
System Verilog 3.1 Donation
Part IV: C-Modeling Interface
Version 1.1, May 2002

Contains proprietary information of Synopsys, Inc.

ii

Copyright © 2002 Synopsys, Inc. Synopsys. All rights reserved. This documentation contains

proprietary information that is the property of Synopsys, Inc.

The Synopsys logo and VERA are registered trademarks of Synopsys, Inc. OpenVera is a
trademark of Synopsys Inc. All other brands or products are trademarks of their respective owners
and should be treated as such.

System Verilog 3.1 Donation

 Part IV 1-1

The DirectC Interface

1
The DirectC Interface 1

DirectC is an extended interface between the Verilog HDL and the C/
C++ programming languages. It is an alternative to the PLI that,
unlike the PLI, enables you to do the following:

• More efficiently pass values between Verilog module instances
and C/C++ functions by calling the functions directly, along with
actual parameters, in your Verilog code.

• Pass more kinds of data between Verilog and C/C++. With the
PLI you can only pass Verilog information to and from a C/C++
application. With DirectC you do not have this limitation.

With DirectC, for example, you can model a simulation environment
for your design in C/C++ in which you can pass pointers from the
environment to your design and store them in Verilog signals, then
at a later simulation time pass these pointers to the simulation
environment.

1-2 Part IV

The DirectC Interface Making a Direct Call to a C/C++ Function

Similarly you can use DirectC to develop applications to run with the
simulator to which you can pass pointers to the location of simulation
values for your design.

DirectC is an alternative to, but not a replacement for, the PLI. You
can do things with the PLI that you cannot do with DirectC. For
example there are PLI tf and acc routines to implement a callback to
start a C/C++ function when a Verilog signal changes value. DirectC
has not been implemented to also do this.

You call C/C++ functions like you call (or enable) a Verilog function
or Verilog task.

Making a Direct Call to a C/C++ Function

To make a call to a C/C++ function do the following:

1. Declare the function in your Verilog code.

2. Call the function in your Verilog code.

The declaration of these functions involves specifying a direction for
the parameters of the C/C++ function. This is because they become
in the Verilog environment analogous to Verilog tasks as well as
functions. Verilog tasks are like void C functions in that they don’t
return a value. Verilog tasks do however have input, output, and
inout arguments, whereas C/C++ function parameters do not have
explicitly declared directions. See “Declaring The C/C++ Function”
on page 1-5.

 Part IV 1-3

The DirectC Interface Making a Direct Call to a C/C++ Function

There are two access modes for C/C++ function calls. They pertain
to the development only of the C/C++ function. They are as follows:

• The slightly more efficient direct access mode
This mode has rules for how values of different types and sizes
are passed to and from Verilog and C/C++. This mode is
explained in detail in “Using Direct Access” on page 1-10.

• The slightly less efficient but with better error handling abstract
access mode
In this implementation there is a descriptor for each actual
parameter of the C/C++ function. You access these descriptors
using a specially defined pointer called a handle. All formal
arguments are handles. DirectC comes with a library of
accessory functions for using these handles. This mode is
explained in detail in “Using Abstract Access” on page 1-14.

The abstract access library of accessory functions contains
operations for reading and writing values and for querying about
argument types, sizes, etc. An alternative library, with perhaps
different levels of security or efficiency, can be developed and used
in abstract access without changing your Verilog or C/C++ code.

Using abstract access is “safer” in that the library of accessory
functions for abstract access have error messages to help you to
debug the interface between the C/C++ and Verilog. With direct
access errors simply result in segmentation faults memory
corruption, etc.

Abstract access is more generalizable for your C/C++ function. For
example with open arrays you can call the function with eight bit
arguments at one point in your Verilog design and call it again some
place else with 32 bit arguments. The accessory functions can

1-4 Part IV

The DirectC Interface Making a Direct Call to a C/C++ Function

manage the differences in size. With abstract access you can have
the size of a parameter returned to you. With direct access you must
know the size.

How C/C++ Functions Work in a Verilog Environment

Like Verilog functions, and unlike Verilog tasks, no simulation time
elapses during the execution of a C/C++ function.

The parameters of C/C++ functions, are analogous to the arguments
of Verilog tasks. They can be input, output, or inout just like the
arguments of Verilog tasks. You don’t specify them as such in your
C code, but you do when you declare them in your Verilog code.
Accordingly your Verilog code can pass values to parameters
declared to be input or inout, but not output, in the function
declaration in your Verilog code, and your C function can only pass
values from parameters declared to be inout or output, but not input,
in the function declaration in your Verilog code.

If a C/C++ function returns a value to a Verilog register (the C/C++
function is in an expression that is assigned to the register) the return
value of the C/C++ function is restricted to the following:

• The value of a scalar reg or bit
In two state simulation a reg has a new name, bit.

• The value of the C type int

• A pointer

• A short, 32 bits or less, vector bit

So C/C++ functions cannot return the value of a four state vector
reg, long (longer than 32 bits) vector bit, or Verilog integer,
real, realtime, or time data type. You can pass these type of

 Part IV 1-5

The DirectC Interface Making a Direct Call to a C/C++ Function

values out of the C/C++ function using a parameter that you declare
to be inout or output in the declaration of the function in your Verilog
code.

Declaring The C/C++ Function

You declare the C/C++ function outside the module - endmodule
keywords that start and end a module definition. These C/C++
functions are globally accessible to your entire design and are never
declared inside a module definition.

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +

description ::= module | user_defined_primitive | extern_declaration

extern_declaration ::= extern access_mode ? attribute ? return_type function_id
 (extern_func_args ?) ;

access_mode ::= ("A" | "C")

attribute ::= pure

return_type ::= void | reg | bit | DirectC_primitive_type
| small_bit_vector

small_bit_vector::= bit [(constant_expression : constant_expression)]

extern_func_args ::= extern_func_arg (, extern_func_arg) *

extern_func_arg ::= arg_direction ? arg_type arg_id ?
arg_direction ::= input | output | inout

arg_type ::= bit_or_reg_type | array_type | DirectC_primitive_type

bit_or_reg_type ::= (bit | reg) optional_vector_range ?

optional_vector_range ::= [(constant_expression : constant_expression) ?]

array_type ::= bit_or_reg_type array [(constant_expression :

1-6 Part IV

The DirectC Interface Making a Direct Call to a C/C++ Function

 constant_expression) ?]

