SystemVerilog 3.0/draft 7 (4/27/02)

SystemVerilog 3.0

Accellera’s Extensions to Verilog®

Sponsor
Accellera

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
the creation and verification of abstract architectural level models

Copyright © 2002 by Accellera
1370 Trancas Street #163
Napa, CA 94558

Phone: (707) 251-9977

Fax: (707) 251-9877

This is an unapproved draft of a proposed Accellera Standard, subject to change. Use of information
contained in the unapproved draft is at your own risk.

Do not copy, fax, reproduce, or distribute without written permission.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Table of Contents

Section 1 INtroduction t0 SYSEEMVENTIOQciuiviriiirieirieire e 1
SECHON 2 LILEIaAl VAIUBS......eeceeeet ettt ettt sttt ettt ae et tese et et entesee e e eeneeneeneenesneeneas 2
2.1 Introduction (INFOIMELIVE)ccveeieieieeeire et s e e tesbe s reere s be e et enae e eneenenseeneans 2
2.2 LItEral VAIUE SYNEBX......ieeieeeieietiieiti ettt bttt bbb bbb e et se et et b 2
G 1411= e (= =010l oo ol 11 1= = | K 2
P R = 1] 1 = PSS 2
2.5 TIME IIEEIAIS ...ttt sttt sttt e s e b e b e e e et et en e et ene et e e eneereeneee 2
A SIS {1 To 1= =TT 3
A A N 1 - YA 11 = - T 3
P TS (0o L0 (= L (= = TR 3
SECHION 3 DALA TYPES. e terteitietisteierteee e et et ettt saesbesaesaesbeeesee e e seenee st eseeb e s st eseebesbesee st e benseseensenseneenseneenesneasens 4
3.1 Introduction (INFOMMBLIVE)civeuirieeireieere sttt bbbt s 4
I B = =N 1Y 0 LR Y 1= TP T TP RPR 5
G T 101150 (= g0 r= 14 0T 5
34 Other DASIC UALATYPES. ...c.eeuireeeireeieriet ettt ettt se et e b 6
35 USEr-0EfINEA LYPESoiuiceeciesie sttt st e st e a e e e neste et e s re et e be e et enae e eneenenrenneans 7
3.8 ENUMEIBIIONScviueetieeeteniettseet sttt bbb et b et et b e ek e e et e st e se e et sa st seenesbne 7
3.7 SUCLUrES N UNTONS......oiviiieieiieteee ettt st se st e besee st e e st e s ene e e eneenenseeneans 9
TR T O 11 oo [11
= oo g IR A N - 1YL= TSRS 13
4.1 INtroduction (INFOFMBEEIVE)ceiriririiirieirieee ettt b 13
4.2 Packed and UNPACKEO @rTAYS......ccuevureeireeestesieste st estesae et s et e ese s te s sae st e saesesae e e aeneeneeneens 13
4.3 MUIIPIE AIMENSIONSecuiviiitiieiereei ettt bbbttt st bene b b 14
4.4 Indexing and SliCING Of @ITAYS.......ccciueireeie s st se e ne e ens 15
45 Array qUENYING FUNCIIONS........cceiiiee ettt e s e e se e sresaesneenesreseenrens 16
SECtION 5 Data DECIAI ALIONS ... ccvieeieieiiieieriete sttt sttt sttt bt et et e st ebeseeseebesaebesenbeneas 17
L0 R g oo (0ot o T (T 000 /=) T 17
5.2 Data deClaralion SYNEAX........cccuereerueertiiereesteresteseste sttt se et s s se b s b se b ese b e b e e s s 17
LG T 00 = o TSRS SPSTRPRRN 17
L T o =TSSR 18
5.5 SCOPE AN [IFEIIME ...ttt bbb es 18
Lo ST N\ = FN (=T TSN 110 I o o o3 T 19
SECLION B ALLTTDULES.....eiiteiiieie ettt ettt et b et b b et e st e s et e s e benennentenen 20
6.1 INtroduction (INFOMMBLIVE)coceuerieeerieieriet sttt b e 20
6.2 Attribute Syntax for INTEITACEScvie i e e re s 20
Section 7 Operator S and EXPrESSIONS........ceveierieiereeereetereeteestesestesestesesteseeteseesesessesessesessenessesessesensessssesens 21
7.1 Introduction (INFOMMBLIVE)ciciueriieirieeeri ettt 21
W © o< - (o)Y o] = PSPPSR PPPPROPRIO: 21
7.3 Assignment, incrementor and decrementor OPEratioNS..........ccuvveereeireeereereseeesees e 21
7.4 Operations on 10giC and Dit tYPES ...eiuvivieieecieeser et st ne e eneenes 22
ST 5 == 0] 1= - (0 =R 22
TS = XTSRS 22
8 A T o TR 22
7.8 Operator precedence and @SSOCIBLIVITYcceerrerrirnierieririetsee e 22
RS T g o= = (o o TS 23
iii Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)
Section 8 Procedural Statementsand CoNntrol FIOW ... 24
8.1 Introduction (INFOMMBLIVE)coceueriieereiiereee sttt b e 24

8.2 Blocking and nonblOCKiNg 8SSIGNMENLScoeireiriririiesieresieresi e 25

8.3 SElECHON SIAIEMENES. ...ttt ettt e et b bbb b ne e es 26

8.4 LOOP SEAEIMENES ...ttt ettt r R e e n e n e n s 27

8.5 JUMP SEBIEIMENLS.ottt ettt b b et er e r e n e s r e n e ene s 28

8.6 Named blocks and statement [ADAIS...... ..o s 28

8.7 PrOCESSES.....coueiitieuei ettt et ettt e te st e bt e te bt et e e ekt eaeeebeeaseebe e eesae e aee SRt eaee e Rt et e eh e e beeReeeeeeneeneeeeeeaeeneesaeennens 29

SIS B o = OSSP R 29

e T Y= o o] 11 (o) ST RSR 30
8.10 Procedural assign and deassign FEMOVELco.cereirieirieinieereeie et 31
SECLION O PrOCESSES.cutvieetiuiiiterett st s et se ettt b bt e bbbt E bt e e b bt s e e b et s bR bt s e bRt st n et en et nn s 32
9.1 Introduction (INFOMMBLIVE)coceueririerieieriet sttt es 32

9.2 LEVE SENSIEIVETOGIC ...ttt 32

0.3 LaCh SENSITIVEIOGIC ...ttt 33

9.4 EAQE SENSITIVE TOGICveueeieeeteiieeeesteeet ettt eb e b se bbbt bbb bt e e b s 33

9.5 CONtINUOUS @SSIGNMENTSevivirietirietireetest ettt ss e eb e s s e s s se b seese b s e b se b esesb e e benesne s 33

0.6 DYNBMIC PIrOCESSEScviueetererterestesesteseesesseseseestsaeserseserseseeseaeebeseebeseabes e eb e seebese e bt s b eb e s e eb e e b ebesbe e b e nesnees 33

9.7 Process eXeCUtION tNMEAOScciiiiiiiiiiic s 34
Section 10 TasKS AN FUNCLIONS.cciiiiieiriee ittt et be b b e b s ebeseebeseebe e 35
10.1 INtroduction (INFOMMEBLIVE)ccceireeuirieiesieie sttt b e e sttt st se bbbt b b 35
0T 1= OSSPSR 36
10.3 FUNCHIONS. ...cuetiiieite ettt et et e et ettt st etesbeseeseene et ene e s eneenes st eseebeemeaseebesbesaeseeseeneeseenseneeneeneanens 38
= o o I ST g o1 SRS 41
11.1 Introduction (INFOMMEBLIVE)ccceireeuerieesieie ettt sttt se ettt se et b e bbb 41
11.2 ProCEOUral ASSEITIONScitiieeieieeeiesieriereeeett et etesteetesaestesteseesteneesee e eneeseeesseeaessesaesseseeseeseenseneenseneanens 42
11.3 IMMEAIBEE ASSEITIONSueiieeeeeeeeeeee ettt ettt eeae e seesesbessessesbenbesaese e e eneeseeeeneeneeneenens 43
114 SrODEA ASSEITIONS....c.eiieeieiiteeeeee ettt ettt sttt e st ese et se e s e bessessestebesaesseseeneeseenseneeneeneenens 44
115 SeqUENLIEl ASSEITIONS......civeiitererteeetee ettt ettt sttt b e et et s e st e bt e bt se bt se bbb et ene b 45
11.6 MOIe EXPreSSiON SEOUENCESc.coertrterirtereete sttt sttt esbe st st ebe e sbe e b e s es b seesese e st sbesesbenesbene b 48
11.7 ADborting ASSErtionS EXTENAIIYccoiiiiieiiii e bbb 48
11.8 CONLrOHTNG ASSEITIONSc.eiuitireeterietest ettt ettt eb bbb b st e et b et b et e et et bbb ene b 49
11.9 SYSLEM FUNCHIONS.....c.eitiiieeiie ettt ettt sttt b e bbb bbbt bbbt b et b ettt bbb 49

= oo I D2 T o o 0 PP 50
12.1 Introduction (INFOMMEBLIVE)ccceireeuerieieiiee ettt sttt e ettt se bbbt b b 50
12.2 The BrO0t tOP TEVEL ...ttt bbbttt sttt st r e nnenas 50
12.3 MOAUIE AECIBIELIONS.cueveueeeitee ettt sttt b e bbb et ettt e et s e et bbb s b 52
124 NESEU MOUUIES.c.eeeeeieeeeee ettt ettt et besae st et e e e s seneeseeneemeeseenesaeseeseesaesseseensens 53
12.5 POrt AECIAIAHTIONSc.vieeieeiesiesie ettt ettt sttt e e eae et e e se et e e sessesbenbesae e e e enseseenseneeneeneenens 54
12.6 TimME UNIt BN PIrECISIONeuieeiiieieeeeeete sttt ettt b e et se et et et bbbt b et b et bt b s b 55
12.7 MOOUIE INSEANCESeeuveeeeiieeeseeee et ettt et e sttt teseeseee e tene e e eseenesseese b e esessesbebesaeseeneeneeseenseneeneeneanens 56
12.8 POt CONNECLION FUIES ...ttt ettt bbb bbbt e et b et bbb 61
12,9 NGIME SPACESc.eevirinre ettt ettt ettt st e r et seese s s e s es e e e bt e b e e R e s R e e R e e R e R e seene e e e s e se e s e e e aneneeneas 62

12 10 HI€rarChiCal NAMEScouieiieeieeeeeee ettt sttt sttt et es et s e e s e e s e et saeebesbesaesseseenseseenseneeneeneanens 62
= ot o I e T I = o= P 63
13.1 INtroduction (INFOMMEBLIVE)ccceireuerieeiiee ettt sttt se et b e bbb 63
13.2 INEEITACE SYNEAXveeiuereeierieiere ettt b et b e bbbt e bt e st se et e st se st es e st eb et eb e e et e e ebe e eneas 64
13.3 POItSiN INTEITACES. ... ctiiuiriesie ettt sttt sttt eae et e st e s e saestebesaeseeneeseeseenseneeneeneenens 68
3 B Y o | o o TS T TSSOSO PRSPPSO 68
Copyright 2002 Accellera. All rights reserved. iv

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001
13.5 Tasksand FUNCLONS IN INEEITACES.oieirriieiriee ettt 72
13.6 ParameterizZed INTEITACEScoiii ettt ettt se et e saebesaebe e 77
13.7 ACCESS WItNOUL POITS......cuiieiiieieseetirietisee ettt sttt st st seebe e bt e b e e et e seebesaebenansenens 79

SECLION 14 Par GIMELEN Seuiiteieteeeteseete e te ettt st st beseebeseebeseebesaeseseese s e e st se e st eeeseebeseebeseebebesbeneebesenbesenbesensesens 80
14.1 Introduction (INfOMMBEIVE)eieiieieeieseeeeee et ete sttt e e e e s re st e s aesresaanteseesenaenneneenens 80
S Y | - OSSP RPSRPTSPRSPN 80

Section 15 Configuration [HDrari@S ... e ettt e e 82
15.1 Introduction (INFOFMELIVE)c.ecueeeieieee e et es e s e et e e e e s e nnaees 82
152 LIBIariES. .ot bbbt b bbb r b aennenen 82
BTG T T o] =Y 0 =0 I 1 =T 82

Section 16 System tasksand SyStem fUNCHIONScccuo e 83
16.1 Introduction (INFOMMELIVE)ceiuieiiiririereeie ettt bbbt e eb e seeb e seebe e 83
16.2 The $DitS SYStEM FUNCLION ..ottt 83
16.3 Array QUENYING FUNCHIONS......ceeuiietieetireeiere ettt bbbt e s 83
16.4 ASSErtion SEVENLY SYSEEM TBSKSc.civeiiieeiireeiesiee sttt sttt e b e s b e saeb e 84
16.5 ASSErtion CONrol SYSLEIM tASKS.c.eoietirieiiriete sttt saebesaeb e 84
16.6 ASSErtion SYSLEM fUNCHIONS ..ottt ettt b e saeb e 85

SeCtion 17 COMPIIEr DiFECHIVES......c.eiieciceeeee ettt s e se e s e ste s e e teste e besteeeessennseeneenseeneenes 86
17.1 Introduction (INFOMMELIVE)c.eiuiiiiiririeieie sttt bbbt b e e eb e saebeseebe e 86
17.2 "AEFINE MACTOS. ...ee ettt ettt ettt sttt s et a e e st beeaebesaeseesbenteseene et esee e eseebesneeseseeseesaensnnens 86

Section 18 Featuresunder consideration for removal from SystemVerilogcccecvveveevevcececcieseceenn, 87
18.1 Introduction (INFOMMELIVE)c.eiuiuiriiririireite sttt bbb b e e eb e s aebeseeb e 87
18.2 DEfPAram SLALEIMENLS........c.eiteueiteeeteeete st st st e b et et et e st et ee e st b et beseebese et eseebeseebesaebeseebenea 87
18.3 Procedural assign and deassign SEALEMENES.coieriierererieere et ee bbb seere e 87

ANNEX A FOIMMAI SYNEAX ...ttt ettt b ettt b e b e bt et e e s et b e b e b e e b s e bt e bt e sneen 89

ANNEX B K BYWOI TSttt ettt ettt b e b e bt e et e b b ee et e bbbt b et ben bt e bt e ens 117

ANNEX € GIOSSANY vttt b et bbb e bt e bt e bt s et e Rt s e e b e e b et e b e e e b e s e b s e e b en e b e neebe e ens 119

ANNEX D BiblIOGrAPNY ...ttt n e 121

% Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refersto the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 1.0” isthe IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0" isthe IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.0” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

The Accellera initiative to extend Verilog is an on going effort under the direction of the Accellera HDL+
Technical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond
SystemVerilog 3.0.

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog adds several new constructs to Verilog-2001, including:
— C datatypesto provide better encapsulation and compactness of code
— int, char, typedef, struct, union, enum
— Enhancements to existing Verilog constructs, to provide tighter specifications
— Extensions to always blocks to include linting type features
— Logic (0, 1, X, Z) and bit (0, 1) data types
— Automatic/static specification on a per variable instance basis
— Procedura break, continue, return
— Interfaces to encapsul ate communication and facilitate “ Communication Oriented” design
— State Machines for designing control logic in compact and readable form
— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

1 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancementsto literal strings.

2.2 Literal value syntax

number ::=
decimal_number
| octal_number
| binary_number
| hex_number
| real_number

string ::=“ { Any_ASCII_Characters except_new_line} “

time literal ::=integer [. integer] time_unit
time_unit ::=s|ms|us|ns|ps|fs

Syntax 2-1—L.iteral values (excerpt from Annex A)

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe (*), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit.

0, "1, "X, 'x, 'Z 'z /!l sets all bits to this value

2.4 Real literals

The default typeisr eal for fixed point format (e.g. 1. 2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal r eal valuestotheshortreal type(e.g.shortreal’ (1.2)). Casting
is described in section 3.8.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by atime unit (f s ps ns us ns s).
For example:

0. 1ns
40ps

Copyright 2002 Accellera. All rights reserved. 2
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab

\f form feed

\a bell

\x02 hex number

A string literal can be east assigned to a character, or a packed array, asin Verilog-2001. If the size differs, it is
right justified.

char c1 = “A" ; bit [7:0] d = “\n"
bit [0:11] [7:0] ¢c2 = “hello world\n” ;

A string literal can be east assigned to an unpacked array of characters, and a zero termination is added like in
C. If thesize differs, it isleft justified.

char ¢3 [0:12] = “hello world\n” ;

Packed and unpacked arrays are discussed in section 4. The difference between string literals and array literals
isdiscussed in section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in section 3.8.

2.7 Array literals

Arrays literals are similar to C initializers, but with the replicate operator ({{}}) alowed
int n[1:2][21:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, replicate operators can be
nested:

int n[1:2][1:3] = {2{{3{4}}}};
If the typeis not given by the context, it must be specified with a cast
typedef int [1:3] triple; // 3 integers packed together

b =triple'{0,1,2};

2.8 Structure literals

Structure literals are similar to C initializers. Structure literals must have atype, either from context or a cast:
typedef struct {int a; shortreal b;} ab;
ab c;
c = {0, 0.0}; // structure literal type determined fromthe |eft hand context

(c)
Nested braces should reflect the structure, for example;
ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C aternative{ 1, 1.0, 2, 2.0} isnot alowed.

3 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 3
Data Types

3.1 Introduction (informative)

To provide for clear tranglation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of i nt and | ong without causing
confusion, in SystemVerilog, i nt is32bitsand | ongi nt is64 bits. TheCf | oat typeiscaledshortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 r eal type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It aso has
variable datatypes such asr eg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called | ogi c. See section 3.3.1.

Verilog-2001 provides arbitrary fixed length arithmetic using r eg datatypes. Ther eg type can have bits at X
or Z, however, and so are less efficient than an array of bits because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abi t type which can only have bitswith 0
or 1 values. See section 3.3.1.

Automatic type conversions from asmaller number of bitsto alarger number of bitsinvolve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from alarger
number of bits to a smaller number does cause a warning message. Automatic conversions between logic and
bit do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything else to 0.

User defined types are introduced by t ypedef and must be defined before they are used. Data types can aso
be parameters to modules or interfaces, making them like class templatesin object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See al'so Section 4 on arrays.

Copyright 2002 Accellera. All rights reserved. 4
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

3.2 Data type syntax

data type::=
integer_vector_type|[signing] { packed_dimension} [range]
| integer_atom type[signing] { packed_dimension }
| type declaration_identifier
| non_integer_type
| struct { { struct_union_member } }
| union { { struct_union_member} }
| enum { enum_identifier [= constant_expression |
{ , enum_identifier [= constant_expression] } }
| void
integer_type ::= integer_vector_type | integer_atom_type
integer_atom_type ::= byte | char | shortint |int | longint | integer
integer_vector_type ::= bit | logic | reg
non_integer_type ::=time|shortreal | real | realtime | $built-in
signing ::=[signed] | [unsigned]
simple_type ::= integer_type| non_integer_type | type identifier
struct_union_member ::= data type list_of variable identifiers or_assignments;

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1—Integer data types

char 2-state C data type, usually an 8 hit signed integer (ASCII) or a short int (Unicode)
shortint 2-state SystemVerilog data type, 16 bit signed integer

i nt 2-state SystemVerilog data type, 32 bit signed integer

| ongi nt 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer

bit 2-state SystemVerilog data type, user-defined vector size

| ogi c 4-state SystemVerilog data type, user-defined vector size with different use rules from reg
reg 4-state Verilog-2001 data type, user-defined vector size

i nt eger 4-state Verilog-2001 data type, at least 32 bit signed integer

3.3.1 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These arel ogi c, r eg and
i nt eger. The other types do not have unknown values and are called 2-state types, for example bi t andi nt .

The difference betweeni nt andi nt eger isthati nt is2-statelogic andi nt eger is4-statelogic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less

5 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

memory, and are preferred in some design styles.

3.3.2 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<', etc.

i nt unsigned ui;
int signed si;

Thedatatypeschar, byt e, shortint,int,integer andl ongi nt default tosi gned. The data typeshbi t ,
reg and | ogi c default to unsi gned, as do arrays of these types.

Note that the si gned keyword is part of Verilog-2001. The unsi gned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See al'so section 7, on operators and expressions.

3.4 Other basic data types
3.4.1 Time data types

Timeis aspecia datatype. It isa 64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by thet i mepr eci si on declaration. It can aso be changed by
a‘timescal e directive.

Theti mepr eci si on declaration affects the local accuracy of delays

modul e m

ti meprecision 0. 1ns;

initial #10.11ns a = 1; // round to #10.1ns according to time precision
endnodul e

Theti neunit declaration is used to set the current time unit. When aliteral time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number is mul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. Aninteger or real variableis cast to atime value by using the integer or real as a delay.

For example

#10.11; // multiply by tine unit and round according to tine precision

See section 12.6 on for more information on setting the time units and time precision.

3.4.2 Real and shortreal data types

Ther eal ! datatypeisfrom Verilog-2001, and isthe same asaC doubl e. Theshor t r eal datatypeisaSys-
temVerilog datatype, and isthesameasaCf | oat .

3.4.3 Void data type

The voi d data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

1 The real and shortreal types are represented as described by |EEE 734-1985, an | EEE standard for floating point numbers.

Copyright 2002 Accellera. All rights reserved. 6
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

3.5 User-defined types

type_declaration ::=
typedef data typetype declaration_identifier ;
| typedef interface_identifier { [constant_expression] } . type identifier
type_declaration_identifier ;

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define anew type using t ypedef , asin C.
typedef int intP;
This can then be instantiated:
intP a, b;
A type can be used before it is defined, provided it isfirst identified as atype by an empty typedef:
typedef foo;
foo f = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
If the type is defined within an interface it must be re-defined locally before being used.
interface it;
typedef int intP;

endi nterface

it itl;
typedef itl.intP intP;

User-defined type names must be used for complex data types in casting (see section 3.7, below), and as
parameters.

3.6 Enumerations

data type::=

| enum { enum_identifier [= constant_expression]
{ , enum_identifier [= constant_expression] } }

Syntax 3-3—enumerated types (excerpt from Annex A)

Enumerated data types provide the capability to abstractly declare strongly typed variables without either a
data type or data value(s) and later add the required data type and value(s) for designs that require more defini-
tion. Enumerated data types also can be easily referenced or displayed using the enumerated names as opposed
to the enumerated values.

