaveRead(),
task slaveWite());

/1 inport into nodule that uses the nodport
nodport nmaster (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data

i mport task nasterRead(i nput
task master Wite(input
requires the ful

/1 inport
task master Read(i nput
endiéék
task sl aveRead;
end{éék
task masterWite(input
endiéék
task slaveWite;
endiéék

endi nterface: sinple_bus

nmodul e memvbd(i nterface a);

70

| ogi c[ AW DTH- 1: 0]

| ogi c[ AWDTH- 1: 0] raddr),
| ogi c[ AWDTH- 1: 0] waddr))
task prototype

raddr); // masterRead nethod

/! sl aveRead net hod

| ogi c[ AWDTH 1: 0] waddr);

/1 Uses just the interface keyword

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

| ogic avail;

al ways @ posedge b.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

al ways @b. start)
if (a.nmode[0] == 1'b0)
a. sl aveRead;
el se
a.slaveWite;
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)

if (instr == read)
b. mast er Read(raddr); // call the Interface nethod
/1

el se

b. masterWite(raddr);
endnodul e
nmodul e top
logic clk =0

sinmple_bus sb_intf(clk); // Instantiate default interface
sinmpl e_bus #(. DWDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 cl k++

memvbd nenm(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

memvod nmemA(w de_intf.slave); // 16-bit w de nenory
cpuMod cpuWwi de_intf.master); // 16-bit w de cpu

endnodul e

13.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within amodule. If the methods are used
to accessinternal state information about the interface, then these methods may be called from different points
in the design to share information.

interface intf_mutex;
task lock ();
endt ask

function unl ock();

Copyright 2002 Accellera. All rights reserved. 71
Thisis an unapproved Accellera Standards Draft, subject to change.

per mtg. 19




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

endf uncti on
endi nterface

function int f(input int i);
return(i); // just returns arg
endf uncti on

function int g(input int i);
return(i); // just returns arg
endf uncti on

nmodul e nmod1(i nput int in, output int out);
i ntf_nutex nutex;

al ways begin
#10 nut ex. | ock();
@in) out = f(in);
mut ex. unl ock;

end

al ways begin
#10 nut ex. | ock();
@in) out = g(in);
mut ex. unl ock;
end
endnodul e

72 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 14
Parameters

Editor’ s note: Except as noted in a margin, changes in this draft are non-technical clean-up by Stu, for clarity.

14.1 Introduction (informative)

Verilog-2001 has parameters, local params and specparams, which are typically used either for controlling the
dimensions of arrays, or for controlling delays. The parameter values can be set in three ways. They must be
given adefault value when declared. Fhis The default value of parameters can be overridden by the instantia-
tion of the module, and this in turn can be overridden by a def par amstatement. The latter can have a hierar-
chical name so that it does not need to be in the same module as the instantiation.

SystemVerilog extends the Verilog par anet er toincludet ype. This provides polymorphism for modules and
interfaces.

14.2 Syntax

[ BNF excerpt to be inserted after BNF is approved]

Syntax 14-21—Parameter declaration syntax

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type | ogi ¢ of arbitrary size for Verilog-2001 compatibility and interoperability.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

nmodule ma  #( paraneter pl = 1; paraneter type p2 = shortint; )
(input logic [pl:0] i, output logic [pl:0] 0);

p2 j =0; // type of | is set by a paraneter, which is shortint unless
redefi ned
always @i) begin
0 =i;
j ++;
end
endnodul e
Copyright 2002 Accellera. All rights reserved. 73

Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

nmodul e b

logic [3:0] i,o0

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endnodul e

74 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 15
Configuration libraries

15.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

15.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

15.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $root top level.

Copyright 2002 Accellera. All rights reserved. 75
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

76 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 16
System tasks and system functions

Editor’s note: Except as noted in a margin, changes in this draft are non-technical clean-up by Stu, for clarity.

16.1 Introduction (informative)

SystemVerilog adds a system function to determine the bit size of avalue.

16.2 The $bits system function

The $bits system function returns the number of bits required to hold avalue. A 4 state value counts as one hit;

so-$bits-en-an-tntegerwitreturns-32. Given the declaration | ogi ¢ [ 31: 0] f oo; , $bi t s(f 0o) will return

32, even if atool may require more than 32-bits of storage to represent the 4-state values.

Copyright 2002 Accellera. All rights reserved. 77
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

Section 17
Compiler Directives

Editor’ s note: Except as noted in a margin, changes in this draft are non-technical clean-up by Stu, for clarity.