DirectC_primitive_type ::= int | real | pointer | string

Where:

extern Is the keyword that begins the declaration of the
C/C++ function declaration.

access_mode Specifies the mode of access in the
declaration. Enter C for direct access, A for
abstract access. Using this entry enables some
functions to use direct access while others use
abstract access.
You typically use these entries when some
functions use direct access and others use
abstract access.

attribute An optional attribute for the function.
The pure attribute enables some
optimizations. Enter this attribute if the function
has no side effects and is dependent only on
the values of its input parameters.

return_type The valid return types are int, bit, reg,
string, pointer, and void. See Table 1-1
for a description of what these types specify.

small_bit_vector Specifies a bit-width of a returned vector bit. A
C/C++ function cannot return a four state vector
reg but it can return a vector bit if its bit-width
is 32 bits or less.

function_id The name of the C/C++ function.

direction One of the following keywords: input,
output, inout. These keywords specify in a
C/C++ function the same thing that they specify
in a Verilog task, see Table 1-2.

 Part IV 1-7

The DirectC Interface Making a Direct Call to a C/C++ Function

Note:
Argument direction, i.e. input, output, inout applies to all
arguments that follow it until next direction occurs; the default
direction is input.

arg_type The valid argument types are real, reg, bit,
int, pointer, string.

[bit_width] Specifies the bit-width of a vector reg or bit
that is an argument to the C/C++ function.
You can leave the bit-width open by entering
[].

array Specifies that the argument is a Verilog
memory.

[index_range] Specifies a range of elements (words,
addresses) in the memory.
You can leave the range open by entering [].

arg_id The Verilog register argument to the C/C++
function that becomes the actual parameter to
the function.

Table 1-1 C/C++ Function Return Types

Return Type What it specifies

int The C/C++ function returns a value for type int.

bit The C/C++ function returns the value of a bit, which is a Verilog
reg in two-state simulation, if it is 32 bits or less.

reg The C/C++ function returns the value of a Verilog scalar reg.

string The C/C++ function returns a pointer to a character string.

pointer The C/C++ function returns a pointer.

void The C/C++ function does not return a value.

1-8 Part IV

The DirectC Interface Making a Direct Call to a C/C++ Function

Table 1-2 C/C++ Function Argument Directions

keyword What it specifies

input The C/C++ function can only read the value or address of the
argument. If you specify an input argument first, you can omit
the keyword input.

output The C/C++ function can only write the value or address of the
argument.

inout The C/C++ function can both read and write the value or
address of the argument.

Table 1-3 C/C++ Function Argument Types

keyword What it specifies

real The C/C++ function reads or writes the address of a Verilog real data
type.

reg The C/C++ function reads or writes the value or address of a Verilog
reg.

bit The C/C++ function reads or writes the value or address of a Verilog
reg in two state simulation.

int The C/C++ function reads or writes the address of a C/C++ int data
type.

pointer The C/C++ function reads or writes the address that a pointer is
pointing to.

string The C/C++ function reads from or writes to the address of a string.

 Part IV 1-9

The DirectC Interface Making a Direct Call to a C/C++ Function

Examples
extern "A" reg return_reg (input reg r1);

This example declares a C/C++ function named return_reg. This
function returns the value of a scalar reg. When we call this function
the value of a scalar reg named r1 is passed to the function. This
function uses abstract access.

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

This example declares a C/C++ function named return_vector_bit.
This function returns an 8-bit vector bit (a reg in two state
simulation). When we call this function the value of an 8-bit bit
named r3 is passed to the function. This function uses direct access.

The keyword input is omitted. This keyword can be omitted if the
first argument specified is an input argument.

extern string return_string();

This example declares a C/C++ function named return_string. This
function returns a character string and takes no arguments.

Calling The C/C++ Function

After declaring the C/C++ function you can call it in your Verilog
code.

You call a void C/C++ function like a Verilog task enabling statement
by entering the function name and its arguments on a separate line
in an always or initial block or in the procedural statements in a
Verilog task or function declaration. Unlike Verilog tasks, you can call
a C/C++ function in a Verilog function.

1-10 Part IV

The DirectC Interface Using Direct Access

You call a non-void (returns a value) C/C++ function like a Verilog
function call by entering its name and arguments in an expression on
the RHS of a procedural assignment statement in an always or
initial block or in a Verilog task or function declaration.

Examples
r2=return_reg(r1);

The value of scalar reg r1 is passed to C/C++ function return_reg. It
returns a value to reg r2.

r4=return_vector_bit(r3);

The value of vector bit r3 is passed to C/C++ function
return_vector_bit. It returns a value to vector bit r4.

Using Direct Access

Direct access was implemented for C/C++ routines whose formal
parameters are of the following types:

Some of these type identifiers are standard C/C++ types, the ones
that aren’t were defined with the following typedef statements:

typedef unsigned int U;
typedef unsigned char UB;
typedef unsigned char scalar;
typedef struct {U c; U d;} vec32;

int int* double* void* void**

char* char** scalar scalar* U*

vec32 UB*

 Part IV 1-11

The DirectC Interface Using Direct Access

The type identifier you use depends on the corresponding argument
direction, type, and bit-width that you specified in the declaration of
the function in your Verilog code. The following rules apply:

• Direct access passes all output and inout arguments by
reference, so their corresponding formal parameters in the C/
C++ function must be pointers.

• Direct access passes by value a Verilog bit only if it is 32 bits or
less. Direct access passes by reference a bit if it is larger than
32 bits, so their corresponding formal parameters in the C/C++
function must be pointers if they are larger than 32 bits.