7 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

In the absence of a data type declaration, the default data type shall bei nt . Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type has one of a set of named values. In the following example, “light1” and “light2” are
defined to be variables of the anonymous (unnamed) enumerated int type that includes the three members:
“red”, “yellow” and “green.”

enum {red, yellow, green} lightl, light2; // ‘anonynous’ int type

An enum name with x or z assignments assigned to an enum with no explicit data type declaration shall be a
syntax error.

/1 Syntax error: |DLE=2'b00, XX=2'bx <ERROR>, S1=2'b01??, S2=2'bl1l0??
enum {1 DLE, XX='x, S1=2'b01, S2=2'bl0} state, next;

An enum of a 4-state type, such as integer, that includes one or more names with x or z assignments shall be
permitted.

/1l Correct: |DLE=2'b00, XX=2'bx, S1=2'b01, S2=2'bil0
enum i nteger {IDLE, XX='x, S1=2'b01, S2=2'bl0} state, next;

An unassigned enum name that follows and enum name with x or z assignments shall be a syntax error.

/1 Syntax error: |DLE=2'b00, XX=2'bx, S1=??, S2=??
enum i nteger {IDLE, XX='x, Sl1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be over-ridden.
enum {bronze=3, silver, gold} nedal; // silver=4, gold=5

The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the value of the previous name.

/1 ¢ is automatically assigned the increnent-value of 8
enum {a=3, b=7, c}; al phabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

/1 Syntax error: ¢ and d are both assigned 8
enum {a=0, b=7, c, d=8}; al phabet;

If the first name is not assigned avalue, it is given the initial value of 0.

/1 a=0, b=7, c=8
enum {a, b=7, c}; al phabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

/1 silver=4'h4, gold=4'h5 (all are 4 bits wi de)
enum {bronze=4' h3, silver, gold} nedal 4

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} bool ean;
bool ean nmyvar; // naned type

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

Copyright 2002 Accellera. All rights reserved. 8
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

/1 Error in the bronze and gold nmenber decl arations
enum [3: 0] {bronze=5'h13, silver, gol d=3"h5} nedal 4;

/1 Correct declaration - bronze and gold sizes are redundant
enum [3: 0] {bronze=4’'h13, silver, gol d=4’h5} nedal 4;

Thetypeischecked in assignments, arguments and relational operators (which check the values). Like C, there

is no overloading of literals, so medal and medal4 cannot be defined in the same scope, since they contain the
same names.

3.7 Structures and Unions

data type::=

| struct { { struct_union_member } }
| union { { struct_union_member } }

struct_union_member ::=data type list_of variable identifiers or_assignments;;

Syntax 3-4—structures and unions (excerpt from Annex A)

Structure and union declarations follow the C syntax, but without the optional structure tags beforethe *{".

struct { bit[7:0] opcode; bit [23:0] addr; }IR // anonynous structure defines
variable IR
IR opcode = 1; // set fieldin IR

Named structure types must always uset ypedef , asthereis no equivalent of the C st r uct adjective, such as
‘struct instruction |IR;’.Someadditiona examples of declaring structure and unions are:

typedef struct {

bit[7:0] opcode

bit [23:0] addr
} instruction; // named structure type
instruction IR, // define variable

typedef union { int i; shortreal f; } num // naned union type
num n;
n.f =0.0; // set nin floating point format

typedef struct {

bit isfloat;

union { int i; shortreal f; } n; // anonynous type
} tagged; // named structure
tagged a[9:0]; // array of structures

A structure can be assigned as awhole, and passed to or from afunction or task asawhole. Note that it isinef-
ficient to copy large structures.

Section 2.8 discusses assigning initial valuesto a structure.

9 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant. The structures are declared using the packed keyword, which can be
followed by the signed or unsigned keywords, according to the desired arithmetic behavior, which defaults to
unsigned:

struct packed signed {
int a;
shortint b;
byte c;
bit [7:0] d;
} packl; // signed, unnmasked

struct packed unsigned {
tine a;
i nteger b;
logic [31:0] c;

} pack2; // unsigned, nmasked

If any data type within a packed structure is masked, the whole structure is treated as masked. Any unmasked
members are converted as if cast, i.e. an X will beread as 0 if it isin a member of type bit. One or more ele-
ments of the packed array may be selected assuming an [n-1:0] numbering:

packl [15:8] // ¢

Non-integer data types, such as real and shortreal, are not allowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef.

typedef struct packed { // default unsigned
bit [3:0] G-C

bit [7:0] VPI;
bit [11:0] VvO;
bit CLP;

bit [3:0] PT;

bit [7:0] HEC
bit [47:0] [7:0] Payl oad;
bit [2:0] filler;

} s_atncel l;

A packed union contains members that are packed structures or arrays of the same size. This ensures that you
can read back a union member that was written as another member. If any member is masked, the whole union
ismasked. A packed union can aso be used as a whole with arithmetic and logical operators, and its behavior
is determined by the signed or unsigned keyword, the latter being the default.

For example, aunion can be accessible with different access widths:;

typedef uni on packed { // default unsigned
s_atntell acell;
bit [423:0] bit_slice;
bit [52:0][7:0] byte_slice;

} u_atncel |

u_atncel | ul;
byte b; bit [3:0] nib;

Copyright 2002 Accellera. All rights reserved. 10
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

b = ul.bit_slice[415:408]; // sane as b = ul.byte_slice[51];
nib = ul.bit_slice [423:420]; // sane as nib = ul. acell.G-C,

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.8 Casting

primary ::= [/ from Annex A.8.4

| smple type’ (expression)
| smple type’ { expression{ , expression} }
| smple type’ { expression { expression } }

simple_type ::=// from Annex A.2.2.1
integer_type | non_integer_type | type_identifier

Syntax 3-5—casting (excerpt from Annex A)
A data type may be changed by using a cast (*) operation. The expression to be cast must be enclosed in
parenthesis or within concatenation or replication braces.

int’(2.0 * 3.0)
shortint’ {8 hFA, 8 hCE}

A decimal number as a data type means a number of hits.
17 (x - 2)
The signedness can also be changed.
signed' (x)
A user-defined type can be used.
nmytype’ (foo)
A complex data type cannot be used. It must be defined with at ypedef .
When ashortreal isconverted to anint, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 hits, its bit pattern is preserved, which means it can be
converted back to the same value without any loss of information. This technique can also be used for struc-
tures, where the $bi t s attribute gives the size of a structure in bits (the $hits system function is discussed in
section 16.2):
typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonynous type
} tagged; // naned structure
typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above

taghits t = tagbits'(a[3]); // convert structure to array of bhits
a[4] = tagged' (t); // convert array of bits back to structure

11 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Note that the bi t datatype loses X values. If these are to be preserved, the logic type should be used instead.
The size of aunion in bitsisthe size of its largest member. The size of alogic in bitsis 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsi gned can also be used.

Copyright 2002 Accellera. All rights reserved. 12
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 4
Arrays

4.1 Introduction (informative)

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
asingle unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, al datatypes can be declared as arrays. Ther eg, wi r e and al other net types can also have a
vector width declared. A dimension declared before the object nameis referred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] r1 [1:256]; /1 [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; /| packed array
real u [7:0]; /'l unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits (an
unpacked array may or may not be so represented). A packed array differs from an unpacked array in that
when apacked array appears as aprimary, it is treated as a single vector.

If apacked array is declared as signed, then the array viewed as a single vector shall be signed, asin Verilog
2001. Note that Verilog 2001 defines that a part selects of an array is unsigned.

Packed arrays allow arbitrary length integer types, so a48 bit integer can be made up of 48 bits. These integers
can then be used for 48 hit arithmetic. The maximum size of a packed array may be limited, but shall be at |east
65536 (219) bits.

Packed arrays can only be made of the single bit types: bit, | ogi c, reg, wi re, and the other net types.
Unpacked arrays can be made up of any type.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: char,
byte, shortint,int,longint,andinteger. Aninteger type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to O,
such that the right-most index is 0.

byte c2; /1 same as bit [7:0] c2;
integer il; // sanme as logic signed [31:0] i1;

The following operations can be performed on al arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays.
— Reading and writing the array, eg.,, A = B

— Reading and writing aslice of thearray, eg.,, A[i:j] = B[i:]]

13 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

— Reading and writing avariable slice of the array, e.g., Al x+: c] = B[y+: c]
— Reading and writing an element of the array, e.g., A[li] = B[i]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A is an array:

— Assignment from an integer, eg., A = 8 b11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array may be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to

any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)
can be used asfollows:

joe[9] =joe[8] + 1; // 4 byte add
joe[7][3:2] =joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3: 0] [7: 0] in the preceding
example) vary more rapidly than the dimensions following the name ([1: 10] in the preceding example).
When used, the first dimensions ([3: 0]) follow the second dimensions ([1: 10]).

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] fool [1:5]; // 1 to 10 varies nost rapidly; conpatible with
Veril og-2001 arrays

bit foo2 [1:5] [21:10]; // 1 to 10 varies nost rapidly, conpatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies nost rapidly

bit [1:5] [1:6] food [1:7] [1:8]; /1 1 to 6 varies nost rapidly, followed by
1to5, then 1to 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with t ypedef ;

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies nost rapidly

Multiple unpacked dimensions can also be defined in stages with typedef:

typedef bsix memtype [0:3]; // array of four 'bsix’ elenents
mem type bar [0:7]; /1l array of eight 'memtype’ elenents

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones:

Copyright 2002 Accellera. All rights reserved. 14
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

bit [9:0] foo06;
foo5 = fool[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If anindex expression is of a 4-state type, and the array is of a 4-state type, an X or Z in the index expression
will cause aread to return X, and awrite to issue arun-time warning. If an index expression is of a 4-state type,
but the array is of a 2-state type, an X or Z in the index expression shall generate a run-time warning and be
treated as 0. If an index expression is out of bounds, a run-time warning may be generated.

Out of range index values shall beillegal for both reading from and writing to an array of 2-state variables,

such asi nt . Theresult of an out of range index valueisindeterminate. Implementations shall generate awarn-
ing if an out of range index occurs for aread or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of a packed array, or any integer type, which is assumed to be numbered down to
0:

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous hits of a single
dimension packed array. Thisis consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data[23:16]; // an 8-bit part select fromdata

SystemVerilog uses the term “dlice” to refer to a selection of one or more contiguous el ements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have aterm for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.

bit [3:0] [7:0] j; Il j is a packed array
byte k;
k =j[2]; /Il select a single 8-bit elenent fromj

One or more contiguous elements can be selected using a slice name. A dice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

bit busA[7:0] [31:0] ; /1 unpacked array of 8 32-bit vectors
int busB [1:0]; /1 unpacked array of 2 integers
busB = busA[7: 6] ; /1 select a slice frombusA

The size of the part select or slice must be constant, but the position may be variable. The syntax of Verilog-
2001 is used:

int i = bitvec[] + Kk]; /1 k must be constant.
a = {(b[c -: d]), e}; /1 d must be constant

Slices of an array can only apply to one dimension, but other dimensions may have single index valuesin an
expression.

15 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $l eft,

$ri ght, $I ow, $hi gh, $i ncrenent , $I engt h, and $di mensi ons. These functions are described in section
16.3.

Copyright 2002 Accellera. All rights reserved. 16
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of datain SystemVerilog: macros (see section 17), literals (see section 2), parameters
(see section 14), constants, variables, nets, and attributes (see section 6)

C constants are either literals, macros or enumerations. Thereisalso aconst , keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, localparams, specparams or macros. Verilog 2001 also has
variables and nets. Variables must be written by procedura statements and nets must be written by continuous
assignments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to atask, function or named block and de-allocated on exit). C has the keywords st ati c
and aut 0. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows st ati ¢ to override a default of aut omat i ¢ for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

data_declaration ::=
variable declaration
| constant_declaration
| type_declaration

block variable declaration ::=
[lifetime] data type list_of variable identifiers;
| lifetime data type list of variable decl assignments;
variable_declaration ::=
[lifetime] data_type list_of variable identifiers or_assignments;
lifetime :;= static | automatic

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data items which never change. Constants are named data items which never change.
There are three kinds of constants, declared with the keywords| ocal par am specpar amand const , respec-
tively. All three can beinitialized with aliteral:

| ocal param char colonl = ":"

17 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

specparamint delay = 10 ; // specparans are used for specify bl ocks
const logic flag = 1 ;

A loca parameter is a constant which is calculated at elaboration time, and can depend upon parameters or
other local parameters at the top level or in the same module or interface.

A specify parameter is aso calculated at elaboration time, but it may be modified by the PLI and so cannot be
used to set parameters or local parameters.

A constant declared with the const keyword is calculated after elaboration. This means that it can contain an
expression with any hierarchical path name. This constant is like a variable which cannot be written:

const logic option = a.b.c ;
A constant expression contains literals and other named constants.
SystemVerilog enhancements to par amet er constant declarations are presented in section 14. SystemVerilog
does not change | ocal par amand specpar amconstants declarations. A const form of constant differsfrom a

localparam constant in that the localparam must be set during elaboration, whereas a const can be set during
simulation, such asin an automatic task.

5.4 Variables

A variable declaration consists of a datatype followed by one or more instances.

shortint s1, s2[0:9];
A variable can be declared with an initializer, which must be a constant expression:

int i =0;
In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after simulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.
In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur

beforeany i ni ti al or al ways blocks are started and so does not generate an event. If an event is needed, an
i nitial block should be used to assign the initial values.

5.5 Scope and lifetime

Any data declared outside amodule, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function islocal in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside a function, whichislocal to afile.

Data declared in an automatic task, function or block hasthe lifetime of the call or activation and alocal scope.
Thisis roughly equivalent to a C automatic variable. Data declared in a dynamic process is a so automatic.

Data declared in a static task, function or block defaults to a static lifetime and alocal scope. If aninitiaizer is
used, the keyword st at i ¢ must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to accessiit.

Copyright 2002 Accellera. All rights reserved. 18
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Verilog-2001 allows tasks and functions to be declared as aut omat i ¢, making all storage within the task or
function automatic. SystemVerilog allows specific datawithin astatic task or function to be explicitly declared
asaut omat i c. Data declared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as st at i ¢c. Data declared to be st at i ¢ in an auto-
matic task, function or in a process has a static lifetime and a scope local to the block. Thisislike C static data
declared within afunction.

nodul e nsl ;
int stO; // static
initial begin
int stl; //static
static int st2; //static
automatic int autol; //automatic
end
task automatic t1();
int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic
endt ask
endnodul e

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 10 on tasks and functions.

5.6 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through module ports.
The resultant value of multiple driversis determined by the resolution function of the net type. The value can
be overridden by af or ce statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment isimplied.

A reg variable can only be written by one or more procedural statements, including procedural (quasi-) contin-
uous assignments. The last write determines the value. The f or ce statement overrides the assi gn statement
which overrides the normal assignments. A reg variable cannot be written through a port.

A | ogi ¢ variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. A | ogi ¢ variable can be written through a port. It
shall be an error to have a continuous assignment and a procedural assignment write to the same| ogi ¢ vari-
able, even through ports. The assi gn statement overrides normal procedural assignmentsto al ogi ¢ variable,
until deassigned.

Note the difference between anet declaration with assignment and a variable initialization:
wire w = vara & varb; // continuous assi gnnent

reg r = consta & consth; // initial assignnment
logic v = consta & constb; // initial assignnent

19 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 6
Attributes
6.1 Introduction (informative)

With Verilog-2001, users can add named _a*ttri butes (properties) to Verilog objects, such as modules, instances,

wires, etc. SystemVieritog-extendstheattribute syntax-to-suppert-interfaces: Attributes can also be specified on
SystemVerilog interfaces. SystemVerilog also defines a default data type for attributes.

6.2 Attribute syntax for interfaces

interface_declaration ::=
{ attribute_instance} interface interface identifier [parameter_port_list]
[list_of ports] ; [unit] [precision] { interface item}
endinterface[: interface identifier]
| { attribute instance} interfaceinterface identifier [parameter_port_list]
[list_of port declarations] ; [unit] [precision] { non_port_interface item}
endinterface[: interface identifier] interface item ::=
port_declaration
| non_port_interface item
attribute_instance ::= (* attr_spec{ , attr_spec} *)
attr_spec ::=
attr_name = constant_expression
| attr_name

attr_name ::= identifier

Syntax 6-1—Interface attribute syntax (excerpt from Annex A)

An example of defining an attribute for an interface declaration is:
(* interface_att = 10 *) interface busl.... endinterface

The default type of an attribute with no valueis bit, with avalue of 1. Otherwise, the attribute takes the type of
the expression.

The modport declaration can be preceded by an attribute instance, like any other interface item.

Copyright 2002 Accellera. All rights reserved. 20
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper-
atorsis preserved in SystemVerilog. This alows efficient code generation.

Verilog does not have assignment operators or incrementor and decrementor operators. SystemVerilog
includes the C assignment operators, such as +=, and the C incrementor and decrementor operators, ++ and - - .

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules

for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

unary_operator ::=

I & &I
binary_operator ::=
H|-1*11]% | == 1= === |1== | && ||| **

| <|<=[>[>=|& |||} |2~ | >> | <<|>>> | <<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=
P~ & =& [T~ 1 7
binary_module path_operator ::=
=== && & [[[M [~

assignment_operator ::=
=|+=|-=|*=|/=|%=|&=||=| "= | <<= | >>= | <<<= | >>>=

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment, incrementor and decrementor operations

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cia bitwise assignment operators. +=, - =, *=, / =, %, &=, | =, "=, <<=, >>=, <<<=, and >>>=. Assignment
operators may only be used with blocking assignments.

In SystemVerilog, an expression can include a blocking assignment, provided it does not have atiming control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a| =b for a! =b.

if ((a=b)) b = (a+=1);

a=(b=(c=05));
SystemVerilog a so includes the C incrementor and decrementor operators ++i , --i ,i ++, andi - - (provided

thereis no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments.

21 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

7.4 Operations on logic and bit types

When a binary operator has one operand of type bi t and another of typel ogi c, theresult is of typel ogi c. If
one operand is of typei nt and the other of typei nt eger, theresult is of typei nt eger.

The operators ! = and == return an X if either operand contains an X or a Z, as in Verilog-2001. Thisis con-
verted to a0 if the result is converted to typebi t , e.g.inani f statement.

The unary reduction operators (& ~& | ~| ~ ~*) can be applied to any integer expression (including packed
arrays). The operators shall return a single value of type| ogi c if the packed type is four valued, and of type
bi t if the packed typeis two valued.

int i;

bit b = & ;

integer j;

logic c = & ;

7.5 Real operators

Operands of type shor t r eal have the same operation restrictions as Verilog r eal operands. The unary oper-
ators ++ and -- can have operands of typer eal and shortreal (theincrement or decrement isby 1.0). The
assignment operators +=, - =, * =, / = can also have operands of typereal andshortreal .

If any operand isr eal , theresult isr eal , except before the ? in the ternary operator. If no operand isr eal
and any operand isshortreal , theresultisshortreal .

Real operands can also be used in the following expressions:

str.realval // structure or union nenber
realarray[intval] // array el enent

7.6 Size

The number of bits of an expression is determined by the operands and the context, following the samerules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, some tools may issue awarning when the left and right hand sides of an assignment are different
sizes. Using the SystemVerilog size casting, these warnings can be prevented.

7.7 Sign

Thefollowing unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

7.8 Operator precedence and associativity

Operator precedence and associativity islisted in table 7-2, below. The highest precedenceis listed first.

Table 7-2—Operator precedence and associativity

O [->. left

Unary | ~ ++ -- + - & ~& && | ~| || ~ - right

* % left

Copyright 2002 Accellera. All rights reserved. 22
Thisis an unapproved Accellera Standards Draft, subject to change.

SystemVerilog 3.0/draft 7 (4/27/02)

Accellera

Extensions to Verilog-2001

Table 7-2—Operator precedence and associativity

* | % left
+ - left
<< >> << >>> |eft
< <= > >= left
== l= === l== left
& left
NN left
| left
&& left
| left
?: right
= += *= [= U &= N= = <<= >>= <<= >>>= none
{,} concatenation

Note that & is higher precedence than », following the Verilog standard.

7.9 Concatenation

Braces ({ }) are used to show concatenation, asin Verilog. The concatenation is treated as a packed vector of
bi ts (or | ogi c if any operand isof typel ogi c¢). It can be used on the left hand side of an assignment or in an
expression:

logic logl, |og2, |ogs3;
{logl, log2, 1o0g3} = 3’ blli,
{logl, log2, 10og3} = {1'bl, 1'bl, 1'bl}; // same effect as 3’ blll

Software tools may generate a warning if the concatenation width on one side of an assignment is different
than the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32'bl,32" bl}; // right hand side is 64 bits
int i ={1'bl, 1'bl}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initiaized, so the following do not give size warnings:

bit can be set to 1
int can be set to 1'bl

bit unpackedbits [1:0]

= 1}; // no size warning,
i nt unpackedints [1:0] =

{1,
{1'b1, 1" bl}; //no size warning,

A concatenation of unsized values shall beillegal, asin Verilog. However, an array initializer can use unsized

values within the braces, such as{1,1} .

The replication operator (also called a multiple concatenation) form of braces can also be used for initiaizers
aswel. For example, {3{1}} representstheinitializer {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .

23 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by one of:
initial //dothisstatement once
al ways, al ways_conb, al ways_| atch, al ways_ff //loop forever (see section 9 on processes)
t ask // do these statements whenever the task is called
functi on // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Seqguential and parallel blocks

— Timing control
Verilog procedural statementsareini niti al oral ways blocks, tasks or functions.

Verilog includes most of the statement types of C, except for do...whi | e, br eak, conti nue and got o.
Verilog has the r epeat statement which C does not, and the di sabl e. The use of the Verilog di sabl e to
carry out the functionality of break and continue requires the user to invent block names, and introduces the
opportunity for error.

SystemVerilog adds C-like br eak, cont i nue andr et ur n functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-likedo...whi | e loop for this capability.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
force/release statements and the assi gn/deassi gn statements. The f or ce/r el ease statements can also be
used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign will override that assign; however, once the force is released, the assign's
effect again will be visible.

The keyword assi gn is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of values to nets.

