
This email message contains proposals to replace section 12.7 in its entirety and
some changes to the interface section.

Please be ready to vote on this by Monday.

Regards - Cliff

12.7 Module instances

[BNF excerpt to be inserted after BNF is approved]

BNF section A.4.1.1 - Module instantiation

module_instance ::= name_of_instance ([list_of_port_connections])

name_of_instance ::= module_instance_identifier { range }

list_of_port_connections ::=
 ordered_port_connection { , ordered_port_connection }
 | dot_named_port_connection { , dot_named_port_connection }
 | { named_port_connection , } dot_star_port_connection
 { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } .port_identifier ([expression])

dot_named_port_connection ::=
 { attribute_instance } .port_identifier
 | named_port_connection

dot_star_port_connection ::= { attribute_instance } .*

Syntax 12-20—Module instance syntax

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one
declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or
implicitly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See
below for the connection rules.

Consider an alu-accumulator (alu_accum) example module that includes instantiations of an alu
module, an accumulator register (accum) module and a sign-extension (xtend) module. The module
headers for the three instantiated modules are shown in the following example code:

module alu (
 output reg [7:0] alu_out,
 output reg zero,
 input [7:0] ain, bin,
 input [2:0] opcode);

 // RTL code for the alu module
endmodule

module accum (
 output reg [7:0] dataout,
 input [7:0] datain,
 input clk, rst_n);

 // RTL code for the accumulator module

endmodule

module xtend (
 output reg [7:0] dout,
 input din,
 input clk, rst_n);

 // RTL code for the sign-extension module
endmodule

12.7.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections as shown in the
alu_accum1 module example.

module alu_accum1 (
 output [15:0] dataout,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 wire [7:0] alu_out;

 alu alu (alu_out, , ain, bin, opcode);

 accum accum (dataout[7:0], alu_out, clk, rst_n);

 xtend xtend (dataout[15:8], alu_out[7], clk, rst_n);

endmodule

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that
they are connected to, there will be no warnings and the simulation will work as expected.

12.7.2 Instantiation using named port connections

Verilog has always permitted instantiation of modules using named port connections as shown in the
alu_accum2 module example.

module alu_accum2 (
 output [15:0] dataout,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 wire [7:0] alu_out;

 alu alu (.alu_out(alu_out), .zero(),
 .ain(ain), .bin(bin), .opcode(opcode));

 accum accum (.dataout(dataout[7:0]), .datain(alu_out),
 .clk(clk), .rst_n(rst_n));

 xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]),
 .clk(clk), .rst_n(rst_n));

endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The
variables connected to the instance ports must be the same size or a port-size mismatch warning will be
reported.

12.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port
name and size match the connecting variable-port name and size. This enhancement eliminates the
requirement to list a port name twice when the port name and signal name are the same, while still listing
all of the ports of the instantiated module for documentation purposes.

In the following alu_accum3 example, all of the ports of the instantiated alu module match the names
of the variables connected to the ports, except for the unconnected zero port, which is listed using a
named port connection, showing that the port is unconnected. Implicit .name port connections are made
for all name and size matching connections on the instantiated module.

In the same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the
port must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The
datain port on the accum is connected to a bus by a different name (alu_out), so this port is also
connected by name. The clk and rst_n ports are connected using implicit .name port connections.

Also in the same alu_accum3 example, the xtend module has an 8-bit output port called dout and a 1-
bit input port called din. Since neither of these port names match the names (or sizes) of the connecting
variables, both are connected by name. The clk and rst_n ports are connected using implicit .name
port connections.

module alu_accum3 (
 output [15:0] dataout,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 wire [7:0] alu_out;

 alu alu (.alu_out, .zero(), .ain, .bin, .opcode);

 accum accum (.dataout(dataout[7:0]), .datain(alu_out), .clk, .rst_n);

 xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst_n);

endmodule

Implicit .name port connections do not have to be ordered the same as the ports of the instantiated
module.

The following rules apply to implicit .name port connections:
• For an implicit .name port connection to be legal, the connecting variable name must match the port

name of the instantiated module.
• For an implicit .name port connection to be legal, the connecting variable size must match the port

size of the instantiated module.

• For an implicit .name port connection to be legal, the connecting variable data type must be
compatible to the port data type of the instantiated module. See section 12.7.5 for a description of
compatible data types for implicit port connections.

� If implicit .name port connections are used in an instantiation, named port connections must be used if the
connecting variable name or size do not match the name or size of the instantiated port.

• Implicit .name port connections cannot be used in the same instantiation with positional port
connections.

• Implicit .name port connections may be used in the same instantiation with named port connections.
• Implicit .name port connections cannot be used in the same instantiation with implicit .* port

connections.
� If implicit .name port connections are used in an instantiation, all unconnected ports must be shown using

named port connections.
• The order of the implicit .name port connections does not have to match the port-order of the

instantiated module.
• All connecting variables must be explicitly declared, either as a port in the parent module (following

the rules of Verilog-2001) or as an explicit net or variable of one or more bits.

12.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .* syntax for all ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement
eliminates the requirement to list any port where the name and size of the connecting variable match the
name and size of the instance port. This implicit port connection style is used to indicate that all port names
and sizes match the connections where emphasis is placed only on the exception ports. The implicit .* port
connection syntax can greatly facilitate rapid block-level testbench generation where all of the testbench
variables are chosen to match the instantiated module port names and sizes.