• Direct access passes by value a scalar reg. A vector reg direct
access passes by reference, so the corresponding formal
parameter in the C/C++ function for a vector reg must be a
pointer.

• An open bit-width for a reg makes it possible for you to pass a
vector reg so the corresponding formal parameter for a reg
argument specified with an open bit-width must be a pointer.
Similarly an open bit-width for a bit makes it possible for you to
pass a bit larger than 32 bits so the corresponding formal
parameter for a bit argument specified with an open bit-width
must be a pointer.

• Direct access passes by value the following types of input
arguments: int, string, and pointer.

• Direct access passes input arguments of type real by
reference.

1-12 Part IV

The DirectC Interface Using Direct Access

The following tables show the mapping from the data types you use
in the C/C++ function for arguments you specify in the function
declaration in your Verilog code.

Table 1-4 For Input Arguments

argument type C/C++ formal
parameter data type

Passed by

int int value

real double* reference

pointer void* value

string char* value

bit scalar value

reg scalar value

bit [] - 1-32 bit wide vector U value

bit [] - open vector, any vector
wider than 32 bits

U* reference

reg [] - 1-32 bit wide vector vec32* reference

array [] - open vector, any vector
wider than 32 bits

UB* reference

Table 1-5 For Output and Inout Arguments

argument type C/C++ formal
parameter data type

Passed by

int int* reference

real double* reference

pointer void** reference

string char** reference

bit scalar* reference

 Part IV 1-13

The DirectC Interface Passing Class Objects in Verilog/VeraLite and DirectC

In direct access the return value of the function is always passed by
value. The data type of the returned value is the same as the input
argument.

Passing Class Objects in Verilog/VeraLite and DirectC

Class objects declared in Verilog can be freely used in VeraLite and
vice-versa. Class objects can also be passed as arguments to
DirectC functions. To do so, you must use the struct declaration in
the header file produced by VCS. For all class types passed to
DirectC functions, VCS will produce an equivalent typedef in a
header file. You must use this header file in your C code. It is your
responsibility to use this struct in the appropriate fashion. For
example, a class Packet declaration in the header file looks as
shown below:

struct vec32 {
 unsigned int c;
 unsigned int d;
}
struct Packet {
 vec32 command;
 vec32 address[2];

reg scalar* reference

bit [] - any vector, including open vector U* reference

reg[] - any vector, including open vector vec32* reference

array[] - any array, 2 state or 4 state,
including open array

UB* reference

Table 1-5 For Output and Inout Arguments

argument type C/C++ formal
parameter data type

Passed by

1-14 Part IV

The DirectC Interface Using Abstract Access

 vec32 master_id;
 vec32 status;
}

Note that class defined in VeraLite/Verilog gets used in C as a simple
struct. No member functions are available in C. Use of struct vec32
is needed since values in Verilog/VeraLite are 4-state and are
represented using control and data bits. For class variables that are
declared 2-valued in Verilog/VeraLite, unsigned int could be used
instead of vec32.

Using Abstract Access

In abstract access there is a descriptor for each argument in a
function call. The corresponding formal parameters in the function
uses a specially defined pointer to these descriptors called
vc_handle. In abstract access you use these “handles” to pass
data and values by reference to and from these descriptors.

The idea behind abstract access is that you don’t have to worry
about the type you use for parameters, because you always use a
special pointer type called vc_handle.

In abstract access there is a descriptor for every argument that you
enter in the function call in your Verilog code. The vc_handle is a
pointer to the descriptor for the argument.

 Part IV 1-15

The DirectC Interface Using Abstract Access

Using vc_handle

In the function header the vc_handle for a Verilog reg, bit, or
memory is based on the order that you declare the vc_handle and
the order that you entered its corresponding reg, bit, or memory in
the function call in your verilog code, for example, in your verilog
code you declared the function and called it like so:

There are descriptors for bit1 and bit2. These descriptors contain
information about their value, but also other information such as
whether they are scalar or vector, and whether they are simulation in
two or four state simulation.

extern "A" void my_function(input bit [31:0] r1,
 input bit [32:0] r2);

module dev1;
reg [31:0] bit1;
reg [32:0] bit2;
initial
begin
...my_function(bit1,bit2);
...end
endmodule

Declare the function

Enter first bit1 then bit2 as arguments
in the function call

1-16 Part IV

The DirectC Interface Using Abstract Access

in the header for the C/C++ function:

After declaring the vc_handles you can use them to pass data to and
from these descriptors.

Using Access Routines

Abstract access comes with a set of access routines that enable your
C/C++ function to pass values to and from the descriptors for the
Verilog reg, bit, and memory arguments in the function call.

These access routines use the vc_handle to pass values by
reference but the vc_handle is not the only type of argument for
many of these routines. These routines also have the following types
of arguments:

• scalar — which is defined as an unsigned char

• integers — uninterpreted 32 bits with no implied semantics

• other types of pointers — primitive types “string” and “pointer”

• real numbers

...

my_function(vc_handle h1, vc_handle h2)
{

...

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);

...}

h1 is the vc_handle for bit1
h2 is the vc_handle for bit2

A routine that accesses the data
structures for bit1 and bit2 using
their vc_handles

 Part IV 1-17

The DirectC Interface Using Abstract Access

These routines were named to help you to remember their function.
Routine names beginning with vc_get are for retrieving data from the
descriptor for the Verilog argument. Routine names beginning with
vc_put are for passing new values to these descriptors.

These routines can convert from Verilog representation of simulation
values and strings to string representation in C/C++. Strings can also
be created in a C/C++ function and passed to Verilog but you should
bear in mind that they can be overwritten in Verilog. So you copy
them to local buffers if you want them to persist.

The following are the access routines, their arguments, and return
values.