Copyright 2002 Accellera. All rights reserved. 24
Thisis an unapproved Accellera Standards Draft, subject to change.

. Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

statement ::= [block_identifier :] statement_item
statement_item ::=
{ attribute_instance } blocking_assignment ;
| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous_assignments;;
| { attribute_instance } case statement
| { attribute_instance } conditional _statement
| { attribute_instance} transition_to_state statement_or_null
| { attribute_instance} inc_or_dec_expression
| { attribute_instance} function_call /* must be void function */
| { attribute_instance} disable statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} par_block
| { attribute_instance } procedural_timing_control _statement
| { attribute_instance} seq block
| { attribute_instance } system task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
| { attribute_instance} process statement
| { attribute_instance } proc_assertion
statement_or_null ::=
statement
| { attribute_instance} ;

procedura_timing_control _statement ::=
delay or_event_control statement_or_null

Syntax 8-1—statement syntax (excerpt from Annex A)

8.2 Blocking and nonblocking assignments

blocking_assignment ::=
variable Ivalue = delay_or_event_control expression
| operator_assignment
operator_assignment ::= variable lvalue assignment_operator expression
assignment_operator ::=
= 4= 1= %= /= %= &= | |2 | "= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable Ivalue <=[delay_or_event_control] expression

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1lr = a
r = #1 a;
r <= #1 a;
r <= a;
25 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

r <= @ a
SystemVerilog also allows atime unit to specified in the assignment statement, as follows:

#lns r = a;

r = #1lns a;

r <= #lns a;

It shall beillegal to make nonblocking assignments to automatic variables.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the | eft-
hand side is smaller than the right hand side, and information may be lost, a warning can be given.

8.3 Selection statements

conditional_statement ::=
[unique_priority] if (expression) statement_or_null [else statement_or_null]
| if_else if statement
if else if statement ::=
[unique priority] if (expression) statement_or_null
{ else[unique_priority] if (expression) statement_or_null }
[else statement_or_null]
case_statement ::=
[unique_priority] case (expression) case_item { case_item} endcase
| [unique_priority] casez (expression) case item { case item} endcase
| [unique_priority] casex (expression) case _item{ case_item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [:] statement_or_null
unique_priority ::= unique | priority

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, ani f (expression) isevauated as a boolean, so that if the result of the expression is 0 or X, the
test is considered false. With SystemVerilog, nul | or voi d or {} arealsofase.

SystemVerilog adds the keywords uni que and pri ori ty, which can be used before ani f . If either keyword
is used it shall be arun-time warning for no condition to match unless thereis an explicit el se. For example:

unique if((a==0) || (a==1)) $display(“ 0 or 1");
else if (a == 2) $display(“2");
else if (a == 4) $display(“4”); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) $display(“ 0 or 1");
else if (a[2] == 0) $display(“ 2 or 3");
el se $display(“ 4 to 7"); //covers all other possible values, so no warning

A uni que i f indicates that there should not be any overlap in aseriesof i f ...el se...i f conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that thereis a
potential overlap in the conditions.

Copyright 2002 Accellera. All rights reserved. 26
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Apriority if indicatesthat aseriesof i f...el se...i f conditions shall be evaluated in the order listed. In
the preceding example, if the variable ‘a’ had a value of 0, it would satisfy both the first and second condi-
tions, requiring priority logic.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by pri ority or uni que. A priority case shall act on thefirst match
only. A uni que case shall guarantee no overlapping case values, allowing the case items to be evaluated in
paralel. If the caseis qualified aspri ority or uni que, the simulator shall issue a warning message if an
unexpected case value is found. By specifying uni que or priority, it is not necessary to code a def aul t
case to trap unexpected case values. For example:

bit[2:0] a

uni que case(a) // values 3,5,6,7 will cause a run-time warning
0,1: $display(“ 0 or 1");
2: $display(“2");
4: $display(“4”);

endcase

priority casez(a)
2' b00?: $display(“ 0 or 1 7);
2' b0??: $display(“ 2 or 3 ");
default: $display(“ 4 to 7 ");
endcase

Theuni que and pri ori t y keywords shall determine the simulation behavior. It is recommended that synthe-
sisfollow simulation behavior where possible. Attributes may also be used to determine synthesis behavior.

8.4 Loop statements

loop_statement ::=
forever statement
| repeat (expression) statement_or_null
| while (' expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable assignment) statement_or_null
| do statement while (expression)
variable_decl_or_assignment ;;=
data type list_of variable identifiers or_assignments;
| variable assignment

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

Verilog providesf or, whi | e, repeat andf or ever loops. SystemVerilog addsado...whi | e loop:

do statement while(condition) // as C
The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.
In Verilog, the variable used to control af or loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.
SystemVerilog adds the ability to declare the f or loop control variable within the f or loop. This creates a

local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

27 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

nodul e foo

initial begin
for (int i = 0; i <= 255; i++)

end

initial begin
loop2: for (int i =15; i >=0; i--)

end
endnodul e

The local variable declared within a f or loop can be referenced hierarchically by adding a statement label
beforethef or loop (see section 8.6).

8.5 Jump statements

jump_statement ::=
return [expression] ;
| break ;
| continue;

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statements br eak, cont i nue andr et ur n.
br eak /1 out of loop as C
continue // skip to end of loop as C
return expression /1l exit froma function
return // exit froma task or void function

The continue and break statements can only be used in aloop. The continue statement jumps to the end of the
loop and executes the loop control if present. The break statement jumps out of the loop.

The return statement can only be used in a task or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C got o statement.

8.6 Named blocks and statement labels

par_block ::=

fork [: block _identifier] { block item declaration} { statement } join [: block_identifier]
seq block ::=

begin [: block_identifier] { block_item_declaration } { statement} end [: block _identifier]
statement ;:= [block_identifier :] statement_item

Syntax 8-6—Blocks and labels syntax (excerpt from Annex A)

Copyright 2002 Accellera. All rights reserved. 28
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Verilog allows abegi n...end or f or k...j oi n statement block to be named. A named block is used to identify
the entire statement block. A named block creates a new hierarchy scope. The block name is specified after the
begi n or f or k keyword, preceded by a colon. For example:

begi n : bl ockA /1 Verilog-2001 naned bl ock

end

SystemVerilog alows a matching block name to be specified after the block end or j oi n keyword, preceded
by a colon. This can help document which end or j oi n is associated with which begi n or f or k when there
are nested blocks. A name at the end of the block is not required. It shall be an error if the name at the end is
different than the block name at the beginning.

begi n: bl ockB /'l block nanme after the begin or fork

end;.blockB

SystemVerilog allows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. A statement label does not create a hierarchy scope. The label name is specified before the
statement, followed by a colon.

| abel A st at enent

A begin...end or f ork...j oi n block is considered a statement, and can have a statement label before the
block. Thisis not the same as a block name, however, because it does not create a hierarchy scope.

label B fork // label before the begin or fork
joiﬁ.; | abel B

It shall beillegal to have both alabel before abegi n or f or k and a block name after the begi n or for k. A
label cannot appear before the end or j oi n, as these keywords do not form a statement.

A statement with a label can be disabled using a di sabl e statement. Disabling a statement shall have the
same behavior as disabling a named block.

8.7 Processes

Eachinitial and al ways block is a process. Each branch of af or k within such a block is also a process.
These are static processes and they can be explicitly named with a statement label as shown above.

A (dynamic process can be created using the process keyword. This forks off a statement without waiting for
completion:

process st at enent

See Section 9 for more information about processes.

8.8 Disable

SystemVerilog has br eak and cont i nue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue aloop, but is more awkward than using
br eak or conti nue. Thedi sabl e isalso alowed to disable a named block, which does not contain the di s-

abl e statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block is aloop body, it actslike acont i nue. If the block is not currently executing, the
di sabl e has no effect. The di sabl e, break and conti nue statements shall not affect any nonblocking

29 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

assignments which have been started.

It shall beillegal to disable a function because the return value would be uncertain. However a function may
disableits calling block.

SystemVerilog hasr et ur n from atask, but di sabl e isalso supported. If di sabl e isapplied to anamed task,
all current executions of the task are disabled.

nmodul e ...
al ways al waysl: begin ... tl: taskl(); ... end

endnodul e
al ways begin

di sable ul.alwaysl.t1; // exit taskl, which was called fromal waysl (static)
end

8.9 Event control

delay_or_event_control ::=
delay_control
| event_control
| repeat (expression) event_control
delay contral ::=
delay_value
| # (mintypmax_expression)
event_control ::=
@ event_identifier
| @ (event_expression)
| @
| @(*)
event_expression ;;=
expression [iff expression]
| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression
edge ::= posedge | negedge | changed

Syntax 8-7—Delay and event control syntax (excerpt from Annex A)

Any change in avariable or net can be detected using the @ event control, asin Verilog. If the expression eval-
uates to aresult of more than one hit, a change on any of the bits of the result (including an x to z change) will
trigger the event control.

SystemVerilog addsani f f qualifier to the @event control.

nodul e latch (output logic [31:0] y, input [31:0] a, input enable);

always @a iff enable == 1)
y <= a; //latch is in transparent node
endnodul e
Copyright 2002 Accellera. All rights reserved. 30

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

The event expression only triggers if the expression after the i f f istrue, in this case when rst ==0. Note that
such an expression is evaluated when clk changes not when rst changes. Also note that i f f has precedence
over or . This can be made clearer by the use of parentheses.

If avariable or net is not of type | ogi c, then posedge and negedge refer to transitions from 0 and to O
respectively. If the variable or net is a packed array or structure, it iszero if all elementsare 0.

SystemVerilog also allows the @ event control to explicitly state any change, using the changed keyword:

@ myvar) /1 triggers on any change to nyvar

@ changed nyvar) // triggers on any change to myvar
The @ changed expression) differs from @ expression) in that the changed keyword explicitly defines that
the event control only triggers on a change of the result of the expression. In certain types of expressions,
@ expression) can trigger on changes to operands of the expression that do not affect the result.
SystemVerilog allows assignment expressions to be used in an event control, eg. @(a = b + c¢)).The

event control shall only be sensitive to changes in the result of the expression on the right-hand side of the
assignment. It shall not be sensitive to changes on the | eft-hand side expression.

8.10 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assi gn and deassi gn statements. However, these state-
ments may be removed from future versions of the language. See section 18.3.

31 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has al ways andi ni ti al blocks which define static processes.

In an al ways block which is used to model combinational logic, forgetting an el se leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized al ways_conb and al ways_| at ch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always ff block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamically, as
happensin an operating system. Verilog hasthef or k .. j oi n construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by al ways, i ni tial or fork, and dynamic processes
introduced by pr ocess.

SystemVerilog creates athread of execution for eachi ni ti al or al ways block, for each parallel statement in
afork..joi n block and for each dynamic process. Each continuous assignment may also be considered its
own thread. Execution of each thread may be interrupted between statements at a semicolon, but asingle state-
ment (not a block) containing no user task or function call is uninterrupted. This allows atomic test-and-set
using assignment operatorsin an if statement.

9.2 Level sensitive logic

SystemVerilog provides a specia al ways_conb procedure for modeling combinational logic behavior. For
example:

al ways_conb
a=>b&c;

al ways_conb
d <= #Ins b & c;
Theal ways_conb procedure provides functionality that is different than a normal always procedure:
— Thereisaninferred sensitivity list that includes every variable read by the procedure.
— The variables written on the |eft-hand side of assignments may not be written to by any other process.
— The procedure is automatically triggered once at time zero, after al i ni ti al and al ways blocks have
been started, so that the outputs of the procedure are consistent with the inputs.
The SystemVerilog al ways_conb procedure differs from the Verilog-2001 al ways @ in the following ways:

— al ways_conb automatically executes once at time zero, whereas al ways @ waits until a change occurs
on asignal intheinferred sensitivity list.

— al ways_conb is sensitive to changes within the contents of a function, whereas al ways @ isonly sensi-
tive to changes to the arguments of afunction.

— Variables on the | eft-hand side of assignmentswithin an al ways_conb procedure may not be written to by
any other processes, whereasal ways @ permits multiple processes to write to the same variable.

Software tools can perform additional checksto warn if the behavior within an al ways_conb procedure does
not represent combinational logic, such asif latched behavior may be inferred.

Copyright 2002 Accellera. All rights reserved. 32
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

9.3 Latch sensitive logic

SystemVerilog aso provides a specia al ways_| at ch procedure for modeling latched logic behavior. For
example:

al ways_| atch
if(ck) g <= d;
The al ways_| at ch procedure differsfrom anormal al ways procedure in the following ways:
— Thereisaninferred sensitivity list that includes every variable read by the procedure.
— The variables written on the |eft-hand side of assignments may not be written to by any other process.
— The procedure is automatically triggered once at time zero, after al i ni ti al and al ways blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checks to warn if the behavior within an always latch procedure does
not represent latched logic.

9.4 Edge sensitive logic

The SystemVerilog al ways_ff procedure can be used to model synthesizable sequential logic behavior. For
example:

al ways_ff @posedge clock iff reset == 0 or posedge reset) begin
rl <=reset 20 : r2 + 1,

end

Theal ways_ff block imposes the restriction that only one event control is allowed. Software tools may per-
form additional checksto warn if the behavior within an al ways_f f procedure does not represent sequential
logic.

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets, | ogi ¢ variables,
and any other type of variables, except r eg variables. Nets can be driven by multiple continuous assignments,
or a mixture of primitives and continuous assignments. | ogi ¢ variables and other data types can only be
driven by one continuous assignment or one primitive output. It shall be an error for avariable driven by a con-
tinuous assignment or primitive output to have an initiaizer in the declaration or any procedural assignment.

9.6 Dynamic processes

The SystemVerilog dynamic process adds capability that behaveslike af or k without aj oi n. A dynamic pro-
cessis started as a separate thread, and execution of the current procedure or task continues while the process
is executing. The process does not block the flow of execution of statements within the procedure or task.
Dynamic processes alow the creation of multi-threaded processes, as opposed to multiple procedures, which
are static parallel processes.

A dynamic process shall be created by the pr ocess keyword, which is used asfollows:

process stat enent

33 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

For example, the following task initiates an endless |oop and returns immediately to the caller. The task can be
launched any number of times to display a selected location at every strobe.

task nonitorMen(input int address);
process forever @trobe $di splay(“address % data %", neniaddress]);
endt ask

The following example illustrates using a dynamic process to model a pipeline.

/1 pipeline nodul e

nmodul e p(input clk, flush, input int x_in, y_in, z_in)
parameter int latency = 6, throughput = 2
int z_out;
i nt processes = 0;

al ways begin
while (!flush) begin
process begin
int v2, v3, v4, v5; // lifetime nmatches process
processes++;

v2 = x_in +y_in
v3 = x_in - z_in
vd = v2 * v3

vb = v4 * x_in;

repeat (| atency) @ (posedge clk);
z_out <= v5

processes--;
end
repeat (t hroughput) @ posedge cl k);
end
wai t (processes == 0); //wait for flush
end
endnodul e

In the proceeding example, the whi | e loop contains a delay of two clock cycles, from ther epeat statement,
and this determines the pipeline throughput. Each iteration spawns a process which lasts six clock cycles, the
latency of the pipeline. The variable pr ocesses keeps a count of the number of currently active processes.
The pipeline flush is not complete until this count has fallen to zero.

SystemVerilog 3.0 does not provide a mechanism to disable a process once it has been started, but all instances
of a named block within a dynamic process can be disabled by referring to a named block.

9.7 Process execution threads

SystemVerilog creates athread of execution for:

— Eachinitial block

— Each al ways block

— Each parallel statement in af or k...j oi n statement group

— Each dynamic process

Each continuous assignment may also be considered its own thread.

Execution of each thread can be interrupted between statements at a semicolon, but a single statement (not a

block) containing no user task or function call shall not be interrupted. This allows atomic test-and-set using
assignment operatorsinani f statement.

Copyright 2002 Accellera. All rights reserved. 34
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for al calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statementsin atask or function without requiring abegi n...end or f or k...j oi n block

— Returning from atask or function before reaching the end of the task or function

35 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

10.2 Tasks

task_declaration ;:=
task [automatic] [interface identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]
| task [automatic] [interface identifier .] task_identifier (task port_list) ;
{ block_item declaration }
{ statement }
endtask [: task_identifier]
task_item_declaration ::=
block item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance} inout_declaration ;
task_port_list ::=task_port_item { , task_port_item }
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
task_prototype ::=
task ({ attribute_instance } task_proto_formal
{,{ attribute_instance } task_proto_formal })
named_task_proto ::= task task_identifier (task_proto formal { , task_proto formal })
task_proto_formal ::=
[port]input data type[variable_declaration_identifier]
| [port]inout data type[variable declaration_identifier]
| [port] output data type[variable declaration_identifier]
| port event variable

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations and

directions:
task mytaskl (output int x, input logic y);
endt ask
task mytask2;
out put x;
i nput vy;
int x;
string vy;
endt ask
Each formal argument has one of the following directions:
i nput // copy valuein at beginning

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

36

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

out put // copy value out at end
i nout // copy in at beginning and out at end

With SystemVerilog, thereis a default direction of i nput if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

task mytask3(a, b, output logic [15:0] u, Vv);
end.t éék
Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The

default type in SystemVerilog is | ogi ¢, which is compatible with Verilog. SystemVerilog alows an array to
be specified as aformal argument to atask, for example:

/1 the resultant declaration of b is input [3:0][7:0] b[3:0]
task mytask4(input [3:0][7:0] a, b[3:0], output [3:0][7:0] y[1:0]);

end.t .a.sk
Verilog-2001 allows tasks to be declared as aut omat i ¢, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by alowing specific formal arguments and local

variablesto be declared as aut omat i ¢ within astatic task, or by declaring specific formal arguments and local
variablesas st at i ¢ within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endt ask, which
means that the begi n end can be omitted. If begi n end is omitted, statements are executed sequen-
tially, the same asif they were enclosed in abegi n end group. It shall also be legal to have no statements at
all.

In Verilog, atask exits when the endtask is reached. With SystemVerilog, ther et ur n statement can be used to
exit the task before the endt ask keyword.

37 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

10.3 Functions

function_declaration ::=
function [automatic] [signing] [range_or_type]
[interface identifier .] function_identifier ;
{ function_item_declaration }
{ function_statement }
endfunction [: function_identifier]
| function [automatic] [signing] [range or_type]
[interface identifier .] function_identifier (function_port_list) ;
{ block_item declaration }
{ function_statement }
endfunction [: function_identifier]
function_item_declaration ::=
block_item_declaration
| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance} inout_declaration ;
function_port_item ::=
{ attribute_instance } input_declaration
| { attribute instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::= function_port_item { , function_port_item }
function_prototype ::= function data type (list_of function_proto_formals)
named_function_proto::= function data_type function_identifier (list_of_function_proto _formals)

list_of function_proto formals::=
[{ attribute instance} function proto_formal { , { attribute instance}
function_proto_formal }]

function_proto_formal ::=
input data_type [variable_declaration_identifier]
| inout data_type[variable declaration_identifier]
| output data type[variable_declaration_identifier]
| variable _declaration_identifier
range_or_type::=
{ packed dimension} range
| data type

Syntax 10-2—Function syntax (excerpt from Annex A)

A Verilog function declaration either has the formal arguments in parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] nyfuncl(int x, int y);

end;c ijﬁcti on

function logic [15:0] myfunc2;

i nput int x;
i nput int y;

Copyright 2002 Accellera. All rights reserved. 38
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

endf uncti on

SystemVerilog extends Verilog functions to allow the formal argumentsto be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

i nput // copy valuein at beginning

out put // copy value out at end

i nout // copy in at beginning and out at end
Function declarations default to the formal directioni nput if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] nmyfunc3(int a, int b, output logic [15:0] u, v);

endi‘ iJﬁcti on
Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is | ogi ¢, which is compatible with Verilog. SystemVerilog alows an array to
be specified as aformal argument to afunction, for example:

function [3:0][7:0] nmyfunc4(input [3:0][7:0] a, b[3:0]);

endf uncti on

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] nmyfuncl (input foo);
nyfuncl = 16’ hbeef; //return value is assigned to function nane
endf uncti on
SystemVerilog allows functions to be declared as type voi d, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by usingr et urn
with avalue. Ther et ur n statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.
function [15:0] nyfunc2 (input foo);
return 16’ hbeef; //return value is specified using return statenent
endf uncti on
In SystemVerilog, afunction return can be a structure or union. In this case, a hierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function nameis
used within a hierarchical name, it also indicates the scope of the whole function.
Function calls are expressions unless of type voi d, which are statements:
a = b + nyfuncl(c, d); //call myfuncl (defined above) as an expression
nmyprint(a); //call nyprint (defined below as a statenent
function void nyprint (int a);

endf uncti on

With SystemVerilog,, a non-void function call can aso be used as a statement, but this can result in awarning

39 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

message.

SystemVerilog allows multiple statements to be written between the function header and endf uncti on,
which meansthat the begi n...end can be omitted. If begi n...end is omitted, statements are executed sequen-
tially, as if they were enclosed in a begi n...end group. It is aso legal to have no statements at al, in which
case the function returns the current value of the implicit variable that has the same name as the function.

Copyright 2002 Accellera. All rights reserved. 40
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 11
Assertions

11.1 Introduction (informative)

An assertion is a statement that a property must be true. There are two kinds of assertions. concurrent asser-
tions which state that the property must be always be true, e.g. throughout a simulation, and procedural asser-
tions which are incorporated in procedural code and apply only for alimited time or under limited conditions.

There are various applications of assertions. They can be included in the design, to document the assumptions
made by the designer and to facilitate “white box” testing. They can be outside the design, either in atestbench
to check the response of the design to the stimulus, or to control atool such as a stimulus generator or a model
checker.

Concurrent assertions can be coded as modules in alibrary, but this limits the complexity of the property that
can be expressed easily. It is more difficult to code procedural assertions as a library of tasks in Verilog,
because events cannot be arguments, each assertion may need static data, and tasks block.

