Enhancement proposals for
System Verilog 3.1

6/5/02
Jayant Nagda
Synopsys Inc.

(» Your Design Partner) SYNOPSYS

New Technologies in Verification

Coverage

Formal Test Simulation
Analysis Generation Engines
HDL, C++ - A A

Engines

Assertions, I Feedback No
HVLs

-

* Test bench language to create tests and verification environments
* Assertions to create checkers (dynamic) and properties (Formal)
e C++ for high level of abstraction and representing algorithms

* (Coverage Tools to Improve test quality

* New technologies are interacting with the simulator through PLI

© 2001 Synopsys, Inc. (2) SY"UPSYS'

Accellera with System Verilog 3.1

* Accellerais looking at most of these new technologies or
interfaces for standardization

e System Verilog 3.0 is a major milestone in brining higher
level of abstraction to Verilog

* Successful language standard need to meet current and
future requirements

°* A unigue opportunity to make lasting impact Support of
Users

e Support of Users
* Support of tool vendors
e Conduit to IEEE-standard

© 2001 Synopsys, Inc. (3) SY"UPSYS'

Proposed Enhancements
For System Verilog 3.1

* Test Bench Features

* Unified Assertion language
* Interface to C/C++

* Extensive API

* The language will be comprehensive and complete

* Higher Simulation Performance

e Ease of Use

* Easier for new technologies to interface with System
Verilog simulators

© 2001 Synopsys, Inc. (4) SYI-IUPSYS'

Test Bench Features : Motivation

* At RTL level test benches have evolved.

* Test Benches were part of Verilog languages at
gate level.

* Large portion of time is spent in creating tests
and test environment

* Performance of test benches is become more
Important

— SYNOPSYS'

Test Bench Features

* Dynamic Objects

= Test bench users are not sophisticated programmers

= Dynamic objects like classes automatically created and
removed

* Build in Test bench primitives
= Protocols, handshakes without implementation details
= Semaphores, lists, mail boxes etc.
* Advance Control constructs for complex scenarios
= Fork-joins : Fork —Hoin all; join-one; join-none
= Triggers : passing of events
* Interactions to not just DUT

= To assertions , To Coverage , formal tools
= Test generation reactive and more productive

© 2001 Synopsys, Inc. (6) SY"UPSYS'

Dynamic Object Example

nib inp, outp;
int count; _ _ _
byte data_array/[]; Object declaration and allocation
task new (nib inport, nib outport,

int byteCount) {
inp = inport; outp = outport;

count = byteCount;
while (byteCount--)
data_array[byteCount] =
randomy();

}
task Send()...

task generator(int size){
intl, o;
for (1=1; 1 <=16; I++) {
for (0 =1; <=16; o++) {
Packet testPacket = new (I, 0, size);
Generate packet for all ports testPacket.send():

1}

ask monitor(Packet curPacket){
nib inport = curPacket.inp;
nib outport = curPacket.outp;

}

Packets are used
without worrying about
freeing memory

© 2001 Synopsys, Inc. (7) SY"UPSYS'

Concurrency and Synchronization

task generate()
J
task check()

fork fork
Dynamic for (i=0; i < 4; i++) for (i=0; i < 4; i++)
concurrent generate port[i] ; check port[i] ;
execution join none join none

/7

thread 1
thread 2

thread 3

o1 Synpsys, n. @ SYNoPSYs

Mailbox Example

nodul e ...
program mai | boxExanpl e {
Transfer t;
Bus b = new);
repeat(lO) {

= ne
tran2§er(t)

cl ass Bus {
I nt eger nbl d;
task new(){
nbld = alloc (MAILBEX, 0, 1);:
fork
transactor();
} j ol n none
task transfer(Transfer t){
mai | box_put (nbld, t);

}

© 2001 Synopsys, Inc. (9)

Allocate mailbox _
Place data into mailbox

\ Take data from mailbox

task \transactor (){
Trahsfer t:
whiWe(1){
mai | box _get(WAI T, nbld, t);
@ posedge CLOCK) ;
bus. addr =t . addr;
bus. si ze=t . si ze;

bus. t ype=t. type;
I f (t.type== ?
bus. dat a= dat a;
@iposedge bus.ack); }
el se {
@ (posedge bus. ack) ;
t.data = bus.data; }
} /1] end while

end nodul e

SYNOPSYS

Unified Assertions

* Assertions are single interpretation of specifications.
User writes assertions only once.
= For Dynamic simulation
= For Formal Property Checking
= For Functional Coverage
* Main requirements for Assertions
= Provide temporal language
= Provide Modeling aspects

= Provide System Verilog compatible expression
semantics

© 2001 Synopsys, Inc. (10) SY"UPSYS'

Assertions Usage Model

.:.5. Proven
al -j Properti
perties
il

> I 1 11 \ Runtime Report

Coverage and

Debug
RTL sim 1

. Module-level
Assertions

Chip-level
Assertions

1 Syopsys, n. @1 SYNOPSYS

Proposal for Unified Assertion
Based Verification

* Consider in System Verilog 3.1 :

= Temporal expressions with Boolean
expressions, syntactically and semantically
Identical to Verilog

= regular expressions for temporality
= multiple clocks with simple synchronization

* Discussion at 2 pm

01 Synopsys, Inc. (12) SYHUPSYS'

C/C++ Interface

© 2001 Synopsys, Inc.

Simpler interface for Calling C/C++ functions

= Use of PLI Require understanding of PLI and complexity
= Direct interface for calling C functions from Verilog
= Direct interface to call Verilog tasks from C

Interchanging complex data structures across C and
System Verilog boundaries

= PLI capabilities require data conversion

Easy usage C/C++ code in Verilog :

= PLIdoes not allow creating ports to a C/C++ algorithm

= PLI does not allow mixing of C/C++ code fragments with
Verilog

SYNOPSYS’

C Function call Example

* No true strings in Verilog

reg [1000*8:1] nane; /* for a string up to 1000 characters */
C nane = "tests/stinulus.dat";;
Task T; input [1000*8:1] status; ... endtask

T(" passed”);

* Memory & time inefficient

* string literal as the actual argument for a type string will be
Interpreted as a C-style , i.e.

= Better solution:

_ _ _ char *aString(char *s){return s;} I
external string aString(string);

Modul e t op;

reg [31:0] nane; // string pointer; for strings of all sizes

. nane = aString("tests/stinulus.dat”);

Task T, input [31:0] status; ... endtask
T(aString(“passed”));

© 2001 Synopsys, Inc. (14) SYHUPSYS'

C-module Example

Global C++ declarations

#i ncl ude "conpl ex. h"

crmodul e (, :)
i nput reg , inout reg @ 4 state scalar ports

out put bit [31:0] ; 2 state vector port

bool odd_cl ock; local module’s C++ declarations
void wait_for_2 clocks() {
@ posedge); @posedge)Ml Event control

}
initial { odd _clock=false; } FlglizlFe]lele]

al wvays @) | _
conpl ex* tenp = new conpl ex; local process’s C++ declarations

| (10); Delay control
if (odd_clock &&) {
wait _for 2 clocks();

= 0;

assignment to output/inout port triggers propagation

() SYNOPSYS'

Extended API

* Extending language have implications on simulator interface.

New Technologies like Coverage and Assertions are part of
simulator.

* Need API to access important information like Coverage,
Assertions to interface other tools with System Verilog
simulators.

* Comprehensive API Allows new tools and flows to be created and
easily interfaced with System Verilog simulators.

* Non standard simulator interfaces can delay adoption and have
high overhead

© 2001 Synopsys, Inc. (16) SY"UPSYS'