The Access Routines

int vc_isScalar(vc_handle)
Returns a 1 value if the vc_handle is for a one-bit reg or bit,
returns a 0 value for a vector reg or bit or any memory including
memories with scalar elements.

int vc_isVector(vc_handle)
This routine returns a 1 value if the vc_handle is to a vector reg
or bit. It returns a 0 value for a vector bit or reg or any memory.

int vc_isMemory(vc_handle)
This routine returns a 1 value if the vc_handle is to a memory. It
returns a 0 value for a bit or reg that is not a memory.

int vc_is4state(vc_handle)
This routine returns a 1 value if the vc_handle is to a reg or
memory that simulates with four states. It returns a 0 value for a
bit or a memory that simulates with two states.

int vc_is2state(vc_handle)
This routine does the opposite of the vc_is4state routine.

1-18 Part IV

The DirectC Interface Using Abstract Access

int vc_is4stVector(vc_handle)
This routine returns a 1 value if the vc_handle is to a vector reg.
It returns a 0 value if the vc_handle is to a scalar reg, scalar or
vector bit, or to a memory.

int vc_is2stVector(vc_handle)
This routine returns a 1 value if the vc_handle is to a vector bit. It
returns a 0 value if the vc_handle is to a scalar bit, scalar or
vector reg, or to a memory.

int vc_width(vc_handle)
Returns the width of a vc_handle.

int vc_arraySize(vc_handle)
Returns the number of elements in a memory.

scalar vc_getScalar(vc_handle)
Returns the value of a scalar reg or bit.

void vc_putScalar(vc_handle, scalar)
Passes by reference to a vc_handle the value of a scalar reg or
bit.

char vc_toChar(vc_handle)
Returns the 0, 1, x, or z character.

int vc_toInteger(vc_handle)
Returns and int value for a vc_handle to a scalar bit or a vector
bit of 32 bits or less.

char *vc_toString(vc_handle)
Returns a string that contains the 1, 0, x, and z characters.

char *vc_toStringF(vc_handle, char)
Returns a string that contains the 1, 0, x, and z characters and
allows you to specify the format or radix for the display. The char
argument can be ’b’, ’o’, ’d’, or ’x’.

 Part IV 1-19

The DirectC Interface Using Abstract Access

void vc_putReal(vc_handle, double)
Passes by reference a real (double) value to a vc_handle.

double vc_getReal(vc_handle)
Returns a real (double) value from a vc_handle.

void vc_putValue(vc_handle, char *)
This function passes, by reference through the vc_handle, a
value represented as a string containing the 0, 1, x, and z
characters.

void vc_putValueF(vc_handle, char, char *)
This function passes by reference through the vc_handle a value
for which you specify a radix with the third parameter. The valid
radixes are ’b’, ’o’, ’d’, and ’x’.

void vc_putPointer(vc_handle, void*)

void *vc_getPointer(vc_handle)
These functions pass by reference to a vc_handle a generic type
of pointer or string. Do not use these functions for passing Verilog
data (the values of Verilog signals). Use it for passing C/C++
data. vc_putPointer passes this data by reference to Verilog and
vc_getPointer receives this data in a pass by reference from
Verilog. You can also use these functions for passing Verilog
strings.

void vc_StringToVector(char *, vc_handle)
Converts a C string (a pointer to a sequence of ASCII characters
terminated with a null character) into a Verilog string (a vector
with
8-bit groups representing characters).

void vc_VectorToString(vc_handle, char *)
Converts a vector value to a string value.

int vc_getInteger(vc_handle)
Same as vc_toInteger.

1-20 Part IV

The DirectC Interface Using Abstract Access

void vc_putInteger(vc_handle, int)
Passes an int value by reference through a vc_handle to a scalar
reg or bit or a vector bit that is 32 bits or less.

vec32 *vc_4stVectorRef(vc_handle)
Returns a vec32 pointer to a four state vector. Returns NULL if
the specified vc_handle is not to a four state vector reg.

U *vc_2stVectorRef(vc_handle)
This routine returns a U pointer to a bit vector that is larger than
32 bits. If you specify a short bit vector (32 bits or fewer) this
routine returns a NULL value.

void vc_get4stVector(vc_handle, vec32 *)

void vc_put4stVector(vc_handle, vec32 *)
Passes a four state vector by reference to a vc_handle to and
from an array in C/C++ function. vc_get4stVector receives the
vector from Verilog and passes it to the array. vc_put4stVector
passes the array to Verilog.

void vc_get2stVector(vc_handle, U *)

void vc_put2stVector(vc_handle, U *)
Passes a two state vector by reference to a vc_handle to and
from an array in C/C++ function. vc_get2stVector receives the
vector from Verilog and passes it to the array. vc_put4stVector
passes the array to Verilog.

UB *vc_MemoryRef(vc_handle)
Returns a pointer of type UB that points to a memory in Verilog.

UB *vc_MemoryElemRef(vc_handle, U indx)
Returns a pointer to an element (word, address or index) of a
Verilog memory. You specify the vc_handle of the memory and
the element.

 Part IV 1-21

The DirectC Interface Using Abstract Access

scalar vc_getMemoryScalar(vc_handle, U indx)
Returns the value of a one bit memory element.

void vc_putMemoryScalar(vc_handle, U indx,
scalar)
Passes a value, of type scalar, to a Verilog memory element. You
specify the memory by vc_handle and the element by the indx
argument.

int vc_getMemoryInteger(vc_handle, U indx)
Returns the integer equivalent of the data bits in a memory
element whose bit-width is 32 bits or less.

void vc_putMemoryInteger(vc_handle, U indx, int)
Passes an integer value to a memory element that is 32 bits or
fewer. You specify the memory by vc_handle and the element by
the indx argument.

void vc_get4stMemoryVector(vc_handle, U indx,
vec32 *)
Copies the value in an Verilog memory element to an element in
an array. This routine copies both the data and control bytes. It
copies them into and array of type vec32.

void vc_put4stMemoryVector(vc_handle, U indx,
vec32 *)
Copies Verilog data from a vec32 array to a Verilog memory
element.

void vc_get2stMemoryVector(vc_handle, U indx, U
*)
Copies the data bytes, but not the control bytes, from a Verilog
memory element to an array in your C/C++ function.