41 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

11.2 Procedural Assertions

proc_assertion ;:=
immediate_assert
| strobed assert
| clocked immediate assert
| clocked strobed_assert
immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]
strobed _assert ;;= assert_strobe (expression)
restricted_statement_or_null
[elserestricted_statement_or_null]
clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked strobed assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[elserestricted_statement_or_null]
restricted_statement_or_null ::=
restricted_statement
| { attribute_instance} ;
restricted_statement ::=
[block_identifier :] restricted_statement_item
restricted statement_item ::=
{ attribute_instance} proc_assertion
| { attribute_instance} system task_enable
| { attribute_instance} delay_or_event_control statement
| { attribute_instance} restricted_seq block
restricted_seq block ::= begin [: block_identifier] { block item_declaration }{ restricted statement }
end [: block_identifier]
expr_sequence ::=

expression
| [constant_expression]
| range

| expr_sequence ; expr_sequence
| expr_sequence* [constant_expression |
| expr_sequence * range
| (expr_sequence)
step _control ::=
@@ event_identifier
| @@ (event_expression)

Syntax 11-1—Assertion syntax (excerpt from Annex A)

SystemVerilog provides four kinds of procedural assertions, which allow the user to test boolean expressions
or sequences of boolean expressions, and perform some action based on whether the expression or sequenceis
True or False. Immediate assertions test the value of a boolean expression at the time the statement is executed,
and may be used in always and initial blocks, tasks and functions. Strobed assertions schedule the evaluation

Copyright 2002 Accellera. All rights reserved. 42
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

of the expression to be delayed until the end of the current timeslice, to alow for glitches to settle. Strobed
assertions may beused ini nitial and al ways blocks and tasks, but not in functions since functions must
return immediately.

To test sequences of expressions, it is necessary to specify a sampling clock event on which to test each ele-
ment of the sequence. Therefore, Clocked Immediate and Clocked Strobed assertions are added to allow pro-
gressive evaluation of sequences of expressions. Since these clocked assertions, by definition, take time, they
cannot be used in functions. Clocked immediate assertions eval uate each expression in the sequence when the
clock event triggers, and clocked strobed assertions evaluate each expression at the end of the timeslice at
which the event triggers.

11.3 Immediate Assertions

Theimmediate assert statement is atest of an expression performed when the statement is executed in the pro-
cedural code. The expression istreated as acondition likein an if statement:

[<identifier>""] assert (<expression>) [<pass_statement>] [el se <fail_statement>]

The pass statement is executed if the assertion succeeds, i.e. the expression evaluates to True. As with the if
statement, if the expression evaluates to 'X’, 'Z’ or '0', then the assertion fails. The pass statement may, for
example, record the number of successes for a coverage log, but may be omitted altogether. If the pass state-
ment is omitted, then no action is taken if the assert expression is True. The fail statement is executed if the
assertion fails (i.e. the expression does not evaluate to a known, non-zero value) and can be omitted. The

optional assertion label (identifier and colon) creates a notional named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the %m format code.

assert_foo : assert (foo) $display(“%n passed”); else $display(“%nfailed");

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is“error”. Other severity levels may be spec-
ified by including one of the following severity system tasksin the fail statement:

— $fat al isarun-time Fatal, which terminates the ssmulation with an error code. The first argument passed
to $fatal shall be consistent with the argument to $finish.

— $error isaRun-time Error.
— $war ni ng isaRun-time Warning, which can be suppressed in a tool-specific manner.

— $i nf o indicates that the assertion failure carries no specific severity.
The syntax for these system tasksis shown in section 16.4.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— Thefile name and line number of the assertion statement,

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can a'so include additional user-specified information using the same format as the Verilog
$di spl ay.

If more than one of these system tasksisincluded in the el se clause, then each shall be executed as specified.

If an assertion fails and no el se clause is specified, the tool shall, by default, call $err or, unless a tool-spe-
cific command-line option is enabled to suppress the failure.

43 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

If the severity system task is executed at atime other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

tinme t;

al ways @ posedge cl k)
if(state == REQ

assert(reql || req2)
el se begin

t = $tine;

#5 $error(“assert failed at time %t”,t);
end

If the assertion fails at time 10, the error message will be printed at time 15, but the user-defined string printed
will be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific command-line option.

Since the fail statement, like the pass statement, isany legal SystemVerilog procedural statement, it can also be
used to signal afailure to another part of the testbench:

assert (nmyfunc(a,b)) countl = count + 1; else ->eventl,
assert (y == 0); else flag = 1;

The assert statement serves as guidance to non-simulation tools that the condition should be True. The second
statement above is equivalent to:

if (y'=0) begin flag = 1; end

11.4 Strobed Assertions

If an immediate assertion isin code triggered by atiming control that happens at the same time as a blocking
assignment to the data being tested, there isarisk of the wrong value being sampled. For example:

al ways @posedge clock) a = a + 1; // blocking assignnent
al ways @ posedge cl ock) begin

assert (a < b);
end

This can be solved by using a strobed assertion, which waits in the background until the end of the time slot,
like the Verilog $st r obe system task.

al ways @ posedge cl ock) begin

cas: assert_strobe (a < b);
end

Strobed assertions can have pass or fail statements like immediate assertions. However, the statements are
restricted to another assertion statement, a system task call, a statement preceded by a delay control or an event
control, or sequential block containing them. Thisis because the statement happens after the assertion is eval-
uated, at the end of the time slot, and hence must not create more events at that time slot or change values.
Statements which cause additional events to occur at the current time shall be an error.

The example below illustrates the effect of blocking and nonblocking assignments on immediate and strobed
assertions. The immediate assertions are like $di spl ay statements and the strobed assertions are like
$st robe statements:

Copyright 2002 Accellera. All rights reserved. 44
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

nmodul e test;
reg [3:0] a=0; c¢=0, d=0;
reg clk = 0;
wire b;
initial begin
#10 clk = 1;

forever #5 clk = !clk; // posedge clk at 10, 20, 30, 40. ..
end

assign b = a+l

al ways @ posedge cl k) begin
al: assert(c<3); // fails at time 40

c = c+l;
a2: assert(c<3); // fails at tine 30
a <= atl

a3: assert(a<d); // fails at tine 40

ad4: assert(b<3); // fails at tine 40

ab: assert_strobe(a<3d); // fails at tine 30

a6: assert_strobe(b<3d); // fails at tinme 30
end

al ways @a) begin // nodels transient behavior on comb. nets
d = a+2; // spikes to 2 at 0, 3 at 10, 4 at 20
assert(d<3d); // fails at tinme 10
d =d-1; // settles to 1 at 0, 2 at 10, 3 at 20
assert(d<3d); // fails at tinme 20

end

al ways @d) assert_strobe (d<3); // fails at time 20

endnodul e

11.5 Sequential Assertions

In addition to assertions about single expressions, it is often useful to assert sequences of expressions over
time. One way of doing thisisto use nested immediate assertions, where each subsequent assertion is the pass
statement of the previous assertion.

al ways @ posedge cl k or negedge rst)
if(state == REQ
a7: assert(reql) // no sem colon
@ posedge cl k) assert(gnt)
@ posedge cl k) assert(!reql);

The above example verifies the sequence that, if stateis equal to REQ, ther eql signal must be True immedi-
ately, then on the next posedge cl k, gnt must be True and on the following posedge cl k, r eq must be False.
Note that the assertion statement itself is nonblocking, so the sequence in assertion a7 is equivalent to:

al ways @ posedge cl k or negedge rst)
if(state == REQ
a8: assert(reql)
process
@ posedge cl k) assert (gnt)
@ posedge cl k) assert(!reql);

To simplify this complex nested assertion, a sequential regular expression is used in the assert statement.

45 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Sequential regular expressions require a step control event expression to specify the timing between evalua-
tions of each element in the regular expression. Using a sequential regular expression, the assertion a8 could
be rewritten as:

al ways @ posedge cl k or negedge rst)
if(state == REQ
a9: assert(reql;gnt;!reql) @@ posedge clKk);
/1 note the @@token to distinguish the step control fromthe pass statenent

A sequential regular expression is a semicolon-delimited list of expressions. The first expression in the list is
evaluated immediately when the assert statement is executed. The other subsequent expressions are evaluated
one at a time on successive occurrences of the step control event expression. In assertion a9 above, r eql is
evaluated immediately when the assert statement is executed, just as for an immediate assertion, then gnt is
evaluated on the next posedge cl k event, and so on.

The'@@' token is introduced to distinguish the step control from an ordinary event control at the start of the
pass statement. Consider the following:

al ways @ posedge cl ock or negedge rst)
if(state == REQ
al0: assert (reql)
@ posedge clk) // This is an event control in the pass statenent
$display(“Hello at time %", $tine);

In this example, the @ posedge cl ock) ” in the pass statement causes the display action to occur on the
next posedge of clock after the assertion succeeds. Therefore, a new token is required to distinguish the asser-
tion sequence step control from the pass statement.

Note that, since the first expression is evaluated immediately, assertion a9 above is equivalent to:

al ways @ posedge cl k or negedge rst)
if(state == REQ
assert(reql)
assert(1;gnt;!reql) @ posedge clKk);

The sequence notation “(1; <expr essi on_or _sequence>) " is a convenient shorthand indicating that
the <expr essi on_or _sequence> is to be evauated on the next occurrence of the step control event.
Thisis because the expression ‘1’ is evaluated immediately and is aways True.

Sequential assertions using the assert keyword are called clocked immediate assertions, since the expres-
sions are evaluated as with immediate assertions. Similarly, clocked strobed assertions may be written using
the assert _strobe keyword, in which each expression in the sequence is evaluated at the end of the
timeslice in which the assertion is executed or in which the step control event occurs. The pass and fail state-
ments of clocked strobed assertions have the same restrictions as strobed assertions.

Specifying an explicit step control for a sequence makes it possible to use clocked assertions in combinational
aways blocks:

al ways @f oo, bar)
assert_strobe (a;b;c) @@posedge clKk);
/1 look for a when foo or bar changes, then ook for b on next posedge clk

Since it is common for combinational aways blocks to be executed multiple times in a single timestep as the
signals in the event trigger expression settle, it is common to use strobed assertions in combinational always
blocks. Immediate assertions are commonly used in clocked always blocks.

Note that to avoid races, the variables read in clocked immediate assertions should be written by nonblocking
assignments. Expressions in clocked strobed assertions are always sampled at the end of the timestep, so no
race conditions should occur.

Copyright 2002 Accellera. All rights reserved. 46
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

An assertion could be executed twice in the same timestep via a zero-delay loop or a combinational always
block, for example. If a clocked immediate assertion is executed more than once at the same timestep, the first
expression in the sequence will be re-evaluated. If a clocked strobed assertion is executed more than once at
the same timestep, the first expression in the sequence will be evaluated once at the end of the timestep.

An assertion shall only spawn a single process to evaluate the next expression in the sequence at the next step
control event. If the step control event occurs multiple times at the same timestep, then in a clocked immediate
assertion the current expression in the sequence shall be re-evaluated. In a clocked strobed assertion, the cur-
rent expression will still be evaluated only once at the end of the timestep. The next expression in the sequence
shall not be evaluated until the step control occursin alater timestep.

As mentioned above, the execution of a sequential assertion spawns a process that monitors each event in the
sequence when the step control event occurs. If the sequential assert statement is executed again before the
sequence spawned by the original execution has expired, then a new process shall be spawned that looks for
the segquence starting at the current timestep. It is therefore possible to have multiple processes in-flight, each
monitoring the same sequence but offset in time. It is possible for these multiple processes to be satisfied by
the same sequential behavior, even though the processes are offset in time. In such a case, both processes will
terminate at the same timestep, in which both sequences are satisfied.Consider:

nmodul e top
reg clk = 0;
reg a,b,c;

initial begin
#10 clk = 1;
forever begin
clk = 0;
clk = 1;
#5 cl k
#5 cl k
end
end

/1 2 posedges clk at 10, 20, 30, 40..
0
1

al ways @ posedge cl k)
assert(a; b;c) @dposedge clk);
/1 'a is evaluated only once at 10, 'b’ once at 20

))

¢’ once at 30
Note that the step control expression may be any valid event expression in SystemVerilog. The following
assertions all use valid step control expressions:

bit clk
event evl,;

al ways @ posedge cl k or negedge reset) begin
assert (a;b;c) @@negedge clk); // sequence sanpled on negedge clk
assert (a;b;c) @jclk); // sequence sanpled on any edge of clk
assert (a;b;c) @evl); // sequence sanpled when event evl fires
all: assert(a;b;c) @dposedge clk iff !rst);
/'l sequence sanpled on posedge clk if rst ==
end

Note the use of thei ff operator in assertion all above. In effect, this allows a “gated clock” to control the
assertion without the user having to declare the gated clock explicitly (see section 8.9). Because this could
have significant impact on the ability of Formal Verification tools to evaluate the assertion successfully, it is
recommended that this construct be used only for simulation.

Thisflexibility also allows nested assertions to use different clocks:

al ways @ posedge cl k) begin

47 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

assert (a;b) @dposedge clk) // on posedge clk
assert (1;c;d) @¥negedge clk); // look for ¢ and d on negedge cl k
assert (e;f) @@ posedge clk2)
assert (1;g;h) @evl);
end

11.6 More Expression Sequences

A number of steps can be skipped either by writing expressions which are always True:
assert (a;1;1;c) @@posedge clk); // two steps between a and c
or by using the notation [n] to count the number of steps:

assert (a;[2];c) @@ posedge clk); // two steps between a and c
assert (a;[1];[1];c) @@posedge clk); // two steps between a and c

Note that in [n], the n must be a non-negative literal or a constant expression. [0] has no effect. The number of
steps to be skipped may also be expressed using [min:max], where the minimum number of steps must be
greater than or equal to zero. Both min and max must be aliteral or constant expression.

assert (a;[0:10];b) @@ posedge clk);
/'l b occurs between the next and 11lth cl ock edges, inclusive

If an expression must be repeated a defined number of times, this can be expressed with atrailing *[n]. If it can
be repeated a minimum or maximum number of times, this can be expressed with atrailing *[min:max]. These
repetition counts must also be literals or constant expressions:

assert (a; b)*[5]; // a;b;a;b;a;b;a;b;a;b
assert (a*[0:3];b;c); [/ equivalent to
/1 (b;c) or (a;b;c) or (a;a;b;c) or (aj;a;a;b;c).

This means that a sequence a; ab; a; b; c; will pass. The expression sequence is not equivadentto ((a &&
I'b)* [0:3];b;c),whichwould fail the same sequence.

Therulesfor specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences:
— expr*[n:m], where nisthe minimum, m is the maximum

— expr*[n], same as expr*[n:n]

— [n], same as 1*[n:n]

— The sum of the minimum repeat counts for all terms in a sequence must be greater than 0.
— The sequence as awhole cannot be empty.

— Thelast term in a sequence may not have a min:max range of repetition. If it does, it shall be an error.

11.7 Aborting Assertions Externally

A named assertion can be disabled like any other named SystemVerilog block. If this is done before the
expression sequence has finished, it means that neither the pass statement nor the fail statement shall be exe-
cuted.

di sabl e cas

Copyright 2002 Accellera. All rights reserved. 48
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Note that if the di sabl e is applied at the same simulation time step as the last clock step of a sequence, there
isaracein the case of an immediate assertion, but a strobed assertion is always disabled.

If the pass or fail statement is executing when the disable is executed, the statement shall be disabled, just as if
the statement were in another named block that gets disabled.

If asequential assertion has been executed multiple times before the sequence has expired, then all instances of
the assertion shall be disabled when the assertion is disabled.

11.8 Controlling Assertions

System tasks are provided to limit assertion checking to part of the design and part of the ssmulation time.

Thes$assert of f system task stopsthe checking of all specified assertions. When these assertions are encoun-
tered before a subsequent $asser t on, the assert statement shall be ignored. Neither the pass statement nor the
fail statement shall be executed. An assertion that is already executing, including execution of the pass or fail
statement, is not affected by $assert of f.

The $assertki | | system task disables all specified assertions and prevents them from executing until a sub-
sequent $assert on. As with disable, the checking of the sequence is aborted, and neither the pass nor fail
statement is executed.

The $assert on system task re-enables the execution of all specified assertions.

The assertion control system tasks may be used with or without arguments. When invoked with no arguments,
the system task refersto all assertions throughout the model. Refer to section 16.5 for the syntax of these sys-
tem tasks.

Assertions are on by default until turned off. When an assertion control task is specified with arguments, the
first argument indicates how many levels of the hierarchy below each specified module instance to turn on or
off. Subsequent arguments specify which scopes of the model in which to control assertions. These arguments
can specify entire modules or individual named assertions within a module. Setting the first argument to O
causes al assertions in the specified module and in al module instances below the specified module to be
affected. The argument 0 applies only to subsequent arguments which specify module instances, and not to
individual assertions.

11.9 System Functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expression>) returnstrueif only one and only one bit of expressionishigh
— $onehot 0(<expression>) returnstrue if at most one bit of expressionislow

— $i nset (<expression>, <expression>{, <expression>}) returnstrueif the first expressionis equal to at
least one of the subsequent expression arguments.

— $i nset z(<expression>,<expression> {, <expression>}) returnstrueif thefirst expression is equal to at
least other expression argument. Comparison is performed using casez semantics, so ‘z' or ‘? bitsare
treated as don't-cares.

— $i sunknown(<expression>) returnstrueif any bit of the expressionis‘x’. Thisisequivalent to “"<expres-
sion> === "bx”

All of the above system functions have a return type of bit. A return value of 1'bl indicates true, and a return
value of 1'b0 indicates false.

49 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 12
Hierarchy

12.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated moduleis at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, i nt eger andt i me datatypes can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested modul e declarations, to aid in representing self-contained models and libraries
— Relaxed rules on port declarations

— Simplified named port connections, using .namne

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 13)

An important enlacement in SystemVerilog isthe ability to pass any data type through module ports, including
nets, and all variable types including reals, arrays, and structures.

12.2 The $root top level

In SystemVerilog there is atop level called $r oot , which is the whole source text. This allows declarations
outside any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration. .
The order of elaboration shall be: First, look for explicit instantiationsin $r oot . If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared before it is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:
— hasasingle occurrence
— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

Copyright 2002 Accellera. All rights reserved. 50
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001
— task and function definitions are in a globa name space and can be accessed throughout the hierarchy
— may not containi ni tial or al ways procedures

— may contain procedural statements, which will be executed onetime, asif inani ni ti al procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the module instance name space and are local to that scope

— task and function definitions are in the modul e instance name space and are local to that scope

— may contain any number of i ni ti al and al ways procedures

— may not contain procedural statementsthat are not withinani ni ti al procedure, al ways procedure, task,
or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $r oot . to theidentifier name. For example, aglobal variable named syst em r eset canbe
explicitly referenced from any level of hierarchy using $r oot . syst em r eset .

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions:

typedef int nyint;

function void main ();

nyint i,j,Kk;

$display (“entering main...");

left (k);

right (i,j,k);

$display (“ending... i=%d, j=9%®9d, k=%®9d", i, j, k);

endf uncti on

function void left (output nyint k);
k = 34;
$display (“entering left”);

endf unction

function void right (output nmyint i, j, input nyint k)
$display (“entering right”);
i = k/2;
j = k+i;

endf uncti on

mai n() ;

51 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

12.3 Module declarations

module_declaration ::=
{ attribute_instance } module_keyword module identifier [parameter_port_list]
[list_of ports] ; [unit] [precision] { module item}
endmodule
| { attribute_instance } module_keyword module identifier [parameter_port_list]
[list_of port declarations] ; [unit] [precision] { non_port module item}
endmodule
module_keyword ::= module | macromodule
unit ::=[timeunit [time _literal] ;]
precision ::=[timeprecision [time_literal] ;]
module_or_generate item_declaration ;;=
net_declaration
| data_declaration
| event_declaration
| genvar_declaration
| task _declaration
| function_declaration
module_item ::=
port_declaration ;
| non_port_module_item
non_port_module item ::=
{ attribute_instance } generated module_instantiation
| { attribute instance } local _parameter declaration
| { attribute_instance} module_or_generate item
| { attribute_instance} parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| module_declaration
module_or_generate item ::=
{ attribute_instance} parameter_override
| { attribute_instance} continuous_assign
| { attribute_instance} gate instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance} module_instantiation
| { attribute_instance} initial_construct
| { attribute_instance} aways construct
| { attribute_instance’} combinational_statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| module_common_item

module_common_item ::=
{ attribute_instance } module_or_generate item_declaration
| { attribute instance} interface instantiation

Syntax 12-1—Module declaration syntax (excerpt from Annex A)

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

52

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration may appear after isinstantiated in the source text:

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-level
space, outside of other modules.

module ml(...); ... endnodul e
nmodule n2(...); ... endnodul e
nmodul e nB(...)

nL il1(...); // instantiates the |ocal nl declared bel ow
n2 i4(...); // instantiates n2 - no | ocal declaration
nodule ml(...); ... endnodule// nested nodul e decl aration
/1 ml nodule nane is in nB”s nane space
endnodul e

mL i2(...); // nodule instance in the $root space,
/] instantiates the nodule mlL that is not nested in another nodul e

12.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

/1 This exanple shows a D-type flip-flop nade of NAND gates
nodul e dff _flat(input d, ck, pr, clr, output g, nq);
wire gl, ngl, g2, ng2

nand glb (ngl, d, clr, ql);
nand gla (g1, ck, ng2, nqgl);

nand g2b (ng2, ck, clr, q2);
nand g2a (g2, nql, pr, ng2);

nand g3a (g, ng2, clr, nq);
nand g3b (ng, q1, pr, Q);
endnodul e

/1l This exanpl e shows how the flip-flop can be structured into 3 RS | atches
nmodul e df f_nested(input d, ck, pr, clr, output g, nq);
wire gl, ngl, ng2

nmodul e ff1;
nand glb (nql, d, clr, ql);
nand gla (g1, ck, ng2, nql);

endnodul e
fflili;
nodul e ff2

wire g2; // This wire can be encapsulated in ff2
nand g2b (nqg2, ck, clr, g2);

53 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001

nand g2a (92, ngl, pr, ng2);
endnodul e
ff2i2;

nodul e ff3
nand g3a (g, ng2, clr, nq);
nand g3b (ng, ql, pr, Q);
endnodul e
ff3 i3;
endnodul e

SystemVerilog 3.0/draft 7 (4/27/02)

The nested modul e declarations can al so be used to create alibrary of modules that islocal to part of adesign.

nodul e part1(....);

nodul e and2(input a; input b; output z);

endnodul e

nmodul e or2(input a; input b; output z);

endnodul e

endnodul e

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

12.5 Port declarations

output_declaration ::=
interface port_declaration ::=
interfacelist_of_interface identifiers

| identifier list_of_interface identifiers

port_type ::=
data type{ packed dimension}

| trireg [signing] { packed_dimension }
| event

inout_declaration ::= inout [port_type] list_of port_identifiers
input_declaration ::= input [port_type] list_of port_identifiers

output [port_type] list_of port_identifiers
| output data_type list_of variable port_identifiers

| interface . modport_identifier list_of_interface identifiers

| identifier . modport_identifier list_of interface identifiers

| net_type[signing] { packed dimension}

| [signing] { packed dimension} range

signing ::=[signed] | [unsigned]

Syntax 12-2—Port declaration syntax (excerpt from Annex A)

Copyright 2002 Accellera. All rights reserved. 54
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, a structure or a union.

typedef struct {

bit isfloat;

union { int i; shortreal f; } n;
} tagged; // named structure

nmodul e mhl (input int inl, input shortreal in2, output tagged out);

endﬁﬁaule
For thefirst port, if neither atype nor adirection is specified, then it shall be assumed to be amember of a port
list, and any port direction or type declarations must be declared after the port list. Thisis compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to

i nout . If the first port direction but no type is specified, then the port type shall default towi r e. This default
type can be changed using the * def aul t _net t ype compiler directive, asin Verilog.