17.1 Introduction (informative)

Verilog-2001 provides the  def i ne text substitution macro compiler directive. A macro can contain argu-
ments, whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)
* NAND( 3) il (y, a, b); //*"NAND(3) macro substitutes with: nand #(3)

“ NAND( 3: 4: 5) i2 (o, ¢, d); //"NAND(3:4:5) nacro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the * def i ne compiler directive to support strings as macro argu-
ments

17.2 ‘define macros

In SystemVerilog, the' def i ne macro text can include a backslash (\ ) at the end of aline to show continua-
tion on the next line.

The macro text can also include an isolated quote, which must be preceded by a back tick, *". This alows
macro arguments to be included in strings. If the strings are to contain \ ", the macro text should be written
“\ . Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, * *, to allow identifiers to be constructed from arguments,
eg.

‘define foo(f) f'*'_suffix

This expands:

f oo( bar)
to:

bar _suffix

Note that there must be no space before the parenthesis. Otherwise it istreated as macro text.
The ‘include directive can be followed by amacro instead of aliteral string:

‘define f1 "/hone/fool/ nyfile"
‘“include ‘f1

78 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Section 18
Assertions

Editor’ s note: This section is currently in a separate document, and will be added once approved.

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

79




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

80 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Seeter19
el o .

Editor’s note: This section deferred to SystemVerilog 3.1, per meeting 19.

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

8l




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

82 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001

Annex A

Formal Syntax

(Normative)

SystemVerilog 3.0/draft 5 (3/29/02)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:

— Keywords and punctuation arein bold text.

— Syntactic categories are named in non-bold text.

— Italics do not form part of the category, so type_identifier has the same syntax asidentifier

— A vertical bar ( | ) separates aternatives.

— Squarebrackets( [ ] ) enclose optional items.

— Braces( { } ) encloseitemswhich may be repeated zero or more times.

Editor’s note: The following BNF is a subset of the IEEE 1364 Verilog-2001 BNF, and reflects what is different
between SystemVerilog and Verilog-2001. A complete BNF is being created, and will replace this section once

approved.

A.1 Source text

source_text ::=[unit] [precision] { declaration_or_statement}
declaration_or_statement ::=

library_declaration
| include_statement
| config_declaration
| module_declaration
| interface _declaration
| task_declaration
| function_declaration
| udp_declaration
| module_instantiation
| interface instantiation
| event_declaration
| net_declaration
| data_declaration
| statement

library_declaration :;=

library library_identifier file path_spec;

include_statement ::=

include file_path_spec;

config_declaration ::=

config config_identifier ; design_statement
{config_rule_statement} endconfig

design_statement ::=

design {[library_identifier].cell_identifier}

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

83



Accellera

SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

config_rule_statement ::=
default liblist_clause
| cell_clauseliblist_clause
| cell_clause use clause
| inst_clauseliblist_clause
| inst_clause use clause
cell_clause ::=cell library_identifier . cell_identifier
inst_clause ::= instance name
liblist_clause::=liblist {library_identifier}
use clause::=use[library identifier.] cell_identifier
module_declaration ::=
module_keyword identifier [parameter_port_list]
[(port_list)] ; [unit] [precision]
{module_item} endmodule
| module_keyword identifier [parameter_port_list]
[( port_decls)] ; [unit] [precision]
{nhon_port_module_item} endmodule
module_keyword ::= module | macromodule
port_list ::= port { , port }
port ::=
port_expression
| . identifier ([port_expression] )
port_decls ::= port_declaration { , port_declaration }
port_declaration ::=
attribute_instance port_declaration
| direction] [port_type] variables
| interface variables
| interface . identifier variables
| identifier variables
| identifier . identifier variables
| direction . identifier ( port_expression )
direction :;= input | output | inout
port_type::=
data type { const_range}
| net_type[signing] { packed dimension}
| event
port_expression::=
indexed identifier
| { indexed_identifier { , indexed _identifier } }
module_item :;=
io_declaration
| non_port_module_item
non_port_module_item ::=
attribute_instance non_port_module_item
| module_or_generate item
| module_declaration
| interface_declaration
| parameter_declaration
| specparam_declaration
| specify_block