1-22 Part IV

The DirectC Interface Using Abstract Access

void vc_put2stMemoryVector(vc_handle, U indx, U
*)
Copies Verilog data from a U array to a Verilog memory element.
This routine is used in the previous example.

void vc_putMemoryValue(vc_handle, U indx, char *)
This routine works like the vc_putValue routine except that is for
passing values to a memory element instead of to a reg or bit.
You enter an argument to specify the element (index) you want
the routine to pass the value to.

void vc_putMemoryValueF(vc_handle, U indx, char,
char *)
This routine works like the vc_putValueF routine except that it is
for passing values to a memory element instead of to a reg or bit.
You enter an argument to specify the element (index) you want
the routine to pass the value to.

char *vc_MemoryString(vc_handle, U indx)
This routine works like the vc_toString routine except that it is for
passing values to from memory element instead of to a reg or bit.
You enter an argument to specify the element (index) you want
the routine to pass the value of.

char *vc_MemoryStringF(vc_handle, U indx, char)
This routine works like the vc_MemoryString function except that
you specify a radix with the third parameter. The valid radixes are
’b’, ’o’, ’d’, and ’x’.

void vc_FillWithScalar(vc_handle, scalar)
This routine fills all the bits or a reg, bit, or memory with all 1, 0,
x, or z values (you can choose only one of these four values).

char *vc_argInfo(vc_handle)
Returns a string containing the information about the argument in
the function call in your Verilog source code.

 Part IV 1-23

The DirectC Interface Storing Vector Values in Machine Memory

Storing Vector Values in Machine Memory

Verilog four state simulation values (1, 0, x, and z) are represented
in machine memory with data and control bits. The control bit
differentiates between the 1 and x and the 0 and z values, as shown
in the following table:

When a routine returns Verilog data to a C/C++ function, how that
data is stored depends on whether it is from a two or four state value
and whether it is from a scalar, a vector, or from an element in a
Verilog memory.

For a four state vector (denoted by the keyword reg) the Verilog data
is stored in type vec32, which for abstract access is defined as
follows:

typedef unsigned int U;
typedef struct { U c; U d;} vec32;

So type vec32* has two members of type U, member c is for control
bits and member d is for data bits.

For a two state vector bit the Verilog data is stored in type U*.

Vector values are stored in arrays of chunks of 32 bits. For four state
vectors there are chunks of 32 bits for data values and 32 bits for
control values. For two state vectors there are chunks of 32 bits for
data values.

Simulation Value Data Bit Control Bit

1 1 0

x 1 1

0 0 0

z 0 1

1-24 Part IV

The DirectC Interface Storing Vector Values in Machine Memory

Figure 1-1 Storing Vector Values

Long vectors, more than 32 bits, have their value stored in more than
one group of 32 bits and can accessed by chunk. Short vectors, 32
bits or less, are stored in a single chunk.

For long vectors the chunk for the least significant bits come first,
followed by the chunks for the more significant bits.

Figure 1-2 Storing Vector Values of More Than 32 Bits

In an element in a Verilog memory, for each eight bits in the element
there is a data byte and a control byte with an additional set of bytes
for remainder bit, so if a memory had 9 bits it would need two data
bytes and two control bytes. If it had 17 bits it would need three data

control data

data

four state

two state

control data

data

four state

two state

control data

data data data

Chunk for the least significant bits

 Part IV 1-25

The DirectC Interface Converting Strings

bytes and three control bytes. All the data bytes precede the control
bytes. For two state memories there are still data and control bytes
but the bits in the control bytes always have a zero value.

Figure 1-3 Storing Verilog Memory Elements in Machine Memory

Converting Strings

There are no true strings in Verilog and a string literal, like
"some_text," is just a notation for vectors of bits, based on the same
principle as binary, octal, decimal, hexadecimal numbers. So there is
a need for a conversion between the two representations of strings:
the C/C++ representation (which actually is a pointer to the
sequence of bytes terminated with null byte) and the Verilog vector
encoding a string.

DirectC comes with the following routines for string conversion:

void vc_ConvertToString(vec32 *, int, char *)
Converts a Verilog string to a C string.

void vc_VectorToString(vc_handle, char *)
Converts a vector to a C string.

void vc_StringToVector(char *, vc_handle)
Converts a string to a vector.

0 1 2 3 4 5

data data data control control control

1-26 Part IV

The DirectC Interface Avoiding a Naming Problem

Avoiding a Naming Problem

In a module definition do not call an external C/C++ function with the
same name as the module definition. The following is an example of
source code you should avoid:

extern void receive_string (input string r5);
...
module receive_string;
...
always @ r5
begin
...
receive_string(r5);
...
end
endmodule

 Part IV 2-1

Cmodules

2
Cmodules 2

• Introducing Cmodules

• Cmodule Example

• Cmodule Instantiation

• Cmodule Always and Initial Blocks

• User-Defined Functions

• Scope

• Timescale Specification

• Stack Size Specification

• Named Events

• Event Control Statements

• Delay Statements

2-2 Part IV

Cmodules Introducing Cmodules

• Conditional Compilation

• Pre-Defined Functions

• Cmodule Ports

• Accessing Port Values

Introducing Cmodules

A cmodule is a way to model hardware using the significant
advantages of C/C++ to model at a high level, using sophisticated
constructs like multi-dimensional arrays and data structures, while
still having what would be the advantages of Verilog in hardware
modeling, specifically parallel processes and timing.

Cmodules are another way to use C/C++ in your design or the
modeled environment for your design. They also borrow a few
concepts from Verilog. These borrowed concepts are:

• They have a Verilog-like outer appearance — they have a header
and ports like Verilog modules. You instantiate them using a port
connection list instead of calling C/C++ functions with arguments
for their formal parameters.