/1 Any declarations must follow the port list, because first port does not
/1 have either a direction or type specified; Port directions default to inout
nmodul e mh4(x, y);

int x;

char vy;

endﬁﬁaule
For subsequent portsin the port list, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wi re. This default type can be changed using the ‘ def aul t _nett ype compiler
directive, asin Verilog.

/1 second port inherits its direction and type from previous port
nmodul e mh3 (i nput char a, b);

endnodul e
A software tool can use the port direction to check against writing to an input port or not writing to an output

port.

Ports which are of a net type can have multiple drivers, which are resolved according to the net’s resolution
function. A driver can be an out put port of an instantiation, or a continuous assignment.

If the port is of typel ogi ¢ or any other variable data type, then the port has the value of the last assignment to
it. If theportisani nout , then these assignments can beinside or outside the module. If the port isan out put ,

then these assignments shall only be inside the module. This provides away to model a port which is meant to
beasingledriver.

12.6 Time unit and precision
The time unit can be set by thet i meuni t keyword to atime which must be a power of 10 unitse.g.
timeunit 100ps;

The time unit is determined by:
1) If atimeunit has been specified in the current module, then the time unit is set to module’s time units.

2) Elsg, if the module definition is nested, then the time unit is inherited from the enclosing module.

55 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

3) Elsg if a‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has atime unit, then the time unit set to the time units of the root module.
5) Else, the smulator’s default time units are used.
The simulator’s default time units follow the rules of Verilog.
Thetime precision isset by thet i mepr eci si on keyword to a time which must be a power of 10 units e.g.
ti meprecision 100fs;

If the ti mepreci si on is not specified, then the precision is determined following the same precedence as
with time units.

Itisan error to set aprecision larger than the current unit.

12.7 Module instances

module_instantiation ::=
module_identifier [parameter_value assignment] module_instance{ , module_instance} ;
parameter_value assignment ::=# (list_of_parameter_assignments)
list_of parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. parameter_identifier ([expression])
| . parameter_identifier ([data type])
module_instance ::= name_of instance ([list_of port_connections])
name_of instance ::= module_instance_identifier { range}
list_of port_connections::=
ordered_port_connection { , ordered_port_connection }
| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection { , named_port_connection }

ordered_port_connection :;={ attribute_instance } [expression]
named_port_connection ::= { attribute_instance} .port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier
| named_port_connection
dot_star_port_connection ::={ attribute_instance} .*

Syntax 12-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one
declared later. Actual parameters can be named or ordered. Port connections can be hamed, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for
the connection rules.

Copyright 2002 Accellera. All rights reserved. 56
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Consider an ALU accumulator (al u_accun) example module that includes instantiations of an ALU mod-
ule, an accumulator register (accum module and a sign-extension (xt end) module. The module headers for
the three instantiated modul es are shown in the following example code:

nmodul e alu (

output reg [7:0] alu_out,

out put reg zero,

input [7:0] ain, bin,

i nput [2:0] opcode);

/!l RTL code for the alu nodule
endnodul e

nmodul e accum (

output reg [7:0] dataout,

input [7:0] datain,

i nput clk, rst_n)

/1 RTL code for the accunul ator nodul e
endnodul e

nmodul e xtend (

output reg [7:0] dout,

i nput din,

i nput clk, rst_n)

/1 RTL code for the sign-extension nodul e
endnodul e

12.7.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections, as shown in the
al u_accuml module example.

nmodul e al u_accuml (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (alu_out, , ain, bin, opcode);

accum accum (dataout[7:0], alu_out, clk, rst_n);

xtend xtend (dataout[15:8], alu_out[7], clk, rst_n);
endnodul e

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there will be no warnings and the simulation will work as expected.

12.7.2 Instantiation using named port connections

Verilog has aways permitted instantiation of modules using named port connections as shown in the
al u_accun® module example.

modul e al u_accun? (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2:0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out(alu_out), .zero(),

57 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

.ain(ain), .bin(bin), .opcode(opcode));
accum accum (. dat aout (dataout[7:0]), .datain(alu_out),
.clk(clk), .rst_n(rst_n));
xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]),
.clk(clk), .rst_n(rst_n));
endnodul e

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning will be reported.

12.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list a port name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

Inthefollowing al u_accunB example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

Inthe same al u_accunB example, the accummaodule has an 8-bit port called dat aout that is connected
to a 16-bit bus called dat aout . Because the internal and external sizes of dat aout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. Thedat ai n
port on the accumis connected to a bus by a different name (al u_out), so this port is also connected by
name. The cl k and r st _n ports are connected using implicit .name port connections. Also in the same
al u_accunB example, the xt end module has an 8-bit output port called dout and a 1- bit input port called
di n. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. Thecl k and r st _n ports are connected using implicit .name port connections.

nmodul e al u_accunB (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out, .zero(), .ain, .bin, .opcode);

accum accum (. dat aout (dataout[7:0]), .datain(alu_out), .clk, .rst_n);

xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst_n);
endnodul e

Implicit .name port connections do not have to be ordered the same as the ports of the instantiated module.

The following rules apply to implicit .name port connections:

— For animplicit .name port connection to be legal, the connecting variable name must match the port name
of the instantiated module.

— For animplicit .name port connection to be legal, the connecting variable size must match the port size of
the instantiated module.

— For an implicit .name port connection to be legal, the connecting variable data type must be compatible to
the port data type of the instantiated module. See section 12.7.5 for a description of compatible data types
for implicit port connections.

— Implicit .name port connections cannot be used in the same instantiation with positional port connections.

— Implicit .name port connections may be used in the same instantiation with named port connections.

Copyright 2002 Accellera. All rights reserved. 58
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

— Implicit .name port connections cannot be used in the same instantiation with implicit .* port connections.

— Theorder of the implicit .name port connections does not have to match the port-order of the instantiated
module.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more bits.

12.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a . * syntax for al ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. Thisimplicit port connection styleis used to indicate that all port names and sizes match the
connections where emphasisis placed only on the exception ports. Theimplicit . * port connection syntax can
greatly facilitate rapid block-level testbench generation where al of the testbench variables are chosen to
match the instantiated module port names and sizes.

Inthefollowing al u_accun¥ example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit . * port connection syntax connects all other ports
on the instantiated module.

Inthe same al u_accun¥ example, the accummaodule has an 8-bit port called dat aout that is connected
to a 16-bit bus called dat aout . Because the internal and external sizes of dat aout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. Thedat ai n
port on the accumis connected to a bus by a different name (al u_out), so this port is also connected by
name. The cl k and r st _n ports are connected using implicit . * port connections. Also in the same
al u_accumt example, the xt end module has an 8-bit output port called dout and a 1- bit input port called
di n. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. Thecl k and r st _n ports are connected using implicit . * port connections.

nodul e al u_accumd (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.*, .zero());
accumaccum (. *, .dataout(dataout[7:0]), .datain(alu_out));
xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));
endnodul e
The following rules apply to implicit . * port connections:

— For animplicit . * port connection to belegal, all implicitly connected ports must have a connecting vari-
able name to match the port name of the instantiated module.

— For animplicit . * port connection to belegal, all implicitly connected ports must have a connecting vari-
able size to match the port size of the instantiated module.

— For animplicit . * port connection to be legal, the connecting variable data type must be compatible to the
port data type of the instantiated module. See section 12.7.5 for a description of compatible data types for
implicit port connections.

— Implicit . * port connections cannot be used in the same instantiation with positional port connections.
— Implicit . * port connections may be used in the same instantiation with named port connections.

— Implicit. * port connections cannot be used in the same instantiation with implicit .name port connections.

59 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

— If implicit . * port connections are used in an instantiation, all unconnected ports must be shown using
named port connections.

— When theimplicit . * port connection is mixed in the same instantiation with named port connections, the
implicit . * port connection token can be placed anywhere in the port list.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more hits.

Modules may be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit . * connected instances as shown inal u_accunb example.

nodul e al u_accunb (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

/1 mxture of naned port connections and
[/ inmplicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu out, .zero(), .opcode);

/1 positional port connections
accum accum (dataout[7: 0], alu_out, clk, rst_n);

/1 mxture of nanmed port connections and inplicit .* port connections
xtend xtend (.dout(dataout[15:8]), .*, .din(alu_out[7]));
endnodul e

12.7.5 Compatible data types for implicit port connections

Implicit port connections are permitted between any two data types that are allowed by SystemVerilog port
connection rules, as long as the SystemVerilog simulator is not required to report a warning about the connec-
tion. Any SystemVerilog instantiation that would cause a warning to be issued must be connected by name if
other ports of the instance are instantiated using an implicit port connection style.

If, for example, atop-level module connects asignal named net 1 of any data type to an instantiated submod-
ule with a port also named net 1 of same data type, SystemVerilog will run this simulation without warning
because the data types are the same across ports. It is legal to make this type of connection using an implicit
port connection style.

If, for example, atop-level module connects a signal named net 2 of typewi r e to an instantiated submodule
with aport also named net 2 of typer eg, Verilog simulators run this simulation without warning because the
data types are compatible across ports. It islegal to make this type of connection using an implicit port connec-
tion style.

If, for example, atop-level module connects a signal named net 3 of typet ri 1 to an instantiated submodule
with aport named net 3 of typet ri 0, Verilog simulatorsissue awarning and thetop-level datatype (tri 1) is
used during simulation, as described in the IEEE Verilog-2001 Standard. It is legal to make this type of con-
nection using named port connections but it shall be a syntax error to make this connection using an implicit
port connection style. Any port connection that results in a required warning message shall not be permitted to
be instantiated using an implicit port connection style.

A top-level module shall not implicitly connect asignal of any datatypeto aport by the same name of another
data typeif connecting the datatypesisillegal as defined by this SystemVerilog standard.

Copyright 2002 Accellera. All rights reserved. 60
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

12.8 Port connection rules

If aport declaration has a variable datatype such as| ogi c, then its direction controls how it can be connected,
asfollows:

— Ani nput can be connected to any expression of a compatible datatype. If unconnected, it has the initial
value corresponding to the data type

— Anout put can be connected to a variable (or a concatenation) of a compatible data type, and has shared
variable behavior if multiple outputs are connected (last writewins); Anout put | ogi ¢ can be connected
to anet (to provide aresolution function in the case of multiple drivers)

— Ani nout can be connected to avariable (or a concatenation) of the same data type

If a port declaration has a wi r e type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— Aninput can be connected to any expression of a compatible datatype. If unconnected, it has the value
'z

— Anout put can be connected to a net type (or a concatenation of net types) or left unconnected, but not to
al ogi c variable

— Ani nout can be connected to a net type (or aconcatenation of net types) or left unconnected, but not to a
| ogi c variable

Note that where the data types differ between the port declaration and connection, an initial value change event
may be caused at time zero.

If a port declaration has a generic i nt er f ace type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows:
— If the port is anet vector, then the Verilog connection rules for nets are followed.

— Iftheportisani nout port variable, then aport connection must have the same size and representation on
both sides of the port. It shall be an error if there is a mismatch.

— Iftheportisani nput or anout put variable, then the Verilog assignment rules are followed.

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of asingle instance port, the connection shall
be made to each instance in the array.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port
connection shall be matched to the port left index to left index, right index to right index. If they do not match
it shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with al right-hand indices to match the rightmost part-select, and iterating through the rightmost dimension
first. Too many or too few bitsto connect all the instances shall be considered an error.

61 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

12.9 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
name. Type names include modules, interfaces, and data types. Instance names include tasks, functions, proce-
dures, variables, constants and label s as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $r oot isthe name of the top level of the hierarchy.

Names areinitially global. A new scope is defined by:
— amodule or interface

— atask or function

— asequential or parallel block

— astructure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
The declaration in the closest enclosing scope is matched.

12.10 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by periods,
where an instance name may be an array element.

$root. mynodul e. ul // absol ute nane
ul.structl.fieldl // ul nust be visible |locally or above, including globally
adder 1[5] . sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.

Copyright 2002 Accellera. All rights reserved. 62
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 13
Interfaces

13.1 Introduction (informative)

The communication between blocks of adigital system isacritical areathat can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. Theinclusion of interface
capabilities is one of the major advantages of SystemVerilog.

At itslowest level, an interface is a named bundle of nets or variables. The interface isinstantiated in adesign
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can ssimply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don't need to change
atall.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modport construct is provided. Asthe name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. i ni ti al or al ways blocks)
and continuous assignments, which are useful for system-level modelling and test bench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can aso be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modelled by f or kj oi n tasks, which can be defined in more than one module and executed concurrently.

63 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

13.2 Interface syntax

modport_declaration ::= modport list_of modport_identifiers;
list_of modport_identifiers::= modport_item { , modport_item }
modport_item ::= modport_identifier (modport_port { , modport_port })
modport_port ::=
input [port_type] port_identifier
| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface identifier . port_identifier
| import_export task named_task_proto
| import_export function named_fn_proto
| import_export task_or_function_identifier { , task_or_function_identifier }
import_export ::=import | export interface port_declaration ::=
interface list_of_interface identifiers
| interface . modport_identifier list_of interface identifiers
| identifier list_of_interface identifiers
| identifier . modport_identifier list_of_interface identifiers
interface_or_generate item ::=
{ attribute_instance} continuous_assign
| { attribute_instance} initia_construct
| { attribute_instance} always construct
| { attribute_instance} combinational _statement
| { attribute_instance} latch_statement
| { attribute _instance} ff_statement
| { attribute _instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| module_common_item
| { attribute_instance} modport_declaration
interface item ::=
port_declaration
| non_port_interface item
non_port_interface item ::=
{ attribute_instance} generated_interface instantiation
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| { attribute instance} specparam_declaration
| interface_or_generate_item
| interface_declaration
interface instantiation ;:=
interface identifier [parameter_value_assignment]| module_instance{ , module_instance} ;

Syntax 13-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,

Copyright 2002 Accellera. All rights reserved. 64
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).

Aninterfaceis declared as follows:
interface <identifier> <interface_itens> endinterface [: <nane> <identifier>]
An interface can be instantiated hierarchically like a module with or without ports. For example:
nyinterface #(100) scalarl, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, asisillustrated in the examples bel ow.

13.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

modul e memvbd(i nput bit req
bit clk,
bit start,
| ogi c[1: 0] node,
| ogi c[7:0] addr,

i nout | ogic[7:0] data,
out put bit gnt,
bit rdy);
| ogi c avail;
endnodul e

nmodul e cpuMod(
i nput bit clk,

bit gnt,

bit rdy,
i nout logic [7:0] data
out put bit req,

bit start,

| ogi c[7: 0] addr
| ogic[1:0] node);

endnodul e

nodul e top
logic req, gnt, start, rdy; // reqis logic not bit here
logic clk =0

I ogic [1:0] node
logic [7:0] addr, data;

memvbd nem(req, clk, start, node, addr, data, gnt, rdy)
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, nobde)

endnodul e

65 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

13.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and netsin it are assumed to be i nout ports. The following interface example
shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog

interface capability can significantly reduce the amount of code required to model port connections.

interface sinple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
|l ogic [1:0] node
| ogic start, rdy;
endi nterface: sinple_bus

nmodul e memvbd(si npl e_bus a, // Use the sinple_bus interface
i nput bit clk);
| ogi c avail;
/Il a.req is the req signal in the 'sinple_bus’ interface
al wvays @ posedge clk) a.gnt <= a.req & avail
endnodul e

nodul e cpuMbd(si npl e_bus b, input bit clk);
endnodul e
nmodul e top

logic clk =0

sinple_bus sb_intf; // Instantiate the interface

memvbd mem(sb_intf, clk); // Connect the interface to the nodul e instance
cpuMd cpu(.b(sb_intf), .clk(clk)); // Either by position or

endnodul e

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in the
memM od and cpuM od module headers, then implicit port declarations also could have been used to instantiate

the memMod and cpuMod modules into the top module, as shown below:

nodul e memvbd (sinple_bus sb_intf, input bit clk);
endﬁﬁaule
nodul e cpuMbd (sinple_bus sb_intf, input bit clk);
endﬁﬁaule
nmodul e top

logic clk =0

sinpl e_bus sb_intf;

memvod nmem (.*); // inplicit port connections
cpuMod cpu (.*); // inplicit port connections

endnodul e

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

66

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

13.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface isreferred to as a“ generic” inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion:

/1 memvbd and cpuMbd can use any interface
nmodul e memVbd (interface a, input bit clk);

endnodul e
nmodul e cpuMod(interface b, input bit clk);
endnodul e
interface sinple_bus; // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

endi nterface: sinple_bus

nodul e top
logic clk =0

sinmple_bus sb_intf; // Instantiate the interface
/1l Connect the sb_intf instance of the sinple_bus
Il interface to the generic interfaces of the
/1 menmvbd and cpuhMbd nodul es
memvbd mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));
endnodul e
An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below:
nodul e memvbd (interface a, input bit clk);
endnodul e
nmodul e cpuMod (interface b, input bit clk);
endnodul e
nmodul e top
logic clk =0
sinpl e_bus sb_intf;

menmvod mem (.*, .a(sb_intf)); // partial inplicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial inplicit port connections

endnodul e

67 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

13.3 Ports in interfaces

One limitation of simple interfacesis that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wire d
endi nterface

Thewires a, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
I ogic [1:0] node
logic start, rdy;
endi nterface: sinple_bus

nodul e memvbd(si npl e_bus a); // Uses just the interface
| ogic avail;

al ways @posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // a.reqis in the 'sinple_bus’ interface
endnodul e
nmodul e cpuMbd(si npl e_bus b);
endnodul e
nodul e top

logic clk =0

sinmpl e_bus sb_intfl(clk); // Instantiate the interface
sinmpl e_bus sb_intf2(clk); // Instantiate the interface

memMvbd nend(.a(sb_intf1)); // Connect bus 1 to nenory 1
cpuMod cpul(.b(sb_intf1))
memivbd nmenR(.a(sb_intf2)); // Connect bus 2 to nmenory 2
cpuMod cpu2(. b(sb_intf2));

endnodul e

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

13.4 Modports

To bundle module ports there are nodport lists with directions declared within the interface. The keyword
modport indicates that the directions are declared asif inside the module.

Copyright 2002 Accellera. All rights reserved. 68
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

interface i?2;
wirea, b, ¢, d
nodport master (input a, b, output c, d);
nodport slave (output a, b, input c, d);
endi nterface

Thenodport list name (master or save) can be specified in the module header, where the modpor t name acts
as adirection and the interface name as a type:

nodule m (i 2. master i);
endnodul e
nodule s (i2.slave i);
endnodul e
nmodul e top

21

mul(.i(i));

s u2(.i(i));

endnodul e

Thenodport list name (master or slave) can also be specified in the port connection with the module instance,
where the nodpor t nameis hierarchical from the interface instance:

nodule m(i2i);
endﬁﬁaule
nodule s (i2i);
endﬁﬁaule
nmodul e top

21

mul(.i(i.nmaster));
s u2(.i(i.nmaster));
endnodul e

The syntax of i nt erface_nane. nodport _nane i nstance_nane is redly a hierarchical type fol-
lowed by an instance. Note that this can be generalized to any interface with a given nodpor t name by writing
i nterface. nodport _nane instance_nane.

In ahierarchical interface, the directionsin anodport declaration can themselves be nodpor t plus name:

interface il;
interface i3
wire a, b, ¢, d;
nodport master (input a, b, output c, d);
nmodport slave (output a, b, input c, d);
endi nterface
i3 chl, ch2
nodport nmaster2 (chl. master, ch2.nmaster)
endi nterface

69 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Notethat if no nodport isspecified in the module header or in the port connection, then all the wires and vari-
ablesin the interface are accessible with direction i nout , asin the examples above.

13.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface sinmple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
I ogic [1:0] node
| ogic start, rdy;

nodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data);
nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data);

endi nterface: sinple_bus

nodul e memvbd (sinple_bus.slave a); // interface nane and nodport nane
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endnodul e
nodul e cpuMbd (sinpl e_bus. master b);
endnodul e
nmodul e top

logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 cl k++

menmvod nmen(.a(sb_intf)); // Connect the interface to the nodul e i nstance
cpuMod cpu(.b(sb_intf))

endnodul e

13.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the module instantiation.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
I ogic [1:0] node
logic start, rdy;

Copyright 2002 Accellera. All rights reserved. 70
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

nmodport sl ave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data);

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data);

endi nterface: sinple_bus

nodul e memvbd(si npl e_bus a); // Uses just the interface nane
| ogic avail;

al ways @posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endnodul e
nmodul e cpuMbd(si npl e_bus b);
endnodul e
nodul e top

logic clk =0

sinmple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 cl k++

menmvbd nenm(sb_intf.slave); // Connect the nodport to the nodul e i nstance
cpuMod cpu(sb_intf.master);

endnodul e

13.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

nmodport slave (input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data);

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
i nout data);

endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses just the interface
| ogic avail;

71 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001

al ways @ posedge a.clk) //
a.gnt <= a.req & avail
endnodul e
nodul e cpuMbd(i nterface b);
endnodul e
nodul e top
logic clk =0
sinple_bus sb_intf(clk); //

memvbd men(sb_intf. sl ave);
cpuMod cpu(sb_intf. master);

endnodul e

SystemVerilog 3.0/draft 7 (4/27/02)

fromthe interface
inthe interface

the cl k signa
/'l the gnt and req signal

Instantiate the interface

/1 Connect the nodport to the nodul e i nstance

13.5 Tasks and Functions in Interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a nodport

these tasks are declared asi nport tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
ext er n intheinterface, or asexport inanodport .