84 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

module or_generate item ::=
event_declaration
| module_instantiation
| primitive_instantiation
| interface_or_generate item
| generated instantiation
interface_declaration ::=
interface identifier [parameter_port_list] ; [ ( port_list) ] ; [unit][precision]
{ interface item}
endinterface[: identifier]
| interface identifier [parameter_port_list] ;
[ (port_decls) ] ; [unit][precision]
{ non_port_interface item}
endinterface[: identifier]
interface item ::=
io_declaration
| non_port_interface item
non_port_interface item :;:=
attribute_instance non_port_interface item
| interface_declaration
| parameter_declaration
| specparam_declaration
| interface_or_generate item
| generated instantiation
interface_or_generate item::=
event_declaration
| net_declaration
| interface instantiation
| data_declaration
| task_declaration
| function_declaration
| modport_declaration
| initial_statement
| always_statement
| continuous_assign
parameter_port_list ::=
# ( parameter_declaration { parameter_declaration} )
unit ::= [ timeunit [time_literal] ; ]
precision :;= [ timeprecision [time_literal] ; ]
modport_declaration ::= modport modport_item{, modport_item} ;
modport_item ::= identifier ( modport_port{, modport_port} )
modport_port ::=
[direction] [port_type] identifier
| identifier . identifier

A.2 Data, Event and Net declarations

parameter_declaration ::=
parameter [data type] initial_assignments;
| parameter [signing] { packed_dimension} initial_assignments;
| parameter type type_assignments ;

Copyright 2002 Accellera. All rights reserved. 85
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

specparam_declaration ;=
param [data_type] initial_assignments ;
| param [signing] { packed _dimension} initial_assignments;

param ::= localparam | specparam
net_declaration ::=
net_type [strength] [vector_or_scalar] [signing] { packed dimension}
[delay values] vars or_assigns;
event_declaration ::= event variables;;
net_type ::=wire|wand | wor | supplyO | supplyd | tri |triO|tril|triand |trior |trireg
strength ::=
('strengthO, strengthl)
| (strengthl, strengthO)
| (charge strength)
strengthO ::= supplyO | strongO | pullO | weakO | highz0
strengthl ::= supplyl | strongl | pulll | weakl | highzl
charge strength ::=large | medium | small
vector_or_scalar ::= vectored | scalared

delay values::=
# delay_value
| # (delay_vauel, delay valuel, delay value]])

initial_assignments ::= initial_assignment { , initial_assignment }
initial_assignment ::= identifier = expression
type_assignments ;;= type_assignment { , type _assignment }
type assignment ::= identifier = data_type
data _declaration ::=
variable_declaration
| constant_declaration

| type_declaration
| state declaration

variable declaration::=[ lifetime] data type vars or_assigns;
lifetime ::= static | automatic
constant_declaration::= const data type initia_assignments ;

type declaration ::=
typedef data type variable ;
| typedef identifier {[constant_expression]} . type identifier variable ;

state declaration::= state{ state list} identifier [ delay_or_event] ;
state list ::= and_states | or_states

and_states ::= state and state { and state}

or_states::= dtate, state{ , state }

state::=[ { state list } ] identifier

vars or_assigns::=var_or_assign{ , var_or_assign}
var_or_assign ::= variable[ = constant_expression ]

variables ;= variable { , variable }

variable ::= identifier { unpacked dimension }
unpacked_dimension ::= packed_dimension

simple_type ::= integer_type | non_integer_type | type_identifier

86 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

A.3 Tasks and Functions

task_declaration ::=
task [automatic] tf_name;
{ task_item declaration } { statement }
endtask [: identifier]
| task [automatic] tf_name ( task_formals) ;
{ data_declaration} { statement }
endtask [: identifier]
task_item_declaration ::=
direction [ data type] variables;
| data_declaration
task_formals::= [ task_formal {, task_formal } ]
task_formal ::=
[port] [direction] [data_type] variable
| port event variable
task_prototype ::=task ([ task_proto_formal {, task_proto formal} )
named_task_proto :;=task identifier ([ task_proto formal {, task_proto_formal} )

task_proto_formal ::=
[port] direction data_type [variable]
| port event variable
function_declaration ::=
function [automatic] data type tf_name ;
{fn_item_declaration}
{ statement }
endfunction [: identifier : ]
| function [automatic] data_typetf_name ( fn_formals) ;
{data_declaration}
{ statement }
endfunction [: identifier : ]
fn_item declaration ::=
[direction] [ data_type] variables;;
| data_declaration
tf_name ::= identifier [ . identifier ]
fn_formals::=[ fn_formal { , fn_formal } ]
fn_formal ::= [direction] [data_type] variable
fn_prototype ::= function data_type ( fn_proto_formals)
named_fn_proto::= function data_typeidentifier ( fn_proto_formals)
fn_proto_formals::=[ fn_proto formal { , fn_proto formal } ]
fn_proto_formal ::=
[direction] data_type [variable]
| variable

