
Per our conference call of April 1, 2002, I have softened the deprecation proposal as shown below.

Regards - Cliff

What I did was to note in the appropriate section (literally, in a note
in that section) that "such-and-such-feature may be removed from a
future version of the language." I also created a non-normative annex
that listed all such features.

For example, in the section on ports (1.1.1.2), the following note
appears:

-- Port of mode linkage may be removed from a future version of
the language. See Annex F.

And, in Annex F, entitled "Features under consideration for removal":
The following features are being considered for removal from a
future version of the language. Accordingly, modelers should
refrain from using them when possible:

-- Ports of mode linkage (1.1.1.2, and 4.3.2)
-- ...

To comment on these, or any other features of VHDL, please visit
http://vhdl.org/vasg.

===========

PROPOSAL: Add a Section 19 entitled:

Verilog features under consideration for removal from SystemVerilog

The following Verilog language features are simulation inefficient, easily abused and the source of
numerous design problems and are therefore being considered for removal from the SystemVerilog
language.

Defparam statements (x.x.x.x, and x.x.x)

Prior to the acceptance of the Verilog-2001 Standard (IEEE Std 1364-2001), it was common practice to
change one or more parameters of instantiated modules using a separate defparam statement. Defparam
statements are frequently the source of needless tool complexity and design problems.

When a defparam statement is placed in the Verilog code adjacent to the instance whose parameters are to
be modified, and if the defparam statement makes a simple modification to just the parameters of the
instantiated module and not hierarchically to any other parameters, the defparam statement has been used
as intended.

The problem with the defparam is that a defparam statement can precede the instance to be modified, can
follow the instance to be modified, can be at the end of the file that contains the instance to be modified,
can be in a whole separate file from the instance to be modified, can modify parameters hierarchically that
in turn must again be passed to other defparam statements to modify parameters for a specific instance and
can modify the same parameter from two different defparam statements placed in the same or in two
separate files (with undefined results). Due to the many ways that a defparam can modify parameters, a

Verilog compiler cannot insure the final parameter values for an instance until after all of the design files
are compiled. This abuse of the defparam statement causes compiler tool inefficiencies and difficult
debugging of convoluted parameterized Verilog designs.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated
modules was to use the #(parameter) redefinition syntax included as part of the instantiation itself. The
disadvantage to using the #(parameter) redefinition syntax was that all parameters up to and including the
parameter to be changed had to be placed in the correct order and assigned values, enclosed within the
parentheses.

Verilog-2001 introduced the capability to pass parameters by name in the instantiation, which supplied all
of the necessary parameter information to the model in the instantiation itself.

The practice of adding defparam statements to Verilog source files is highly discouraged and being
considered for removal from the SystemVerilog Standard. Engineers are encouraged to take advantage of
the new named parameter passing capability introduced by and added to the IEEE Verilog-2001 Standard.

============

Verilog has long had the confusing capability to do procedural assign and deassign assignments (not to be
confused with a continuous assignment, which is placed outside of procedural blocks). In particular, the
assign statement has a strange behavior that most Verilog users don't understand and engineers either find
the behavior confusing or they get lucky and the assign statement is coded in such a way as to yield correct
simulation results, despite the incorrect usage of the statement.

Most designs that include an assign statement inside of a procedural block could have been coded without
the assign statement.

The problem with the procedural assign and deassign statements is that they are often used to control the
value of a variable from multiple procedural blocks. Although simple assign and deassgin statements can
be understood, multiple assign statements are sometimes place in multiple procedural blocks to control the
same variable and in large designs, it can be either difficult or impossible for a user to understand the
priority of the multiple assign statements. Synthesis tools do not support the procedural assign and deassign
statements because they can be coded in a manner that is impossible to implement in hardware.

The procedural assign statement has the strange behavior that it will update the LHS procedural variable
anytime the RHS variable changes, even if the RHS variable is not in the sensitivity list. The concept that
last assign wins is also confusing and restoring other non-assign procedural assignments to activity after a
deassign statement is similarly confusing.

The force-release commands have the same functionality (on both procedural and net variables) but they
are rarely abused, not synthesizable by any tool, and rather clearly documented to be intended mostly for
debugging purposes. Having both assign-deassign and force-release where the latter has higher priority and
can also assign to wire types is confusing to most Verilog users.

The continuous assignment statement, placed outside of a procedural block, is still highly recommended for
RTL coding of combinational logic.

The practice of using the assign and deassign statements inside of procedural blocks is highly discouraged
and being considered for removal from the SystemVerilog Standard. Any engineer caught using these
statements should be flogged (in a professional way).

The last sentence can be omitted if the committee thinks that statement is too severe ;-)

============