Tasks (not functions) may be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by af or kj oi n ext er n declaration in the interface.

13.5.1 An example of using tasks in an interface

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;
task masterRead(input logic[7:0] raddr); // masterRead mnet hod

I
endt ask: nmasterRead

task sl aveRead;
/1
endt ask: sl aveRead

endi nterface: sinple_bus

nodul e memvbd(i nterface a);
| ogi c avail;

al ways @ posedge a.clk) //
a.gnt <= a.req & avail

al ways @a. start)
a. sl aveRead;

Copyright 2002 Accellera. All rights reserved.

/1 sl aveRead net hod

/1 Uses any interface

the clk signal fromthe interface

/1 the gnt and req signals in the interface

72

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

endnodul e

nodul e cpuMbd(interface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)
if (instr == read)
b. master Read(raddr); // call the Interface nethod

endnodul e

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nmem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

endnodul e

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined elsewhere. Similarly atask prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport the import and export constructs can either use task or function
prototypes or use just the identifiers.

13.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

nmodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
i nout data
i mport task slaveRead(),
task slaveWite());
/1 inport into nodule that uses the nodport

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data
i mport task masterRead(input |ogic[7:0] raddr),
task masterWite(input logic[7:0] waddr));
/1 inport requires the full task prototype

task masterRead(input logic[7:0] raddr); // masterRead mnet hod
11
endt ask

task slaveRead; // slaveRead nethod
I

73 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

endt ask

task masterWite(input logic[7:0] waddr);
/...
endt ask

task slaveWite;
...
endt ask

endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface
| ogic avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

al ways @a. start)
if (a.node[0] == 1'b0)
a. sl aveRead,;
el se
a. sl aveWite;
endnodul e

nmodul e cpuMbd(interface b);
enum {read, wite} instr = $rand();
logic [7:0] raddr = $rand();

al ways @ posedge b. cl k)
if (instr == read)
b. mast er Read(raddr); // call the Interface nethod
/1

el se
b. masterWite(raddr);
endnodul e
nodul e ommi Mod(i nterface b);
end;;aﬁie: omi Mod

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface
memvbd nmem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

omi Mod omi (sb_intf); // has access to all naster and sl ave tasks

endnodul e

13.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another using modports to
control task access.

Copyright 2002 Accellera. All rights reserved. 74
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

interface sinple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] node
| ogic start, rdy;

nmodport sl ave(input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data
export task Read()
task Wite());
/'l export from nodul e that uses the nodport

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data
i mport task Read(input logic[7:0] raddr),
task Wite(input logic[7:0] waddr));
/1 inport requires the full task prototype

endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses just the interface keyword
| ogic avail;

task a.Read; // Read nethod

avail =0
avail = 1;
endt ask

task a. Wite;

avail =0

avail = 1;
endt ask
endnodul e

nodul e cpuMbd(interface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)
if (instr == read)
b. Read(raddr); // call the slave method via the interface

el se
b. Wite(raddr);

endnodul e

nodul e top
logic clk =0

sinmple_bus sb_intf(clk); // Instantiate the interface

menmvbd nen(sb_intf.slave); // exports the Read and Wite tasks
cpuMod cpu(sb_intf.master); // inports the Read and Wite tasks

75 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

endnodul e

13.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
So that these can still export their read and write tasks, the tasks must be declared in the interface using the
ext ern f or kj oi n keywords. Normally only one module responds to the task call, e.g. the one containing the
appropriate address. Only then should the task write to the result variables. Note multiple export of functionsis
not allowed because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
ext er n f or kj oi n. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface sinple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
logic start, rdy;
int slaves;
/] tasks executed concurrently as a fork/join block
extern forkjoin task count Sl aves();
extern forkjoin task Read(input |ogic[7:0] raddr);
extern forkjoin task Wite(input |ogic[7:0] waddr);

nmodport sl ave(input req, addr, node, start, clKk,
out put gnt, rdy,
i nout data
export task Read()
task Wite());
/1 export from nodul e that uses the nodport

nodport master(input gnt, rdy, clk
out put req, addr, node, start,
i nout data
i mport task Read(input logic[7:0] raddr),
task Wite(input logic[7:0] waddr));
/1 inport requires the full task prototype

initial begin

sl aves = 0;

count Sl aves

$di spl ay (“nunmber of slaves = %", slaves);
end

endi nterface: sinple_bus

nodul e memvbd(interface a); // Uses just the interface keyword
| ogic avail;

task a.count Sl aves
a. sl aves++;
endt ask

task a. Read; // Read net hod
avail = 0;

Copyright 2002 Accellera. All rights reserved. 76
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001
é&éil =1
endt ask

task a. Wite;

avail =0

avail = 1;
endt ask
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)
if (instr == read)

b. Read(raddr); // call the slave nmethod via the interface

/1
el se
b. Wite(raddr);
endnodul e

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nmeml(sb_intf.slave); //exports the countSlaves, Read and Wite tasks
memvbd nmenm2(sb_intf.slave); //exports the countSlaves, Read and Wite tasks

cpuMod cpu(sb_intf.master); //inports the Read and Wite tasks

endnodul e

13.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-

ule definitions. This example shows how to use parametersin interface definitions.

interface sinple_bus #(parameter AWDTH = 8, DWDTH = 8;)
(input bit clk); // Define the interface
| ogic req, gnt;
| ogic [AWDTH 1: 0] addr;
logic [DWDTH 1: 0] data;
I ogic [1:0] node
logic start, rdy;

nodport slave(input req, addr, node, start, clk,
out put gnt, rdy,
i nout data
i mport task slaveRead(),
task slaveWite());
/1 inport into nodule that uses the nodport

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,

77 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

i nout data
i mport task masterRead(input |ogic[AWDTH 1:0] raddr),
task masterWite(input |ogic[]AWDTH 1: 0] waddr))
/1 inport requires the full task prototype
task masterRead(input |ogic[AWDTH 1:0] raddr); // masterRead nethod
endiéék
task slaveRead; // slaveRead nethod
end{éék
task masterWite(input |ogic[AWDTH 1:0] waddr);
endiéék
task slaveWite;
endiéék
endi nterface: sinple_bus

nmodul e memvbd(interface a); // Uses just the interface keyword
| ogic avail;

al ways @ posedge b.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

al ways @b. start)
if (a.nmode[0] == 1'b0)
a. sl aveRead;
el se
a. sl aveWite;
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr

al ways @ posedge b. cl k)

if (instr == read)
b. mast er Read(raddr); // call the Interface nethod
/1

el se

b. rasterWite(raddr);
endnodul e
nmodul e top
logic clk =0

sinmple_bus sb_intf(clk); // Instantiate default interface
sinmpl e_bus #(. DWDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 cl k++

memvbd nen(sb_intf.slave); // only has access to the sl aveRead task

Copyright 2002 Accellera. All rights reserved. 78
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

memvbd nemA(w de_intf.slave); // 16-bit w de nenory
cpuMod cpuWwi de_intf.master); // 16-bit w de cpu

endnodul e

13.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to accessinternal state information about the interface, then these methods may be called from different points
in the design to share information.

interface intf_mutex;
task lock ();
endiéék
function unl ock();

endf uncti on
endi nterface

function int f(input int i);
return(i); // just returns arg
endf uncti on

function int g(input int i);
return(i); // just returns arg
endf unction

nmodul e nmod1(i nput int in, output int out);
i ntf_nutex nutex;

al ways begin
#10 nut ex. | ock();
@in) out = f(in);
mut ex. unl ock;

end

al ways begin
#10 nut ex. | ock();
@in) out = g(in);
mut ex. unl ock;
end
endnodul e

79 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 14
Parameters

14.1 Introduction (informative)

Verilog-2001 provides three constructs for defining compile time constants: the par anet er, | ocal par amand
specpar amstatements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of aparameter of an instantiated module can
be overridden in each instance of the module using either using:

— Implicit in-line parameter redefinition (e.g.f oo #(val ue, value) ul (...);)
— Explicit in-line parameter redifinition(e.g. f oo #(nanme=val ue, nane=value) ul (...);)
— def par amstatements, using hierarchical path names to redefine each parameter

14.1.1 Defparam removal

The def par amstatement may be removed from future versions of the language. See section 18.2.

14.2 Syntax

local_parameter_declaration ::=
localparam [signing] { packed_dimension} [range] list_of param_assignments;
| localparam data_type list_of param_assignments;

parameter_declaration :;=
parameter [signing] { packed_dimension} [range] list_of param_assignments
| parameter data type list of param_assignments
| parameter type list_of type assignments

specparam_declaration ::=

specparam [range] list_of specparam_assignments ;
list_of param_assignments ::= param_assignment { , param_assignment }
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments:;=type assignment { , type assignment }
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ;=

specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type

Syntax 14-1—Parameter declaration syntax (excerpt from Annex A)

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type | ogi ¢ of arbitrary size for Verilog-2001 compatibility and interoperability.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

Copyright 2002 Accellera. All rights reserved. 80
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

81

modul e ma #(paraneter pl = 1, paraneter type p2 = shortint;)
(input logic [pl:0] i, output logic [pl:0] o0);
p2 j =0; // type of | is set by a paraneter, which is shortint unless
redef i ned
al ways @i) begin
0 =i;
j ++;
end
endnodul e

nodul e nb;

logic [3:0] i,0

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endnodul e

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 15
Configuration libraries

15.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

15.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

15.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $root top level.

Copyright 2002 Accellera. All rights reserved. 82
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 16
System tasks and system functions

16.1 Introduction (informative)

SystemVerilog adds a system function to determine the bit size of avalue.

16.2 The $bits system function

The $bits system function returns the number of bits required to hold avalue. A 4 state value counts as one bit.
Given the declaration:

logic [31:0] foo;

Then $bi t s(f 00) will return 32, even if a software tool uses more than 32-bits of storage to represent the 4-
state values.

16.3 Array querying functions

SystemVerilog provides new system functions to return information about an array

— $left(<array>, <dinmension>) shal return the left bound (msb) of the dimension

— $right(<array>, <dinmension>) shal return the right bound (Isb) of the dimension

— $l ow(<array>, <di nension>) shall returnthe minimum of $I ef t and $ri ght of the dimension
— $hi gh(<array>, <dinension>) shal returnthe maximum of $| eft and $ri ght of the dimension

— $increnent (<array>, <di mensi on>) shal return 1if $I ef t isgreater than or equal to $ri ght , and
-1if $l ef t islessthan $ri ght

— $l engt h(<array>, <di nension>) shall return the number of elementsin the dimension, which is
equivaent to $hi gh - $l ow+ 1

— $di mensi ons(<array>) shal return the number of dimensionsin the array, or O for a scalar object

where:
<ar r ay> isany declared array
<di nmensi on> specifies which dimension of the array isto be queried
The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or

unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension num-
bers. For instance:

/1 D nensi on nunbers
/1 3 4 1 2
reg [3:0][2:1] n [1:5][2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bi t s(N) - 1: 0] .

If an out-of-range dimension is specified, these functions shall return alogic X.

83 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

16.4 Assertion severity system tasks

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failureis“error”. The severity levels can be specified by including one of the following
severity system tasksin the assertion fail statement:

— $f at al (<diagnostic_level> [, <user-defined_message>]); shall generate arun-time fatal assertion error,
which terminates the simulation with an error code. The first argument passed to $f at al shall be consis-
tent with the corresponding argument to the Verilog $f i ni sh system task, which setsthe level of diagnos-
tic information reported by the tool.

— $er ror ([<user-defined_message>]); shall be arun-time error.

— $war ni ng([<user-defined_message>]); shall be a run-time warning, which can be suppressed in atool-
specific manner.

— $i nf o([<user-defined_message>]); shall indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— Thefile name and line number of the assertion statement,

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optiona user-defined information to be reported. The <user-
defined_message> shall use the same syntax as the Verilog $di spl ay system task, and can include any num-
ber of arguments.

16.5 Assertion control system tasks

assertctrl_tasks::=//not in Annex A
assert_task ;
| assert_task (levels|[, list_of modules or_assertions]) ;
assert_task ::=
$asserton
| $assertoff
| $assertkill
list_of modules or_assertions ;=
module_or_assertion { , module_or_assertion }
module_or_assertion ::=
module_identifier
| assertion_identifier

Syntax 16-1—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— $assert of f shall stop the checking of all specified assertions until a subsequent $asserton. An assertion
that is already executing, including execution of the pass or fail statement, is not affected

Copyright 2002 Accellera. All rights reserved. 84
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

— $assertki I | shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $asserton.

— $assert on shal re-enable the execution of all specified assertions

16.6 Assertion system functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expression>) returnstrueif only one and only one bit of expressionishigh
— $onehot 0(<expression>) returnstrue if at most one bit of expressionislow

— $i nset (<expression>, <expression>{, <expression>}) returnstrueif the first expressionis equal to at
least one of the subsequent expression arguments.
— $i nset z(<expression>,<expression> {, <expression>}) returnstrueif thefirst expression is equal to at

least other expression argument. Comparison is performed using casez semantics, so ‘z' or ‘? bitsare
treated as don't-cares.

— $i sunknown(<expression>) returnstrueif any bit of the expressionis‘x’. Thisisequivalent to “"<expres-
sion> === "bx”

All of the above system functions have a return type of bit. A return value of 1'b1 indicates true, and a return
value of 1'b0 indicates false.

85 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Section 17
Compiler Directives

17.1 Introduction (informative)

Verilog provides the * def i ne text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)
* NAND(3) il (y, a, b); //*"NAND(3) macro substitutes with: nand #(3)

* NAND(3: 4: 5) i2 (o, c, d); //"NAND(3:4:5) nmacro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the * def i ne compiler directive to support strings as macro argu-
ments

17.2 ‘define macros

In SystemVerilog, the ' def i ne macro text can include a backslash (\) at the end of aline to show continua-
tion on the next line.

The macro text can also include an isolated quote, which must be preceded by a back tick, *". This alows
macro arguments to be included in strings. If the strings are to contain \ ", the macro text should be written
“\ . Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, ™, to allow identifiers to be constructed from arguments,
eg.

‘define foo(f) f'*'_suffix

This expands:

f oo(bar)
to:

bar _suffix

Note that there must be no space before the parenthesis. Otherwise it istreated as macro text.
The *include directive can be followed by a macro instead of aliteral string:

‘define f1 “/hone/fool/ nyfile”
“include “f1

Copyright 2002 Accellera. All rights reserved. 86
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Section 18
Features under consideration for removal from SystemVerilog

18.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if thereis an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are def par amand procedural assi gn/deassi gn.

18.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the def par ammethod of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The def par amstatement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
def par amstatement on a deprecation list. Thismeansis that a future revision of the Verilog standard may not
require support for this feature. This current standard still requires tools to support the def par amstatement.
However, users are strongly encouraged to migrate their code to use one of the alternate methods of parameter
redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A def par amstatement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other def par am state-
ments to modify, and can modify the same parameter from two different def par am statements (with unde-
fined results). Due to the many ways that a def par am can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
ules was to use implicit in-line parameter redefinition. This method uses #(parameter_value) as part of the
module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form #(parameter_name=value) as part
of the module instantiation. This method gives the capability to pass parameters by name in the instantiation,
which supplies all of the necessary parameter information to the model in the instantiation itself.

The practice of using def par amstatements is highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See section 14 for more details on parameters.

18.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assi gn and deassi gn statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assi gn/deassi gn statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assi gn/deassi gn statements on a deprecation list. This meansisthat afuture revision

87 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

of the Verilog standard may not require support for theses statements. This current standard still requirestools
to support the procedural assi gn/deassi gn statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assi gn statement:
— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assi gn statement is executed in the
procedure. The process can be de-activated using a deassi gn statement. The procedural assi gn/deassi gn
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
a procedural continuous assignments are required, the same behavior can be modeled using the procedural
force and rel ease statements.

The fact that the assi gn statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assi gn and deassi gn statements inside of procedural
blocks s highly discouraged.

See section 8 for more information on procedural assignments.

Copyright 2002 Accellera. All rights reserved. 88
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:
— Keywords and punctuation arein bold text.

— Syntactic categories are named in non-bold text.

— Avertical bar (|) separates alternatives.

— Squarebrackets([]) enclose optional items.

— Braces({ }) encloseitemswhich may be repeated zero or more times.

A.1 Source text

A.1.1 Library source text

library text ::={ library_descriptions }

library_descriptions ::=
library_declaration

| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec[{ , file_path_spec}]
[-incdir file_path spec[{ , file_path spec}]11];
file_path spec ::=file_path
include_statement ::= include <file_path_spec>;

A.1.2 Configuration source text

config_declaration ::=
config config_identifier ;
design_statement
{ config_rule_statement}
endconfig
design_statement ::= design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=
default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use clause
| cell_clause liblist_clause
| cell_clause use clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{ .instance identifier}
cell_clause ::=cell [library_identifier.]cell_identifier
liblist_clause ::= liblist [{library_identifier}]

use_clause::= use [library_identifier.]cell_identifier[:config]

A.1.3 Module and primitive source text
source_text ::= [unit] [precision] { description }

89 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

description ::=
module_declaration
| udp_declaration
| module root_item
| statement

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of ports] ; [unit] [precision] { module _item }
endmodule
| { attribute_instance’} module_keyword module _identifier [parameter_port_list]
[list_of port_declarations] ; [unit] [precision] { non_port_ module_item }
endmodule
module_keyword ::= module | macromodule

interface_declaration ::=
{ attribute_instance } interface interface identifier [parameter_port_list]
[list_of_ports] ; [unit] [precision] { interface_item }
endinterface[: interface identifier]
| { attribute_instance} interface interface identifier [parameter_port_list |
[list_of port_declarations] ; [unit] [precision] { non_port_interface item }
endinterface[: interface identifier]
unit ::= [timeunit [time_literal] ;]
precision ::= [timeprecision [time_literal] ;]

A.1.4 Module parameters and ports
parameter_port_list ::= # (parameter_declaration { , parameter_declaration})
list_of_ports::= (port{ , port})
list_of port declarations::=
(port_declaration { , port_declaration })
I O)
port ::=
[port_expression]
| . port_identifier ([port_expression])
port_expression ::=
port_reference
| { port_reference{ , port_reference} }
port_reference ::=
port_identifier
| port_identifier [constant_expression |
| port_identifier [range_expression |
port_declaration ::=
{ attribute_instance } inout_declaration
| { attribute_instance} input_declaration
| { attribute_instance} output_declaration
| { attribute_instance} interface port_declaration

A.1.5 Module items

module_common_item ::=
{ attribute_instance} module_or_generate_item_declaration
| { attribute_instance} interface instantiation
module_item ::=
port_declaration ;

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

90

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

| non_port_module_item

module or_generate item ::=
{ attribute_instance} parameter_override
| { attribute_instance} continuous_assign
| { attribute_instance} gate instantiation
| { attribute_instance} udp_instantiation
| { attribute_instance} module_instantiation
| { attribute_instance} initial_construct
| { attribute_instance} always_construct
| { attribute_instance} combinational _statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| module_common_item

module root_item ::=
{ attribute_instance} module_instantiation
| { attribute _instance} local _parameter declaration
| interface_declaration
| module_common_item

module_or_generate item_declaration ::=
net_declaration
| data_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

non_port_module_item ::=
{ attribute_instance } generated_module_instantiation
| { attribute_instance} local_parameter declaration
| {attribute—nstanee}-module_or_generate item
| { attribute_instance} parameter_declaration ;
| { attribute_instance} specify block
| { attribute_instance} specparam_declaration
| module_declaration

parameter_override ::= defparam list_of_param_assignments ;

A.1.6 Interface items

interface_or_generate item :;=
{ attribute_instance} continuous_assign
| { attribute _instance} initial_construct
| { attribute _instance} always_construct
| { attribute_instance} combinational _statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| { attribute _instance} local_parameter declaration
| { attribute_instance} parameter_declaration ;
| module_common_item
| { attribute_instance } modport_declaration
interface item ::=
port_declaration
| non_port_interface item
non_port_interface item ::=
{ attribute_instance } generated_interface instantiation

91 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| { attribute _instance} local _parameter declaration
| { attribute _instance} parameter_declaration ;

| { attribute _instance} specparam_declaration

| interface_or_generate item

| interface_declaration

A.2 Declarations
A.2.1 Declaration types

A.2.1.1 Module parameter declarations

local_parameter_declaration ::=
localparam [signing] { packed_dimension} [range] list_of_param_assignments ;
| localparam data_type list_of param assignments;
parameter_declaration ::=
parameter [signing] { packed_dimension} [range] list_of param_assignments
| parameter data type list_of_param_assignments
| parameter type list_of_type assignments
specparam_declaration ;=
specparam [range] list_of specparam_assignments ;

A.2.1.2 Port declarations
inout_declaration ::= inout [port_type] list_of port_identifiers
input_declaration ::= input [port_type] list_of_port_identifiers
output_declaration ;:=
output [port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface port_declaration ::=
interfacelist_of_interface identifiers
| interface . modport_identifier list_of_interface identifiers
| identifier list_of_interface identifiers
| identifier . modport_identifier list_of interface identifiers

A.2.1.3 Type declarations

block data declaration ::=
block variable declaration
| constant_declaration
| type_declaration
| state declaration
constant_declaration ::= const data_type const_assignment ;
data declaration ::=
variable_declaration
| constant_declaration
| type declaration
event_declaration ::= event list_of event identifiers;
genvar_declaration ::= genvar list_of genvar_identifiers;
net_declaration ::=
net_type[signing]
[delay3] list_of net_identifiers;
| net_type[drive_strength] [signing]
[delay3] list_of net decl_assignments;