A.4 Data Types

data type::=
integer_type [signing] { packed dimension}
| type_identifier} { packed_dimension}
| non_integer_type

Copyright 2002 Accellera. All rights reserved. 87
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

| struct { { struct_union_member } }

| union { { struct_union_member } }

| enum { enum_member }

| void
integer_type::=bit |logic | reg | byte | char | shortint |int | longint | integer
non_integer_type ::=time|shortreal | real | $built-in
signing ::=[ signed ] | [ unsigned ]
packed dimension ::= [ constant_expression : constant_expression |
struct_union_member ::= data_type variables ;
enum_member :;=

identifier
| identifier = constant_expression

A.5 Instantiations

generated_instantiation ::= gener ate { generate_item} endgener ate
generate item_or_null ::= generate item | ;
generate item ;=
generate_conditiona _statement

| generate case_statement

| generate loop_statement

| generate block

| module_or_generate_item /* if in module */

| interface_or_generate_item /* if ininterface*/
generate_conditional_statement ::=

if’ ( constant_expression ) generate item_or_null

[ else generate item_or_null ]
generate_case statement ::=

case ( constant_expression )

generate_case_item {generate_case item}

endcase
generate _case item ;=

constant_expression {, constant_expression : generate_item_or_null
generate |loop_statement ::=

for (genvar_decl_or_assign ; expression ; genvar_expr_or_assign)

generate_named_block

genvar_decl_or_assign ::= [genvar] identifier = constant_expression
genvar_expr_or_assign ::= unary_expression | operator_assignment
generate_named_block ::=

begin : identifier { generate_item} end

| identifier : generate_block

generate block ::= begin [: identifier] { generate item} end
module _instantiation ::=

module_identifier [ parameter_values] named_instance {, named instance} ;
interface instantiation ::=

interface identifier [ parameter_values] named _instance {, named_instance} ;
udp_instantiation ::=

identifier [strength] [delay_values] primitive_instance {; primitive_instance} ;

88 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

gate instantiation ::=
gate [strength] [delay_values] primitive_instance {; primitive instance} ;
gate::=
and | nand | or | nor | xor | xnor | buf’ | not | bufifO | bufifl | notifO | notifl
| cmos | remos| nmos | rnmos | pmos | rpmos
| tranifO | rtranifO | tranifl |rtranifl|tran |rtran

parameter_values :;=
# (expression {, expression} )
| # ( named_param val { , named param_val} )

named_param val ::=. identifier ( expression )
named_instance ::= identifier {| expression : expression |} [ ( port_connections) ]
primitive_instance ::= [identifier] {[ expression : expression |} [ ( port_connections) ]

port_connections ::=
[ expression] { , [expression] }
| named_port_connection{ , named_port_connection }

named_port_connection ::= . identifier ( expression )

A.6 Procedural Statements

initial_statement ::= initial statement

aways statement ::= always statement
combinational_statement ::= always comb statement
latch_statement ::= always latch statement
ff_statement ::= always _ff statement
statement_or_null :;= statement | ;

statement ::=

blocking_assignment ;

| non_blocking_assignment ;

| selection

| loop

| jump

| delay_control statement_or_null

| event_control statement_or_null

| wait ( expression ) statement_or_null

| process statement

| disable name;

| sequential_block

| parallel_block

| = event_name;

| transition_to_state statement_or_null

| expression;

| proc_continuous_assign ;

| identifier : statement

selection ::=

[up]if (expression) statement_or_null
[ else statement_or_nulll ]

| [up] case ( expression ) case_item { case_item } endcase

| transition ( name) transition { transition } endtransition

up ::=unique| priority

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

89



Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

case ::= case| casez | casex
loop ::=
forever statement
| repeat ( expression) statement_or_null
| while (' expression ) statement_or_null
| for ([declare_or_assign] ; [expression] ; [expression_or_assign] ) statement_or_null
| do statement while ( expression)
jump ;=
return [ expression] ;
| break ;
| continue;
declare or_assign ::=
Ivalue = expression
| data_type identifier = expression
declare or_exp::=
unary_expression
| data typeidentifier
blocking_assignment ::=
operator_assignment
| lvalue = delay_or_event expression
operator_assignment ::= Ivalue assignment_operator expression