In the following alu_accum4 example, all of the ports of the instantiated alu module match the names of
the variables connected to the ports, except for the unconnected zero port, which is listed using a named
port connection, showing that the port is unconnected. The implicit .* port connection syntax connects all
other ports on the instantiated module.

In the same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the
port must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The
datain port on the accum is connected to a bus by a different name (alu_out), so this port is also
connected by name. The clk and rst_n ports are connected using implicit .* port connections.

Also in the same alu_accum4 example, the xtend module has an 8-bit output port called dout and a 1-
bit input port called din. Since neither of these port names match the names (or sizes) of the connecting
variables, both are connected by name. The clk and rst_n ports are connected using implicit .* port
connections.

module alu_accum4 (
 output [15:0] dataout,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 wire [7:0] alu_out;

 alu alu (.*, .zero());

 accum accum (.*, .dataout(dataout[7:0]), .datain(alu_out));

 xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));

endmodule

The following rules apply to implicit .* port connections:
• For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting

variable name to match the port name of the instantiated module.
• For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting

variable size to match the port size of the instantiated module.
• For an implicit .* port connection to be legal, the connecting variable data type must be compatible to

the port data type of the instantiated module. See section 12.7.5 for a description of compatible data
types for implicit port connections.

� If implicit .* port connections are used in an instantiation, named port connections must be used wherever
connecting variable names or sizes do not match the names or sizes of instantiated ports.

• Implicit .* port connections cannot be used in the same instantiation with positional port connections.
• Implicit .* port connections may be used in the same instantiation with named port connections.
• Implicit .* port connections cannot be used in the same instantiation with implicit .name port

connections.
• If implicit .* port connections are used in an instantiation, all unconnected ports must be shown using

named port connections.
• When the implicit .* port connection is mixed in the same instantiation with named port connections,

the implicit .* port connection token can be placed anywhere in the port list.
• All connecting variables must be explicitly declared, either as a port in the parent module (following

the rules of Verilog-2001) or as an explicit net or variable of one or more bits.

Modules may be instantiated into the same parent module using any combination of legal positional,
named, implicit .name connected and implicit .* connected instances as shown in alu_accum5 example.

module alu_accum5 (
 output [15:0] dataout,
 input [7:0] ain, bin,
 input [2:0] opcode,
 input clk, rst_n);

 wire [7:0] alu_out;

 // mixture of named port connections and
 // implicit .name port connections
 alu alu (.ain(ain), .bin(bin), .alu_out, .zero(), .opcode);

 // positional port connections
 accum accum (dataout[7:0], alu_out, clk, rst_n);

 // mixture of named port connections and
 // implicit .* port connections
 xtend xtend (.dout(dataout[15:8]), .*, .din(alu_out[7]));

endmodule

12.7.5 Compatible data types for implicit port connections

Implicit port connections are permitted between any two data types that are allowed by SystemVerilog port
connection rules, as long as the SystemVerilog simulator is not required to report a warning about the

connection. Any SystemVerilog instantiation that would cause a warning to be issued must be connected by
name if other ports of the instance are instantiated using an implicit port connection style.

If a top-level module connects a signal named net1 of any data type to an instantiated submodule with a
port also named net1 of same data type, SystemVerilog will run this simulation without warning because
the data types are the same across ports. It is legal to make this type of connection using an implicit port
connection style.

If a top-level module connects a signal named net2 of type wire to an instantiated submodule with a port
also named net2 of type reg, Verilog simulators run this simulation without warning because the data
types are compatible across ports. It is legal to make this type of connection using an implicit port
connection style.

If a top-level module connects a signal named net3 of type tri1 to an instantiated submodule with a port
named net3 of type tri0, Verilog simulators issue a warning and the top-level data type (tri1) is used
during simulation, as described in the IEEE Verilog-2001 Standard. It is legal to make this type of
connection using named port connections but it shall be a syntax error to make this connection using an
implicit port connection style. Any port connection that results in a required warning message shall not be
permitted to be instantiated using an implicit port connection style.

A top-level module shall not implicitly connect a signal of any data type to a port by the same name of
another data type if connecting the data types is illegal as defined by this SystemVerilog standard.

Proposal: Changes to section 13.1 (highlighted):

The communication between blocks of a digital system is a critical area that can affect everything from
ease of RTL coding, to hardware-software partitioning, to performance analysis, to bus implementation
choices and protocol checking. The interface construct in SystemVerilog was created specifically to
encapsulate the communication between blocks, allowing a smooth migration from abstract system-level
design through successive refinement down to lower-level register-transfer and structural views of the
design. By encapsulating the communication between blocks, the interface construct also facilitates design
re-use. The inclusion of interface capabilities is one of the major advantages of SystemVerilog over
Verilog-2001.

?? - Do we need to add named_interface connection and ordered_interface_connection to the BNF?

Proposal: Keep the implicit port explanation and example shown in section 13.2.2 on page 59 of Draft 5.

Proposal: Keep the implicit port explanation and example shown in section 13.2.3 on page 60 of Draft 5.

Proposal: Keep the implicit port explanation shown in section 13.3 on page 61 of Draft 5.