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

92

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

| net_type| vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net identifiers;
| net_type| drive strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net decl assignments;
| trireg [charge strength] [signing]
[delay3] list_of net identifiers;
| trireg [drive_strength] [signing]
[delay3] list_of net decl assignments;
| trireg [charge_strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net identifiers;
| trireg [drive_strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net decl assignments;

type declaration ::=
typedef data_type type declaration_identifier ;
| typedef interface_identifier { [constant_expression] } . type identifier
type_declaration_identifier ;
block variable declaration ::=
[lifetime] data type list_of variable identifiers;
| lifetime data type list_of variable decl _assignments;
variable declaration ::=
[lifetime] data_type list_of variable identifiers or_assignments;

lifetime ::= static | automatic
A.2.2 Declaration data types

A.2.2.1 Net and variable types

data type::=
integer_vector_type|[signing] { packed_dimension} [range]
| integer_atom type|[signing] { packed_dimension }
| type declaration identifier
| non_integer_type
| struct [packed] [signing] { { struct_union_member } }
| union [packed] [signing] { { struct_union_member } }
| enum { enum_identifier [= constant_expression |
{ , enum_identifier [= constant_expression] } }
| void

integer_type ::= integer_vector_type | integer_atom_type
integer_atom_type ::= byte | char | shortint |int | longint | integer
integer_vector_type::=bit | logic | reg
non_integer_type ::=time|shortreal | real | realtime | $built-in
net_type ::= supplyO | supplyl | tri | triand | trior |triO|tril|wire|wand | wor
port_type::=
data type{ packed dimension}

| net_type[signing] { packed_dimension }

| trireg [signing] { packed_dimension }

| event

| [signing] { packed _dimension} range
signing ::=[signed] | [unsigned]
simple_type ::= integer_type | non_integer_type | type_identifier
struct_union_member ::= data type list_of_variable identifiers or_assignments;;

93 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

A.2.2.2 Strengths

drive_strength ::=
('strengthO, strengthl)
| (strengthl, strengthO)
| (strengthO, highzl)
| (strengthl, highz0)
| (highz0, strengthl)
| (highz1, strengthO)

strengthO ::= supplyO | strongO | pullO | weak 0
strengthl ::= supplyl | strongl | pulll | weak 1
charge_strength ::= (small) | (medium) | (large)

A.2.2.3 Delays
delay3::=#delay value|# (delay value[, delay value[, delay value]])
delay? ::=#delay_value|# (delay value[, delay value])
delay value::=
unsigned_number

| parameter_identifier

| specparam _identifier

| mintypmax_expression
A.2.3 Declaration lists
list_of event identifiers::= event_identifier [unpacked dimension { unpacked_dimension }]

{ , event_identifier [unpacked_dimension { unpacked dimension}]}

list_ of genvar identifiers::= genvar_identifier { , genvar_identifier }

list_of interface identifiers::= interface identifier { unpacked dimension}
{ , interface_identifier { unpacked dimension} }

list_of net decl _assignments::=net_decl_assignment { , net_decl_assignment }

list_of net identifiers::= net_identifier [unpacked dimension { unpacked dimension }]
{ , net_identifier [unpacked_dimension { unpacked dimension}] }

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of port_identifiers::= port_identifier { unpacked dimension }
{ , port_identifier { unpacked dimension} }

list_ of udp port_identifiers::= port_identifier { , port_identifier }

list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_ of type assignments::=type assignment { , type assignment }

list_ of variable decl _assignments::=variable decl assign identifier { , variable_decl_assign_identifier }
list_of variable identifiers::= variable declaration identifier { , variable declaration_identifier }

list_ of variable identifiers or_assignments::=
list_of variable decl _assignments
| list_of variable identifiers

list_ of variable port_identifiers::= port_identifier { unpacked dimension} [= constant_expression]

{ , port_identifier { unpacked dimension} [= constant_expression] }

A.2.4 Declaration assignments

const_assignment ::= const_identifier = constant_expression
net_decl_assignment ::= net_identifier = expression

param_assignment ::= parameter_identifier = constant_param_expression

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

94

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data _type
pulse_control_specparam ::=
PATHPUL SE$ = (reject_limit_vaue[, error_limit_value]) ;
| PATHPUL SE$specify_input_terminal_descriptor$specify_output_terminal _descriptor
= (rgject_limit_value[, error_limit_value]) ;
error_limit_value ::= limit_value
reject_limit_value ::=limit_value
limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges

unpacked_dimension ::= [dimension_constant_expression : dimension_constant_expression |
packed_dimension ::= [dimension_constant_expression : dimension_constant_expression]
range ::= [msb_constant_expression : Isb_constant_expression |

A.2.6 Function declarations

function_declaration ::=

function [automatic] [signing] [range _or_type]
[interface identifier .] function_identifier ;

{ function_item_declaration }

{ function_statement }

endfunction [: function_identifier]

| function [automatic] [signing] [range or_type]

[interface identifier .] function_identifier (function_port_list) ;

{ block_item_declaration }

{ function_statement }

endfunction [: function_identifier]

function_item_declaration ::=
block _item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute_instance} inout_declaration ;
function_port_item ::=
{ attribute_instance } input_declaration
| { attribute _instance} output_declaration
| { attribute_instance} inout_declaration

function_port_list ::=function_port_item { , function_port_item }
function_prototype ::= function data type (list_of function_proto_formals)
named_function_proto::= function data type function identifier (list_of function_proto formals)

list_of function_proto_formals::=
[{ attribute_instance } function_proto_formal { , { attribute_instance} function_proto_formal }]

function_proto_formal ::=
input data type[variable declaration_identifier]
| inout data type|[variable declaration identifier]
| output data_type [variable_declaration_identifier]
| variable_declaration_identifier
range or_type::=
{ packed_dimension } range

95 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| data type

A.2.7 Task declarations

task_declaration ::=
task [automatic] [interface identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]
| task [automatic] [interface identifier .] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [: task_identifier]
task_item_declaration ::=
block_item_declaration
| { attribute instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute _instance} inout_declaration ;

task_port_list ::=task_port_item{ , task_port_item }
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute _instance} output_declaration
| { attribute_instance} inout_declaration
task_prototype ::=
task ({ attribute_instance} task_proto_formal { , { attribute instance} task proto formal })

named_task_proto ::= task task_identifier (task_proto_formal { , task_proto_formal })

task_proto_formal ::=
Fpert}input data_type|[variable declaration identifier]
| Fpertt-inout data type|[variable declaration identifier]
| Fperti-output data type[variable declaration identifier]
| sertevenyerable

A.2.8 Block item declarations

block_item_declaration ::=
{ attribute_instance} block_data declaration
| { attribute_instance} event_declaration
| { attribute _instance} local _parameter declaration
| { attribute_instance} parameter_declaration ;

A.2.9 Interface declarations
modport_declaration ::= modport list_of _modport_identifiers;
list_of modport_identifiers::= modport_item { , modport_item }
modport_item ::= modport_identifier (modport_port { , modport_port})
modport_port ::=
input [port_type] port_identifier

| output [port_type] port_identifier

| inout [port_type] port_identifier

| interface identifier . port_identifier

| import_export task named_task_proto

| import_export function named_fn_proto

| import_export task_or_function_identifier { , task_or_function_identifier }
import_export ::= import | export

Copyright 2002 Accellera. All rights reserved. 96
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

A.3 Primitive instances

A.3.1 Primitive instantiation and instances

gate_instantiation ::=
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance} ;
| enable_gatetype [drive_strength] [delay3] enable_gate instance{ , enable gate instance} ;
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch_instance} ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate instance{ , n_input_gate instance} ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate instance
{ ,n_output_gate instance} ;
| pass_en_switchtype [delay?] pass_enable switch _instance{ , pass_enable switch_instance} ;
| pass_switchtype pass_switch_instance{ , pass_switch_instance} ;
| pulldown [pulldown_strength] pull_gate instance{ , pull_gate instance} ;
| pullup [pullup_strength] pull_gate instance { , pull_gate instance} ;

cmos_switch_instance ::= [name_of_gate instance] (output_terminal , input_terminal ,
ncontrol_terminal , pcontrol_terminal)

enable_gate instance ::=[name_of_gate instance] (output_terminal , input_terminal , enable _terminal)
mos_switch_instance ::= [name_of _gate instance] (output_terminal , input_terminal , enable terminal)
n_input_gate instance ::= [name_of_gate instance] (output_terminal , input_terminal { , input_terminal })

n_output_gate instance ::=[name_of _gate instance] (output_terminal { , output_termina } ,
input_terminal)

pass_switch instance ::= [name_of gate instance] (inout_terminal , inout_terminal)

pass_enable switch instance ::= [name_of gate instance] (inout_termina , inout_terminal ,
enable terminal)

pull_gate instance ::= [name_of gate instance] (output_terminal)
name _of gate instance ::= gate instance_identifier { range }

A.3.2 Primitive strengths

pulldown_strength ::=
('strengthO, strengthl)
| (strengthl, strengthO)
| (strengthO)

pullup_strength ::=
(strengthO, strengthl)
| (strengthl, strengthO)
| (strengthl)

A.3.3 Primitive terminals

enable_terminal ::= expression

inout_terminal ::= net_lvalue

input_termina ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue

pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos

enable gatetype ::= bufifO | bufif1 | notifO | notifl
mos_switchtype ::= nmos| pmos | rnmos | rpmos

97 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not

pass_en_switchtype ::=tranifO|tranifl|rtranifl|rtranifO
pass_switchtype ::=tran |rtran

A.4 Module, interface and generated instantiation

A.4.1 Instantiation

A.4.1.1 Module instantiation
module_instantiation ::=

module_identifier [parameter_value_assignment] module_instance{ , module_instance} ;

parameter_value assignment ::=# (list_of_parameter_assignments)
list_ of parameter_assignments::=

ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment :;:= expression | data_type
named_parameter_assignment ;=

. parameter_identifier ([expression])
| . parameter_identifier ([data type])

module _instance ::= name_of instance ([list_of port connections])

name_of |

instance ::= module_instance identifier { range }

list_of port_connections::=

ordered_port_connection { , ordered_port_connection }
| dot_named port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::={ attribute_instance} [expression]
named_port_connection ::= { attribute instance} .port_identifier ([expression])
dot_named port_connection ::=

{ attribute_instance} .port_identifier
| named_port_connection

dot_star_port_connection ::= { attribute instance} .*

A.4.1.2 Interface instantiation
interface instantiation ;:=

interface identifier [parameter_value _assignment] module instance { , module_instance} ;

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation

generated_module_instantiation ::= generate{ generate_ module_item} endgenerate
generate_module_item_or_null ::= generate_module item | ;

generate_module_item ::=

generate_module_conditional _statement
| generate_module _case_statement
| generate_module_loop_statement
| [generate block_identifier :] generate_module_block
| module_or_generate item

generate_module_conditional_statement ::=

if (cconstant_expression) generate_ module_item_or_null [else generate_module_item_or_null]

Copyright 2002 Accellera. All rights reserved. 98
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

generate_module case statement ::=
case (constant_expression) genvar_module case item { genvar_module_case item }endcase

genvar_module case item ::=
constant_expression { , constant_expression } : generate_module_item_or_null
| default [:] generate_module_item_or_null

generate_module_loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)
generate_module_named_block

genvar_assignment ::=
genvar_identifier = constant_expression
| genvar_identifier assignment_operator constant_expression
| inc_or_dec operator genvar_identifier
| genvar_identifier inc_or_dec_operator

genvar_decl_assignment ::=
[genvar] genvar_identifier = constant_expression

generate_module_named_block ::=
begin : generate block_identifier { generate_ module_item } end [: generate block_identifier]
| generate block_identifier : generate_module_block

generate_ module_block ::=
begin [: generate block identifier] { generate_ module item} end [: generate_block identifier]

A.4.2.2 Generated interface instantiation
generated_interface instantiation ::= generate { generate interface item} endgenerate
generate interface item_or_null ::= generate interface item|;

generate interface item ;=
generate interface conditional _statement
| generate interface case statement
| generate interface loop_statement
| [generate block identifier :] generate_interface block
| interface_or_generate item

generate interface conditional_statement ::=
if (constant_expression) generate interface item _or_null [else generate interface item or_null]

generate interface case statement ::=
case (constant_expression) genvar_interface case item { genvar_interface case item} endcase

genvar_interface case item ::=
constant_expression { , constant_expression } : generate _interface _item_or_null
| default [:] generate interface_item_or_null

generate _interface loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)
generate _interface_named_block

generate _interface_named_block ::=
begin : generate_block _identifier { generate medute-interface item} end [:
generate _block_identifier |
| generate block_identifier : generate meddle-interface block

generate_interface block ::=
begin [: generate_block_identifier]
{ generate interface item}
end [: generate block_identifier]

99 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

A.5 UDP declaration and instantiation

A.5.1 UDP declaration

udp_declaration ::=
{ attribute_instance} primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance} primitive udp_identifier (udp_declaration_port_list) ;
udp_body
endprimitive
A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration;

udp_output_declaration ::=
{ attribute_instance} output port_identifier
| { attribute_instance} output reg port_identifier [= constant_expression |

udp_input_declaration ::= { attribute instance} input list_of _udp_port_identifiers
udp_reg_declaration ::= { attribute_instance} reg variable identifier

A.5.3 UDP body

udp_body ::= combinational_body | sequential_body

combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::=level_input_list : output_symbol ;

sequential_body ::=[udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_va ;

init_val :=1'b0| 1'b1|1’bx | 'bX | 'BO|1'B1| 1I'Bx | 'BX | 1|0

sequential_entry ::=seq input_list : current_state : next_state ;

seq_input_list ::=level _input_list | edge input_list

level input_list ::=level_symbol { level_symbol }

edge _input_list ::={ level_symbol } edge indicator { level_symbol }

edge indicator ::= (level_symbol level_symbol) | edge _symbol

current_state ::= level_symbol

next_state ::= output_symbol | -

output_symbol ::=0|1|x|X

level_symbol :=0|1|x|X|?|b|B

edge symbol ::=r |[R[f|F|p|P|n|N|*

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance{ , udp_instance } ;
udp_instance ::= [name_of_udp_instance] { range} (output_terminal , input_termina { , input_terminal })
name_of udp_instance ::= udp_instance_identifier [range]

Copyright 2002 Accellera. All rights reserved. 100
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

A.6 Behavioral statements

A.6.1 Continuous assignment statements

continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments;
list_ of net assignments::=net_assignment { , net_assignment }

net_assignment ::= net_|value = expression

A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement
always_construct ::= always statement
combinational_statement ::= always _comb statement
latch_statement ::= always latch statement
ff_statement ::= aways ff statement
blocking_assignment ::=
variable_Ivalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable |value assignment_operator expression

assignment_operator ::=
= 4= =" = /= %= &= | |5 | 1= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable |value <=[delay_or_event_control] expression

procedural _continuous_assignments ::=
assign variable_assignment
| deassign variable Ivalue
| force variable _assignment
| force net_assignment
| release variable lvalue
| release net_lvalue

function_blocking_assignment ::= variable lvalue = expression

function_statement_or_null ::=
function_statement
| { attribute_instance} ;

variable_assignment ::= variable_|value = expression

A.6.3 Parallel and sequential blocks

function_seq block ::=

begin [: block identifier { block_item_declaration}] { function_statement } end
par_block ::=

fork [: block_identifier] { block item declaration} { statement } join [: block_identifier]

seq block ::=
begin [: block identifier] { block_item declaration} { statement} end [: block identifier]

A.6.4 Statements
statement ::= [block_identifier :] statement_item
statement_item ::=
{ attribute_instance} blocking_assignment ;
| { attribute_instance} nonblocking_assignment ;
| { attribute_instance} procedural_continuous_assignments;
| { attribute _instance} case statement
| { attribute_instance} conditional _statement

101 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| Fetrbuteastenes—reas Hen—te—ciete sletemenar—ul
| { attribute _instance} inc_or_dec_expression

| { attribute_instance } function_call” must-be-voidfunetion*/
| { attribute_instance} disable statement

| { attribute_instance} event_trigger

| { attribute_instance} loop_statement

| { attribute_instance} jump_statement

| { attribute_instance} par_block

| { attribute_instance} procedural_timing_control _statement
| { attribute_instance} seq block

| { attribute_instance} system task_enable

| { attribute_instance} task_enable

| { attribute_instance} wait_statement

| { attribute_instance} process statement

| { attribute_instance} proc_assertion

statement_or_null ::=
statement
| { attribute_instance} ;

function_statement ::= [block_identifier :] function_statement_item

function_statement_item ::=
{ attribute_instance } function_blocking_assignment ;
| { attribute _instance} function case statement
| { attribute_instance} function_conditional_statement
| etrbntetaseRes s en—te—<cete unsien—shtemeae—aut
| { attribute_instance} inc_or_dec_expression
| { attribute_instance} function_call’ /= raustbeveid-funetion =/
| { attribute _instance} function loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} function_seq block
| { attribute instance} disable statement
| { attribute _instance} system task_enable

A.6.5 Timing control statements

procedural_timing_control _statement :;=
delay or_event_control statement_or_null

delay _or_event _control ::=
delay_control
| event_control
| repeat (expression) event_control

delay control ::=
delay_value
| # (mintypmax_expression)

event_control ::=
@ event_identifier
| @ (event_expression)
| @
| @ (*)
event_expression ::=
expression [iff expression]
| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

102

SystemVerilog 3.0/draft 7 (4/27/02)

| event_expression or event_expression
| event_expression , event_expression
edge ::= posedge | negedge | changed
jump_statement ::=
return [expression] ;
| break ;
| continue;
wait_statement ::=
wait (expression) statement_or_null
event_trigger ::=
-> hierarchical_event_identifier ;
disable statement ::=
disable hierarchical _task identifier ;
| disable hierarchical_block_identifier ;

A.6.6 Conditional statements
conditional_statement ::=

Accellera
Extensions to Verilog-2001

[unique priority] if (expression) statement_or_null [else statement_or_null]

| if_else if statement
if else if statement ::=

[unique priority] if (expression) statement_or_null
{ else[unique _priority] if (expression) statement_or_null }

[else statement_or_null]
function_conditional_statement ::=

[unique_priority] if (expression) function_statement_or_null [else function_statement_or_null]

| function _if else if statement
function_if_else if statement ::=

[unique priority] if (expression) function_statement_or_null
{ else[unique_priority] if (expression) function_statement_or_null }

[else function_statement_or_null]
unique_priority ::= unique| priority

A.6.7 Case statements
case_statement ::=

[unique priority] case (expression) case_item{ case item} endcase
| [unique _priority] casez (expression) case item{ case item} endcase
| [unique _priority] casex (expression) case item{ case item} endcase

case item::=

expression{ , expression} : statement_or_null

| default [:] statement_or_null
function_case statement ::=

[unique priority] case (expression) function_case item { function case item} endcase
| [unique priority] casez (expression) function case item { function_case item} endcase
| [unique _priority] casex (expression) function_case item{ function_case item} endcase

function_case item ::=

expression{ , expression} : function_statement_or_null
| default [:] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=
forever function_statement

103 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| repeat (expression) function_statement_or_null

| while (expression) function_statement_or_null

| for (variable decl_or_assignment ; expression ; variable assignment)
function_statement_or_null

| do function_statement while (expression)

loop_statement ::=
forever statement
| repeat (expression) statement_or_null
| while (' expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable assignment) statement_or_null
| do statement while (expression)
variable decl_or_assignment ::=
data typelist_of variable identifiers or_assignments;
| variable assignment

A.6.9 Task enable statements
system_task enable ::= system task_identifier [(expression { , expression})] ;
task_enable ::= hierarchical _task_identifier [(expression{ , expression})] ;

A.6.10 Assertion statements
proc_assertion ::=
immediate_assert
| strobed assert
| clocked immediate assert
| clocked strobed_assert
immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]
strobed_assert ::= assert_strobe (expression)
restricted_statement_or_null
[elserestricted statement_or_null]
clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked_strobed assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[elserestricted statement_or_null]
restricted_statement_or_null ::=
restricted statement
| { attribute_instance} ;
restricted_statement ::=
[block_identifier :] restricted_statement_item
restricted_statement_item ::=
{ attribute_instance} proc_assertion
| { attribute_instance} system task_enable
| { attribute_instance} delay_or_event_control statement
| { attribute_instance} restricted seq block
restricted_seq _block ::= begin [: block_identifier] { block_item_declaration }{ restricted statement }
end [: block_identifier]
expr_sequence ::=
expression

Copyright 2002 Accellera. All rights reserved. 104
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

| [constant_expression |
| range
| expr_sequence ; expr_sequence
| expr_sequence * [constant_expression |
| expr_sequence * range
| (expr_sequence)
step_control ::=
@@ event_identifier
| @@ (event_expression)

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item} endspecify
specify_item ;=
specparam_declaration
| pulsestyle declaration
| showcancelled_declaration
| path_declaration
| system_timing_check
pulsestyle declaration ::=
pulsestyle onevent list_of path outputs ;
| pulsestyle ondetect list_of path_outputs ;
showcancelled declaration ::=
showcancelled list_of _path_outputs;
| noshowcancelled list_of path_outputs;;

A.7.2 Specify path declarations
path_declaration ::=
simple_path declaration ;
| edge sensitive path declaration ;
| state_dependent_path declaration ;
simple_path declaration ;:=
paralel_path description = path_delay value
| full_path description = path_delay value
paralel_path description ::=
('specify_input_terminal_descriptor [polarity_operator | => specify_output_terminal_descriptor)
full_path_description ::=
(list_of path inputs[polarity_operator] *> list_of path_outputs)
list_of path_inputs::=
specify_input_terminal_descriptor { , specify_input_terminal _descriptor }
list_of path_outputs::=
specify_output_terminal_descriptor { , specify _output_terminal_descriptor }

A.7.3 Specify block terminals
specify_input_terminal _descriptor ::=
input_identifier
| input_identifier [constant_expression |
| input_identifier [range_expression |
specify_output_terminal_descriptor ::=
output_identifier