assignment_operator ;:== | *=|/=|%=|+=|-=|<<=|>>=|&=|"=||=
non_blocking_assignment ::= Ivalue <= [ delay_or_event ] expression
delay or_event::=
delay_control
| [ repeat ( expression) ] event_control
case item::=
expression{ , expression} : statement_or_null
| default [ : ] statement_or_null
transition ::=

state_conditions : statement_or_null
| default [ : ] statement_or_null

state_conditions ::= state_condition { , state_condition }
state_condition ::= state_identifier { and state identifier }
sequential_block ::= begin [ : identifier ] { statement} end [ : identifier]
parale_block ::=fork [ : identifier ] { statement} join [ : identifier]
transition_to_state::=

—>> machine_name . state _identifier

| => machine_name . ( state_condition)
| [transition_identifier] —> state_condition
proc_continuous_assign ::=
assign hame_or_names = expression
| deassign name
| force name_or_names = expression
| release name

A.7 Names

name_or_names::=name|{ name{ , name} }

90 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

name ::= indexed _identifier { . indexed_identifier }
indexed_identifier ::= identifier [ [ constant_expression [ : constant_expression] ] ]

A.8 Delay and Event Controls

delay control ::=
# number
| # name
| # (expression)
event_control ::=
@ name
| @ (event_expressions)
| @
event_expressions ::=
event_expression { or event_expression }
| event_expression { , event_expression }
event_expression ::=
[ edge] expression [ iff expression ]
| ([ edge] expression [ iff expression])
edge ::= posedge | negedge | changed

A.9 Expressions

expression ::=
unary_expression
| expression binary_operator expression
| expression ? expression : expression
| (operator_assignment )
unary_expression ::= [unary_operator] Ivalue
unary_operator ::=+ | —|! |~ & |~& |||~ | |~ |~ | bump_operator
Ivalue ::= postfix_expression
postfix_expression ::=
primary [ bump_operator ]
| postfix_expression . identifier
| postfix_expression -> identifier
| postfix_expression [ expression |
| postfix_expression [ expression : expression |
| postfix_expression ([ expression{ , expression} ] )
| postfix_expression bump_operator
bump_operator ::=+ + | ——

binary_operator ::=

=% === === |l==|<|<=|>|>= | << |>> | <<< [>>> | && [ [[[ & [[ | [ M~
primary ::=

identifier

| literal

| data_type

| (expression)

| { expression { , expression} }
| { expression { expression} }

| smple_type'( expression)

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

91



SystemVerilog 3.0/draft 5 (3/29/02)

| smple _type'{ expression { , expression} }
| simple_type '{ expression { expression} }

A.10 Literals
literal ::=
string_literal
| number
| time_literal

[0 1] z"Z |'x|'X
string_literal;:=" value"
number ::=

integer

| [integer] ' base value

| real

base::="b|'d|'h|'0]|'sb|’sd|’sh|’'so
time_literal ::= integer [ . integer ] time_unit
time_unit ;= s|ms|us|ns|ps|fs

92 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera

Extensions to Verilog-2001

Annex B

Keywords

SystemVerilog reserves the following keywords:

SystemVerilog 3.0/draft 5 (3/29/02)

al ways endt abl e nmodul e smal |

al ways_conb' endt ask nand speci fy
al ways_ff T endtransition® negedge specpar am
al ways_| atch’ enun’ nnos statel
and event nor statict
assign export T noshowcancel | ed strong0
automatic extern? not strongl
begin for notifoO struct '
bith force notif1 suppl yo
br eak’ forever or suppl y1
buf fork out put tabl e
bufifo forkj oi nt packedJr t ask
bufifl function par anet er time

byt el generate pnos ti meprecision'
case genvar posedge tinmeunit?
casex hi ghz0 primtive tran
casez hi ghz1 processJr tranif0
cel | if priorityJr tranifl
changed’ iffT pul | 0 transition'
char’ i fnone pul |1 tri

elasst i nport T pul | down trio
cnos incdir pul | up tril
config i ncl ude pul sestyl e_onevent triand
const T initial pul sestyl e_ondet ect trior
conti nue’ i nout rcnos trireg
deassi gn i nput r eal type'

def aul t i nstance real tine typedef T
def param int? reg uni on
desi gn i nt eger rel ease uni queJr
di sabl e interface® r epeat unsi gned
dof join return use

el se | arge r nnos vect or ed
end liblist r pnos wai t
endcase library rtran wand
endconfig | ocal param rtrani fO weak0
endf unction logic’ rtranifl weak 1
endgener at e | ongi nt T scal ared whi | e
endi nterface’ I ongreal T shortint’ wire
endnodul e macr onodul e shortreal ' wor
endprimtive medi um showcancel | ed xnor
endspeci fy nodport si gned xor

T keywords not in the Verilog-2001 standard

Copyright 2002 Accellera. All rights reserved. 93

Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

94 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Annex C

Glossary

Editor’s note: Stu to provide alist of terms for the glossary. Peter to write the definitions of the terms.