• They can contain initial and always blocks that work like
Verilog initial and always blocks. These blocks are an
additional level of hierarchy within the cmodule and like their
Verilog counterparts are separate activity flows that execute in
parallel.

• They can have named events and you can use them to halt
activity in an initial or always block, or a function defined in
a cmodule, until you trigger the named event.

 Part IV 2-3

Cmodules Introducing Cmodules

• They can contain event control statements that halt activity in an
initial or always block, or a function defined in a cmodule,
until the event expression is true.

• They can contain delay statements that halt activity in an
initial or always block, or a function defined in a cmodule,
for a certain amount of simulation time.

These are all the concepts that are borrowed from Verilog, all other
actions specified in a cmodule are specified in C/C++. Most of the
statements in a cmodule should be C/C++. Except for port
declarations, named events, and always and initial block
specifications, all declarations in the cmodule are C/C++
declarations. A cmodule is not intended to be a way to use all of
Verilog and C/C++ interchangeably.

When you use cmodules, just like when you call C/C++ functions
using direct or abstract access, you set up a simulation in which
there are two domains, one for Verilog values and one for C/C++
values. Each domain is largely invisible to the other except through
the portals where values can pass back and forth between these
domains: the parameters of the C/C++ functions and the ports of the
cmodules. A cmodule, like a C/C++ function in direct or abstract
access, is like a “black box” to the Verilog domain. The Verilog
design has no access to the values of the variables inside the
cmodule unless these values propagate out through the cmodule
ports.

A cmodule is intended to model hardware that has the following
requirements:

2-4 Part IV

Cmodules Introducing Cmodules

• The model needs to be sensitive to Verilog four-state values (0,
1, x, and z) or Verilog two-state values (0 and 1). The model is
instantiated in a Verilog design, Verilog simulation values
propagate into it, changing its behavior, and Verilog values
propagate out of it.

• The model needs to use the sophisticated construct in C/C++ like
multi-dimensional arrays and data structures.

• The model needs a certain amount of simulation time to perform
its function in your design and some of its operations need to be
performed in parallel.

• The model needs to do an extensive amount of processing of
input values before it can output resulting values.

If the hardware you are modeling has these requirements, then
modeling it with a cmodule is something that you should consider.

Note:
VCS can monitor or dump the values of ports of cmodules from
the Verilog side. C/C++ variables defined in a cmodule cannot be
monitored or dumped.

Cmodules require a C++ compiler, since VCS will translate cmodules
into C++ code. All C-compiler compile and link options can be
specified under the existing -CFLAGS and -LDFLAGS options of
VCS.

All standard C/C++ debuggers (gdb, dbx, etc.) will be supported for
debugging code in DirectC and in cmodules. The C/C++ debugger
of choice will be invoked along with VirSim for concurrent debugging
of Verilog, Cmodule, and C/C++ source during a debug simulation
(Currently not supported).

 Part IV 2-5

Cmodules Cmodule Example

Existing PLI 1.0 routines may be called from within direct C functions
or cmodules. TF routines that handle parameters to PLI task/function
are not relevant here. TF routines that handle delays, events and
callbacks are disallowed (since there is better mechanism to achieve
this through delay/event constructs in cmodule). Use of these
functions will produce unpredictable results. No explicit error
checking will be performed. ACC routines that walk the design
hierarchy will treat a cmodule as an empty Verilog wrapper module
with visibility only to its instantiation and ports. Internal details of the
cmodule are within behavioral scope and so will not be visible to PLI
1.0 routines.

You enable the use of cmodules with the +cmod compile-time option.

Cmodule Example

This section describes the parts of a cmodule definition. Let’s begin
with an example:

‘stacksize 32k
‘timescale 1ns/1ns
#include <stdio.h>
#include <iostream.h>
#include <string.h>
#include "rom.h"
#include "display.h"

#define AttrLength (RS_ATTR_HI - RS_ATTR_LO) + 1

int i, j;
Rom chRom;
UCHAR display_page[DisplayPageSize];
UCHAR attribute [AttrLength];

cmodule osd_test(clk, reset_l, vr_data, pixel_clk, vsync)
input reg clk;

2-6 Part IV

Cmodules Cmodule Example

output reg reset_l;
output reg [7:0] vr_data;
input reg pixel_clk;
input reg vsync;

{
vc_event wait_for_vsync;

initial {
int int_true = 1;
printf("Starting osd_test\n");
chRom.load("/cmod-testing/ext-ex/character.rom");
@(posedge clk);
reset_l = 0;
for(int idx = RESET_LENGTH;idx>0;idx--){

@(posedge clk);
}
vc_delay(5);
reset_l = int_true;
@(posedge clk);

i = RS_RAM_LO;

rs_write (0x53, i++);
rs_write (0x45, i++);
rs_write (0x41, i++);
rs_write (CC_RTN, i);

vc_trigger(wait_for_vsync);
compare_display();

}

initial
{

@(wait_for_vsync);
@(posedge vsync);
@(negedge vsync);
for(int idx=40; idx>0; idx--){

@(negedge pixel_clk);
}
printf("Test completed after 1 video frame\n");

}

 Part IV 2-7

Cmodules Cmodule Example

/**/
void rs_write (UCHAR data, UINT addr)
{

if ((addr >= RS_RAM_LO) && (addr <= RS_RAM_HI)) {
display_page[addr] = data;

}
else if ((addr >= RS_ATTR_LO)&&(addr <= RS_ATTR_HI))
{

attribute[addr - RS_ATTR_LO] = data;
}
vr_data = data;
@(posedge clk);