105 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| output_identifier [constant_expression |
| output_identifier [range_expression |

input_identifier ::=input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays

path_delay value::=
list_of path_delay expressions
| (list_of _path delay expressions)

list of path delay expressions::=
t path_delay expression

| trise_path_delay_expression , tfall_path_delay_expression

| trise_path_delay expression, tfall_path_delay expression, tz_path delay expression

| t01_path delay expression, t10 path delay expression, tOz_path delay expression,
tz1 path delay expression, t1z_path_delay_expression, tzO_path_delay_expression

| t01_path delay expression, t10 path delay expression, tOz_path delay expression,
tz1 path delay expression, t1z_path_delay_expression, tzO_path_delay_expression
tOx_path_delay expression, tx1 path delay expression, t1x_path delay expression,
tx0_path_delay_expression , txz_path_delay_expression, tzx_path_delay_expression

t path _delay expression ::= path_delay_expression
trise_path_delay_expression ::= path_delay_expression
tfall_path_delay expression ::= path_delay_expression
tz_path_delay_expression ::= path_delay_expression
t01_path_delay_expression ::= path_delay_expression
t10_path_delay_expression ::= path_delay_expression
t0z_path_delay expression ::= path_delay_expression
tz1 path _delay expression ::= path_delay_expression
tlz_path delay expression ::= path_delay_expression
tz0_path_delay expression ::= path_delay_expression
tOx_path_delay_expression ::= path_delay_expression
tx1_path_delay_expression ::= path_delay_expression
tix_path_delay_expression ::= path_delay_expression
tx0_path_delay_expression ::= path_delay_expression
txz_path_delay expression ::= path_delay_expression
tzx_path_delay expression ::= path_delay expression
path_delay_expression ::= constant_mintypmax_expression
edge sensitive path_declaration ::=

paralel_edge sensitive path description = path_delay value

| full_edge sensitive path description = path_delay_value

paralel_edge sensitive path description ;=

([edge_identifier] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator] : data _source expression)

full_edge sensitive path_description ::=

([edge_identifier] list_of_path_inputs*>

list_of path_outputs[polarity_operator] : data source expression)

data_source_expression ::= expression
edge _identifier ::= posedge | negedge

Copyright 2002 Accellera. All rights reserved. 106
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

state_dependent_path_declaration ::=
if (module path_expression) simple_path_declaration
| if (module path_expression) edge sensitive path_declaration
| ifnone simple_path _declaration

polarity_operator ::= + | -
A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=
$setup_timing_check
| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check
$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notify_reg11]) ;
$hold_timing_check ::=
$hold (reference_event , data_event , timing_check limit [, [notify reg]]);
$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_check _limit
[, [notify reg] [, [stamptime_condition] [, [checktime _condition]
[, [delayed_reference] [, [delayed_data]]]]]1]);

$recovery_timing_check ::=
$recovery (reference event , data event , timing_check_limit [, [notify _reg]]);
$removal_timing_check ::=
$removal (reference_event , data_event , timing_check_limit [, [notify reg]]) ;
$recrem_timing_check ::=
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed data]]1]1]111]);
$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check_limit
[, [notify_reg] [, [event_based flag] [, [remain_active flag]]]]);
$fullskew_timing_check ::=
$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify_reg] [, [event_based flag] [, [remain_active flag]]]]);
$period_timing_check ::=
$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;
$width_timing_check ::=

$width (controlled_reference_event , timing_check_limit , threshold [, [notify_reg]]) ;

$nochange_timing_check ::=

107 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

$nochange (reference_event , data_event , start_edge offset ,
end edge offset [, [notify reg]]);
A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check event
data_event ::=timing_check event

delayed data::=
terminal_identifier
| terminal_identifier [constant_mintypmax_expression]

delayed reference ::=
terminal_identifier
| terminal_identifier [constant_mintypmax_expression]

end_edge offset ::= mintypmax_expression
event_based flag ::= constant_expression

notify reg ::= variable_identifier

reference_event ::=timing_check event
remain_active flag ::= constant_mintypmax_expression
stamptime_condition ::= mintypmax_expression
start_edge offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check_event ::=
[timing_check_event_control] specify_terminal_descriptor [& & & timing_check_condition]

controlled_timing_check_event ::=
timing_check _event_control specify_terminal_descriptor [& & & timing_check condition]

timing_check_event_control ::=
posedge
| negedge
| edge control_specifier
specify_terminal_descriptor ::=
specify_input_terminal _descriptor
| specify_output_terminal_descriptor
edge control_specifier ::= edge [edge _descriptor [, edge descriptor]]
edge descriptorl ::=01|10|z_or_x zero _or_one|zero_or_one z_or_X
zero or one::=0|1
zorx:=x|X|z|z
timing_check_condition ::=
scalar_timing_check_condition
| (scalar_timing_check condition)
scalar_timing_check_condition ::=
expression
| ~expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant

Copyright 2002 Accellera. All rights reserved. 108
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

| expression !== scalar_constant
scalar_constant ::=1'b0|1'b1|1'BO|1'B1|'b0|'b1|’'BO|'B1|1]0

A.8 Expressions

A.8.1 Concatenations

concatenation ::= { expression { , expression} }

constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path _concatenation ::= { module_path_expression { , module_path_expression } }
module_path multiple_concatenation ::= { constant_expression module_path_concatenation }
multiple_concatenation ::= { constant_expression concatenation }

net_concatenation ::= { net_concatenation_value{ , net_concatenation value} }

net_concatenation value ::=
hierarchical_net_identifier
| hierarchical_net_identifier [expression] { [expression] }
| hierarchical_net_identifier [expression] { [expression] } [range_expression |
| hierarchical_net_identifier [range_expression |
| net_concatenation
variable_concatenation ::={ variable_concatenation_value{ , variable_concatenation_value} }

variable_concatenation value ::=
hierarchical_variable identifier
| hierarchical_variable identifier [expression] { [expression] }
| hierarchical_variable identifier [expression] { [expression] } [range_expression]
| hierarchical_variable_identifier [range_expression]
| variable _concatenation

A.8.2 Function calls

constant_function_call ::= function_identifier { attribute instance}
(constant_expression { , constant_expression })

function_call ::= hierarchical_function_identifier{ attribute instance} (expression{ , expression})

genvar_function_call ::= genvar_function_identifier { attribute_instance }
(‘constant_expression { , constant_expression })

system_function_call ::= system_function_identifier [(expression { , expression})]

A.8.3 Expressions
base expression ::= expression
inc_or_dec_expression ::=
inc_or_dec operator variable Ivalue
| variable Ivalue inc_or_dec operator
conditional_expression ::= expressionl ? { attribute instance} expression2 : expression3
constant_base expression ::= constant_expression
constant_expression ::=
constant_primary
| unary_operator { attribute instance} constant_primary
| constant_expression binary_operator { attribute_instance} constant_expression
| constant_expression ? { attribute instance} constant_expression : constant_expression
| string
constant_mintypmax_expression ::=

109 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

constant_expression
| constant_expression : constant_expression : constant_expression
constant_param_expression ::=
constant_expression
| data type
constant_range_expression ::=
constant_expression
| msb_constant_expression : Isb_constant_expression
| constant_base _expression +: width_constant_expression
| constant_base expression -: width_constant_expression
dimension_constant_expression ::= constant_expression
expressionl :;= expression
expression2 :;= expression
expression3 ::= expression
expression ::=
primary
| unary_operator { attribute instance} primary
| { attribute_instance} inc_or_dec_expression
| (operator_assignment)
| expression binary_operator { attribute instance} expression
| conditional_expression
| string
Isb_constant_expression ::= constant_expression
mintypmax_expression ::=
expression
| expression : expression : expression
module_path _conditional_expression ::= module_path _expression ? { attribute _instance}
module_path_expression : module_path_expression
module_path _expression ::=
module_path_primary
| unary_module_path_operator { attribute_instance } module _path_primary
| module_path_expression binary_module path_operator { attribute_instance }
module_path_expression
| module_path_conditional_expression
module_path_mintypmax_expression :;:=
module_path_expression
| module_path_expression : module_path_expression : module path_expression
msb_constant_expression ::= constant_expression
range_expression ::=
expression
| msb_constant_expression : Isb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression
width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=
constant_concatenation
| constant_function_call
| (constant_mintypmax_expression)

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

110

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

| constant_ multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam _identifier
| time_literal
[op1pzpz'x|'X
module path _primary ::=
number
| identifier
| module path_concatenation
| module_path_multiple_concatenation
| function_call
| system function_call
| constant_function_call
| (module_path_mintypmax_expression)

primary ::
number
| hierarchical_identifier
| hierarchical_identifier [expression] { [expression] }
| hierarchical_identifier [expression] { [expression] } [range_expression]
| hierarchical_identifier [range_expression]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (mintypmax_expression)
| { expression { , expression} }
| { expression { expression} }
| smple_type’ (expression)
| smple_type’ { expression { , expression} }
| smple_type’ { expression { expression } }
| time_literal
['O]1'L]'z]’Z |'x|'X
time_literal ::= integer [. integer] time_unit
time_unit :=s|ms|us|ns|ps|fs

A.8.5 Expression left-side values

net_lvalue::=
hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression | { [constant_expression | }
| hierarchical_net_identifier [constant_expression | { [constant_expression | }
[constant_range_expression |
| hierarchical_net_identifier [constant_range _expression |
| hierarchical_net_identifier ([constant_expression { , constant_expression}])
| net_concatenation
variable Ivalue::=
variable Ivalue item [inc_or_dec operator]
| hierarchical_variable identifier ([constant_expression { , constant_expression}])
variable Ivalue item ::=
hierarchical_variable_identifier

111 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

| hierarchical_variable identifier [expression] { [expression] }

| hierarchical_variable_identifier [expression] { [expression] } [range_expression |
| hierarchical_variable_identifier [range_expression |

| variable_concatenation

A.8.6 Operators
unary_operator ::=

& &I
binary_operator ::=
1% === === == &&]

| <I<=1>[>= & [[|7 M= [>> | << | >>> | <<<
inc_or_dec_operator ::= ++ | --
unary_module path operator ::=
Pl~T& =& [T~ 1 7
binary_module_path operator ::=
=== 1&& & [N [~

A.8.7 Numbers

number ::=
decimal_number
| octal_number
| binary_number
| hex_number
| real_number
real_numberl ::=
unsigned_number . unsigned_number
| unsigned_number [. unsigned_number] exp [sign] unsigned_number
exp:=e|E
decimal_number ::=
unsigned_number
| [size] decimal_base unsigned number
| [size] decima_base x_digit{ }
| [size] decimal_base z digit{ }

binary_number ::=[size] binary_base binary_vaue
octal_number :;=[size] octal_base octal value
hex_number ::=[size] hex_base hex_vaue
sign:i=+]|-

size::=non_zero_unsigned_number

non_zero_unsi gned_number1 ::=non_zero_decimal_digit{ _ | decimal_digit}
unsigned_number! ::= decimal_digit{ | decimal_digit }
binary_valuel ::= binary_digit{ _|binary_digit}
octal_valuel ::= octal_digit{ _|octal_digit }

hex_valuel ::= hex_digit{ _|hex_digit}

decimal_base™ ::="[9|S]d | '[SIS|D

binary_base! ::="[s[S]b | '[s[S]B

octal_base! ::='[s|S]o | '[|S]O

Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

112

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

hex_base ::="[s|S]h | '[s|S]H

non_zero decimal_digit::=1[2|3]|4]5|6|7]8]9
decimal_digit:=0]1]2|3|4|5|6|7|8]9

binary_digit ::= x_digit | z_digit |0 1

octal_digit ::=x_digit | z_digit|0|1|2|3|4|5|6]|7

hex_digit ::=x_digit | z_digit |0|1|2|3|4|5|6|7|8|9|a|b]|c|d|e|f|A|B|C|D|E|F
x_digit :=x | X

z digit::=z|Z|?

A.8.8 Strings
string ::=" { Any_ASCII_Characters except_new _line} "

A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec { , attr_spec} *)

attr_spec ::=
attr_name = constant_expression
| attr_name

attr_name ::= identifier

A.9.2 Comments

comment ::=
one_line_comment
| block_comment

one_line_comment ::=// comment_text \n
block_comment ::= /* comment_text */
comment_text ::={ Any_ASCII_character }

A.9.3 Identifiers

arrayed identifier ::=
simple_arrayed_identifier
| escaped_arrayed identifier

block identifier ::= identifier
cell_identifier ::= identifier
config_identifier ::= identifier
const_identifier ::= identifier
enum_identifier ::= identifier
escaped_arrayed identifier ::= escaped_identifier [range]
escaped_hierarchical_identifier® ::=
escaped_hierarchical_branch { .ssmple_hierarchical_branch | .escaped_hierarchical_branch }
escaped_identifier ::=\ {any_ASCII_character_except_white_space} white _space
event_identifier ::= identifier
function_identifier ::= identifier
gate instance identifier ::= arrayed identifier
generate_block _identifier ::= identifier

113 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

genvar_function_identifier ::= identifier® P hierarehy-disallowed*/
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::=

simple_hierarchical _identifier

| escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable_identifier :;= hierarchical_identifier
hierarchical_task identifier ::= hierarchical_identifier
identifier ::=

simple_identifier

| escaped_identifier

interface _identifier ::= identifier
inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library_identifier ::= identifier
memory_identifier ::= identifier
modport_identifier ::= identifier
module_identifier ::= identifier
module_instance identifier ::= arrayed_identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier
real_identifier ::= identifier
simple_arrayed_identifier ::= simple_identifier [range]
simple_hierarchical_i dentifier® ::= simple_hierarchical_branch [.escaped_identifier]
simple identifier? ::=[a-zA-Z_]{ [a-zA-Z0-9 $]}
specparam_identifier ;:= identifier
state_identifier ::= identifier
system_function_identifier® ::= $[a-zA-Z0-9 $1{ [azA-Z0-9_$]}
system_task_identifier® ::= §[a-zA-20-9 $]{ [a-zA-Z0-9 $]}
task_or_function_identifier ;= task_identifier | function_identifier
task_identifier ::= identifier
terminal_identifier ::= identifier
text_macro_identifier ::= simple_identifier
topmodule _identifier ::= identifier
type declaration identifier ::=type identifier { packed dimension}
type_identifier ::= identifier
udp_identifier ::= identifier

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

114

Accellera
SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001

udp_instance identifier ::= arrayed identifier

variable decl_assign_identifier ::= variable_identifier { unpacked dimension} [= constant_expression]
variable declaration identifier :;= variable identifier { unpacked _dimension }

variable identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch® ::=
simple_identifier { [unsigned number] } [{ . smple_identifier { [unsigned number]} }]

escaped_hierarchical_branch® ::=
escaped_identifier { [unsigned_number] } [{ . escaped_identifier { [unsigned_number]} }]

A.9.5 White space
white_space ::= space | tab | newline | eof®
NOTES

1) Embedded spacesareillegal.

2) A simple identifier and arrayed reference shall start with an alpha or underscore () character, shall
have at least one character, and shall not have any spaces.

3) Theperiod (.) insimple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded
or followed by white_space.

4) The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white space.

5) The $ character in a system_function_identifier or system task identifier shall not be followed by
white_space. A system function_identifier or system task_identifier shall not be escaped.

6) Endof file.
7) Must be avoud function

8) Hierarchy isnot allowed

115 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Copyright 2002 Accellera. All rights reserved. 116
Thisis an unapproved Accellera Standards Draft, subject to change.

SystemVerilog 3.0/draft 7 (4/27/02)

Annex B
Keywords

SystemVerilog reserves the following keywords:

Accellera
Extensions to Verilog-2001

al ways

al ways_conb’
al ways_ffT

al ways_| atch’
and

assign
automatic
begin
bit?
break’
buf
bufifO
bufifl
byt e’
case
casex
casez
cel
changed?’
char
cnos
config
const T
conti nue
deassi gn
defaul t
def param
desi gn

di sabl e

do’

el se

end

endcase
endconfig
endf unction
endgener at e
endi nterface’
endnodul e
endprinmtive
endspeci fy
endt abl e

endt ask

+

endtransition’
enum’
event
export '
extern
for
force
forever
fork
forkjoin
function
generate
genvar

hi ghz0
hi ghz1
if

ifff

i fnone

i mport T
ncdir
ncl ude
nitial
nout
nput

nst ance
ntt

nt eger
nterface’
oin

| arge
liblist
library

| ocal param
| ogict
IongintJr

l ongreal '
macr onodul e
nmedi um
nodport T
nodul e

nand
negedge

+

nnos
nor
noshowcancel | ed
not

notifO

notifl

or

out put
packed’

par anet er
pnos

posedge
primtive
process’
priority’
pul 1 0

pul | 1
pul | down
pul | up

pul sestyl e_oneven
t

pul sestyl e_ondet e
ct

r cnos

rea

realtinme

reg

rel ease

r epeat

return

r nnos

r pnos

rtran
rtrani f0
rtranifl

scal ared
shortint®
shortreal T
showcancel | ed
si gned

smal |

speci fy

specpar am
staote
statict
st rong0
strongl
struct '
suppl yO
suppl y1
tabl e

t ask
tinme

ti meprecision
timeunit?
tran
trani f0
trani f1
transition’
tri

tri O
tril
triand
trior
trireg
type'
typedef T
uni on’
uni que’
unsi gned
use

vect ored
wai t

wand
weak0
weak1
whil e
wire

wor

xnor

xor

+

T keywords not in the |EEE 1364 Verilog-2001 standard

117

Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Copyright 2002 Accellera. All rights reserved. 118
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001
Annex C

Glossary

119 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Copyright 2002 Accellera. All rights reserved. 120
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera

SystemVerilog 3.0/draft 7 (4/27/02) Extensions to Verilog-2001
Annex D

Bibliography

121 Copyright 2002 Accellera. All rights reserved.

Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.0/draft 7 (4/27/02)

Copyright 2002 Accellera. All rights reserved. 122
Thisis an unapproved Accellera Standards Draft, subject to change.

Accellera
Extensions to Verilog-2001

Index

Symbols
Sassertkill 85
$assertoff 84
S$asserton 85

$hits 11, 83
$dimensions 16
$dimensions(83
$error 43, 84
$fatal 43, 84
$high 16, 83
$increment 16, 83
$info 43, 84
$inset 85

$insetz 85
$isunknown 85
$left 16, 83
$length 16, 83
$low 16, 83
$onehot 85
$onehot0 85

$right 16, 83
$root 50, 51
$warning 43, 84
%= operator 21
&= operator 21

*= operator 21, 22
++ operator 21

+= operator 21, 22
* port connections 59
.name port connections 58
/= operator 21, 22
<<<= operator 21
<<= operator 21

-- operator 21

-= operator 21, 22
>>= gperator 21
>>>= operator 21
@@ step control 46
\ line continuation 86
\abell 3

\f form feed 3

\v vertical tab 3
\x02 hex number 3
A= operator 21
‘timescale 6

|= operator 21

‘" isolated quote 86
“* double back tick 86
‘define 86
‘timescale 56

' cast operator 11

SystemVerilog 3.0/draft 7 (4/27/02)

Numerics
2-state types 5
4-state types 5

A

aways @* 32

always comb 32

always ff 33

always latch 32, 33

array literals 3

array part selects 15

array querying functions 16, 83
array dices 15

arrays 13

assert 43

assert_strobe 44

assertion expression sequence 48
assertion system functions 85
assertion system tasks 84
assertions 4149

assign 19, 24, 31, 87
assignment operators 21
assignmentsin expressions 21
attributes 20

automatic 17, 19, 35
automatic tasks 37

B

bell 3

bit4,5, 6

block name 29

blocking assignments 25
break 24, 28, 29

byte 5, 6

C

casting 11

changed 31

char 5, 6

clocked immediate assertions 46
combinational logic 32
concatenation 23
configurations 82

const 17

constants 17

continue 24, 28, 29
continuous assignment 33

D

data declarations 17
datatypes 4

deassign 24, 31, 87
decrementor operator 21
defparam 80, 87
disable 29

Copyright 2002 Accellera. All rights reserved.123

Thisis an unapproved Accellera Standards Draft, subject to change.

SystemVerilog 3.0/draft 7 (4/27/02)

do...whileloop 24, 27
double 6
dynamic processes 29, 32, 33

E

elaboration 50

enum 7, 8
enumerated types 7, 8

export 72
extern 72, 76

F

float 6

force 19, 24

forkjoin 63, 72, 76
form feed 3

functions 38

functionsin interfaces 72

G
goto 28

H
hierarchical names 62

I

iff 31

immedi ate assertions 43
implicit port connections 60
import 72

incrementor operator 21
int4,5,6

integer 5, 6

integer literals 2

interface 20, 63—79
introduction to SystemVerilog 1

L

labels 29

latched logic 33
libraries 82

library map files 82
literal values 2
localparam 80
logic 4, 5, 6, 19
longint 4, 5, 6

M

modport 63, 68

module instantiation 57, 58, 59
multiple dimension arrays 14

N

name space 62

named blocks 28

named port connections 58

Accellera
Extensions to Verilog-2001

nested identifiers 62
nested modules 53
nonblocking assignments 25

O

operator associativity 22
operator precedence 22
overview of SystemVerilog 1

P

packed arrays 13, 14, 22
parameter 80

parameter type 80

part selects 15

port connections, .name 58
port connections, implicit 60
port connections. .* 59

port declarations 55, 61
precedence 22

priority 26, 27

process 29, 32, 33

process execution threads 34

R

real 2,4, 6, 22

real literals 2

reg4,5, 6

release 24

return 24, 28, 30, 37, 39

S

sequential assertions 45
sequential logic 33
sequential regular expression 45
shortint 5, 6

shortreal 2, 4, 6, 22
signed types 6

dices 15

specparam 80

statement labels 28

static 17, 18, 19, 35
static processes 29, 32
tatic tasks 37

step control 46

string literals 3

strobed assertions 44
struct 9

structure literals 3
structures 9
SystemVerilog, overview 1
SystemV erilog,version numbers 1

T
tasks 36
tasksin interfaces 72

124 Copyright 2002 Accellera. All rights reserved.
Thisis an unapproved Accellera Standards Draft, subject to change.

SystemVerilog 3.0/draft 7 (4/27/02)

threads 34

time literals 2

time unit 2
timeprecision 6, 56
timeunit 6, 55

top level 50

type 80

typedef 4, 7

U

union 9

unions 9

unique 26, 27
unpacked arrays 13, 14
unsigned types 6
unsized literals 2
user-defined types 7

Vv

variableinitialization 18
vertical tab 3

void 6

void functions 35, 39
W

while 24, 27

125 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

Thisis an unapproved Accellera Standards Draft, subject to change.