Copyright 2002 Accellera. All rights reserved. 95
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

96 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 5 (3/29/02)

Annex D

Bibliography

Editor’ s note: This annex to be completed before the final draft.

Copyright 2002 Accellera. All rights reserved. 97
Thisis an unapproved Accellera Standards Draft, subject to change.




Accellera
SystemVerilog 3.0/draft 5 (3/29/02) Extensions to Verilog-2001

98 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



Accellera
Extensions to Verilog-2001

Index

Symbols

$hits 10, 77

$root 47, 48

%= operator 19
&= operator 19

*= operator 19

++ operator 20

+= operator 19

/= operator 19
<<<= operator 19
<<= operator 19

-- operator 20

-= operator 19

>>= gperator 19
>>>= operator 19

\ line continuation 78
\abell 3

\f form feed 3

\v vertical tab 3
\x02 hex number 3
A= operator 19
‘timescale 7

|= operator 19

‘" isolated quote 78
** double back tick 78
‘define 78
‘timescale 53

' cast operator 9

Numerics
2-state types 7
4-state types 7

A

aways @* 40
aways_comb 39, 40
aways ff 40
aways latch 39, 40
array literals 3

array part selects 12
array slices 12
arrays 11

assign 16

assignment operators 18, 19
assignmentsin expressions 19

attributes 17
automatic 14, 15, 16, 43
automatic tasks 44

B
bell 3
bit 5, 6, 7

SystemVerilog 3.0/draft 5 (3/29/02)

block name 27, 28
blocking assignments 24
break 23, 27, 28

byte 6, 7

C

casting 9

changed 29

char 6, 7
combinational logic 39
concatenation 22
configurations 75
const 14, 15
constants 15

continue 23, 27, 28
continuous assignment 40

D

data declarations 14
datatypes 5

decrementor operator 18, 20
defparam 73

disable 28

do...whileloop 23, 26

double 7

dynamic processes 28, 39, 41

E

elaboration 47
enum 8, 9
enumerated types 8

F

float 7

force 16

fork...join processes 41
form feed 3

functions 45

G
goto 27

H
hierarchical names 55

I

iff 29

incrementor operator 18, 20
inth5, 6,7

integer 6, 7

integer literals 2

interface 17

introduction to SystemVerilog 1

L
labels 27, 28

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

99



SystemVerilog 3.0/draft 5 (3/29/02)

latched logic 40
libraries 75

library map files 75
literal values 2
localparam 73
logic 5, 6, 7, 16
longint 5, 6, 7

M
multiple dimension arrays 11

N

name space 54

named blocks 27

nested identifiers 55

nested modules 49, 50
nonblocking assignments 24

O

operator associativity 21
operator precedence 21
overview of SystemVerilog 1

P

packed arrays 11, 12, 20
parameter 73

part selects 12

port declarations 51, 52, 53, 54
precedence 21

priority 25, 26

process 28, 39, 41

process labels 41

R

real 2,5, 7,20

red literals 2

reg 5, 6, 7

return 23, 27, 28, 44, 46

S

scalared 11

sequential logic 40
shortint 6, 7

shortreal 2, 5, 7, 20
signed types 7

dices 12

specparam 73
statement labels 27
static 14, 15, 16, 43
static processes 28, 39
static tasks 44

string literals 3

struct 9

structure literals 3
structures 9
SystemVerilog, overview 1

Accellera
Extensions to Verilog-2001

SystemV erilog,version numbers 1

T
tasks 43
timeliterals 3

time unit 3
timeprecision 7, 53
timeunit 7, 52

top level 47
typedef 5, 8

)

union 9

unions 9

unique 25, 26
unpacked arrays 11, 12
unsigned types 7
unsized literals 2
user-defined types 8

V

variableinitialization 15
vectored 11

Verilog, version numbers 1
version numbers 1

vertical tab 3

void 8

void functions 43, 46

W
while 23, 26

100 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.