}
/**/

void compare_display()
{

Screen screen;
Display display;
Pixel p;
screen.build();
display.fill(screen,

attribute[RS_HZ_DELAY - RS_ATTR_LO],
attribute[RS_TOP_MARGIN - RS_ATTR_LO], 0);

int x = 0;
int y = 0;
for (int idx=40; idx>0; idx--) {

@(posedge pixel_clk);
if (!(vsync.toInteger())) {

p = display.get(x, y);
x++;
if (x >= DisplayPixelWidth) {

x = 0;
y++;
if (y >= DisplayPixelLength) {

y = 0;
}

}
}

}
}

} //End of cmodule

2-8 Part IV

Cmodules Cmodule Example

The example begins with preprocessor directives, declaring global
variables and special compiler directives for cmodules:
‘stacksize (which enables you to change the stacksize of a
thread) and ‘timescale (which is similar to the Verilog compiler
directive):

‘stacksize 32k
‘timescale 1ns/1ns
#include <stdio.h>
#include <iostream.h>
#include <string.h>
#include "rom.h"
#include "display.h"

#define AttrLength (RS_ATTR_HI - RS_ATTR_LO) + 1

int i, j;
Rom chRom;
UCHAR display_page[DisplayPageSize];
UCHAR attribute [AttrLength];

See “Timescale Specification” on page 2-26 and “Stack Size
Specification” on page 2-27.

Next is the cmodule header:

cmodule osd_test(clk, reset_l, vr_data, pixel_clk, vsync)

The cmodule header begins with the keyword cmodule, followed by
the cmodule name or identifier and then a port connection list. Notice
that the cmodule header does not end with a semicolon, just like a
C/C++ function. The port connection list is optional, however a
cmodule is always at the leaf level of the design hierarchy (has no

 Part IV 2-9

Cmodules Cmodule Example

hierarchy under it) and so a cmodule without ports would only be
able to communicate with other cmodules and only by passing
values to and from global external variables.

In this example the port connection list contains ports named clk,
reset_l, vr_data, pixel_clk, and vsync.

After the cmodule header are the port declarations:

input reg clk;
output reg reset_l;
output reg [7:0] vr_data;
input reg pixel_clk;
input reg vsync;

Like Verilog module ports, cmodule ports have either the input,
output, or output direction and the input, output, and inout
keywords begin a declaration of one or more ports.

Unlike Verilog module ports, cmodule ports are always registers,
never nets. The keyword reg specifies a port for four-state
simulation values. The keyword bit specifies a port for two-state
simulation values.

You can declare more than one port in a declaration if all the ports in
that declaration have the same direction and size and all of them in
the declaration simulate all together in two-state or all together in
four-state simulation.

Also, unlike Verilog ports, you must declare them in the same order
that you list them in the port connection list.

2-10 Part IV

Cmodules Cmodule Example

Notice that, like Verilog port declarations, cmodule port declarations
end with a semicolon (;). As stated earlier, having ports at all is
optional, but if a cmodule header contains a port connection list then,
as you might expect, the ports must be declared.

After the port declarations is the beginning of the main set of braces:

 Like the body of a C/C++ function, the body of a cmodule is always
enclosed in braces.

Just inside the main braces is the declaration for a named event in a
cmodule.

vc_event wait_for_vsync;

A named event is similar to a named event in a Verilog module. You
declare it with the vc_event keyword. You trigger the event with a
pre-defined function shown later in this example. Named events are,
like in Verilog module definitions, optional. For more information on
named events see “Named Events” on page 2-28.

Next is the first of two initial blocks in this example:

initial {
int int_true = 1;
printf("Starting osd_test\n");
chRom.load("/cmod-testing/ext-ex/character.rom");
@(posedge clk);
reset_l = 0;
for (int idx = RESET_LENGTH; idx>0; idx--) {

{

} //End of cmodule

The cmodule body goes in here.

 Part IV 2-11

Cmodules Cmodule Example

@(posedge clk);
}
vc_delay(5);
reset_l = int_true;
@(posedge clk);

i = RS_RAM_LO;

rs_write (0x53, i++);
rs_write (0x45, i++);
rs_write (0x41, i++);
rs_write (CC_RTN, i);

vc_trigger(wait_for_vsync);
compare_display();

}

Notice that unlike a Verilog initial block, in a cmodule initial
block all statements are enclosed in braces {}. The different types
of statements in this initial block include:

• A call to standard C/C++ functions:

printf("Starting osd_test\n");

• A call to a function of an instance of a class:

chRom.load("/cmod-testing/ext-ex/character.rom");

• An event control statement:

@(posedge clk);

This is a unique statement in a cmodule. This statement halts
execution of the initial block until there is a rising edge on input
port clk. This statement is the only statement that is not a C/C++
statement that you can use in a cmodule. See “Event Control
Statements” on page 2-29.

2-12 Part IV

Cmodules Cmodule Example

• An assignment to an output port:

reset_l = 0;

• A C/C++ for loop for repeated executions of an event control
statement:

for (int idx = RESET_LENGTH; idx>0; idx--) {
 @(posedge clk);
}

• A call to a predefined function for a simulation delay:

vc_delay(5);

This is another unique statement in a cmodule. This statement
halts execution of the initial block for five time units (as specified
by the ‘timescale compiler directive). See“Delay Statements”
on page 2-30.

• An assignment to an output port of the value of a local variable:

reset_l = int_true;

• An assignment of a definition from a .h file that is used with this
.vc file to a global external variable.

i = RS_RAM_LO;

• A call to a function that is defined within the cmodule:

rs_write(0x53, i++);

• A call to a predefined function for triggering the named event:

vc_trigger(wait_for_vsync);

See “Pre-Defined Functions” on page 2-31.

Next is the second initial block:

 Part IV 2-13

Cmodules Cmodule Example

initial
{

@(wait_for_vsync);
@(posedge vsync);
@(negedge vsync);
for (int idx=40; idx>0; idx--) {

@(negedge pixel_clk);
}
printf("Test completed after 1 video frame\n");

}

Notice that the event expression in the event control statement is the
named event that was declared earlier with the vc_event keyword.
For more information on named events see “Named Events” on
page 2-28.

Next is a function defined within the cmodule:

void rs_write (UCHAR data, UINT addr)
{

if ((addr >= RS_RAM_LO) && (addr <= RS_RAM_HI)) {
display_page[addr] = data;

}
else if ((addr >= RS_ATTR_LO) && (addr <= RS_ATTR_HI)) {

attribute[addr - RS_ATTR_LO] = data;
}
vr_data = data;
@(posedge clk);

}

Notice that an event control statement is in the function definition.
Functions defined within a cmodule can only be called within that
cmodule but you can include event control and delay statements in
them.

Next, and in this example last, is another function defined within the
cmodule:

2-14 Part IV

Cmodules Cmodule Example

void compare_display()
{

Screen screen;
Display display;
Pixel p;
screen.build();
display.fill(screen,

attribute[RS_HZ_DELAY - RS_ATTR_LO],
attribute[RS_TOP_MARGIN - RS_ATTR_LO], 0);

int x = 0;
int y = 0;
for (int idx=40; idx>0; idx--) {

@(posedge pixel_clk);
if (!(vsync.toInteger())) {

p = display.get(x, y);
x++;
if (x >= DisplayPixelWidth) {

x = 0;
y++;
if (y >= DisplayPixelLength) {

y = 0;
}

}
}

}
}

This function also contains an event control statement.

A partial EBNF specification for cmodule definition is as follows:

cmod_defn ::= cmodule cmod_id (port_list?)
port_defn_list? {

cmod_body
}

port_list::= port_id, port_list | port_id
port_defn_list::= port_defn; port_defn_list | port_defn
port_defn::= direction_id port_type port_id
direction_id::= input | output | inout
port_type::= (reg | bit) ([number:number])?

 Part IV 2-15

Cmodules Cmodule Instantiation

cmod_body::= (cmod_local_decl | cmod_always_blk
| cmod_initial_blk | cmod_func_definition)*

cmod_always_blk ::= always (@(event_list))? {
cmod_statements }

cmod_initial_blk::= initial { cmod_statements }
cmod_statements::= (c_statement | @(event_list); *

event_list::= simple_event | simple_event or event_list
simple_event::= event_id | (posedge | negedge)?
input_port_id

Bold-face identifiers and punctuation are terminals in the above
productions. (In BNF terminals are entries for which there can be no
further substitutions and productions are the formal term for rules.)
Plain-face punctuation are the standard meta-symbols for
alternation, grouping, etc.

Cmodule Instantiation

You instantiate a cmodule in a Verilog module so that it can pass
values back and forth from Verilog through its ports. Cmodule
instantiation is just like Verilog module instantiation. The instantiation
statement begins with the cmodule identifier, followed by an instance
name, followed by an order based connection list or a name based
connection list. The following is an example cmodule header
followed by two instantiation statements, one with a name based, the
other with an order based connection list:

cmodule osd_test(clk, reset_l, vr_data, pixel_clk, vsync)

osd_test vshell(.clk(top_clk),.reset_l(top_reset_l),
.vr_data(top_vr_data),.pixel_clk(top_pixel_clk),
.vsync(top_vsync));

osd_test vshell(top_clk,top_reset_l,top_vr_data,
top_pixel_clk,top_vsync);

2-16 Part IV

Cmodules Cmodule Instantiation

Also like instantiating Verilog modules you can leave a null port in the
instantiation. In the above examples of instantiation statements,
signal top_vr_data is connected to the cmodule through its port
named vr_data. We could leave out this connection as follows:

osd_test vshell(.clk(top_clk),.reset_l(top_reset_l),
.pixel_clk(top_pixel_clk),.vsync(top_vsync));

osd_test vshell(top_clk,top_reset_l, ,top_pixel_clk,
top_vsync);

Just like Verilog module instantiation statements, you can include bit-
selects, part-selects, and concatenations in the port connection list
in the cmodule instantiation statement, for example:

osd_test osd1(tclk,rst_top[7],{data1,data2[3:0]},pclk,
syncher);

Also just like Verilog module instantiation statements, you can
connect a register only to input ports but you can connect a net to an
input, inout, or output port.

Just like Verilog modules there is no limit to the number of
instantiations you can make of a cmodule.

Cmodule instances must be leaf-level instances, that is, they are at
the bottom of their hierarchical tree and cannot contain cmodule or
Verilog module instantiation statements.

You can choose not to instantiate a cmodule. If you do there is no
way for the cmodule to pass values to the Verilog part of your design
because communication to Verilog is only through a cmodule’s ports.
You cannot make a cross-module reference (sometimes called an

 Part IV 2-17

Cmodules Cmodule Always and Initial Blocks

upwards name reference) to a Verilog signal from inside a cmodule
or a cross module reference to a variable inside a cmodule from a
Verilog module.

If you choose not to instantiate the cmodule, it can still communicate
with other cmodules by passing values to global variables declared
outside of a cmodule.

Cmodule Always and Initial Blocks

You model concurrency in a cmodule with always and initial
blocks, their syntax is as follows:

 cmod_always_blk ::= always (@(event_expression))?
{ cmod_statements }
 cmod_initial_blk ::= initial { cmod_statements }

As you can see in this syntax there is a formal “sensitivity list” for an
always block, see “The always Block Sensitivity List” on page 2-18.
This sensitivity list is almost the same as an event control statement
(see “Event Control Statements” on page 2-29) but does not end
with a semicolon.

Cmodule always and initial blocks are an additional level of
hierarchy in a cmodule.

The always and initial blocks in cmodules are similar to Verilog
always and initial blocks in the following ways:

• They execute in parallel. The order of their execution is arbitrary
and cannot be specified. They also execute in parallel with the
always and initial blocks in Verilog modules.

2-18 Part IV

Cmodules Cmodule Always and Initial Blocks

• The initial blocks execute at the start of simulation and the
always blocks execute continuously through out the simulation.
(There are delay statement and event control mechanisms for
interrupting the execution of always blocks.)

• An event at time zero that makes the event expression true in the
sensitivity list for an always block, triggers the execution of the
always block at time zero.

This is where the similarity ends between Verilog and cmodule
always and initial blocks. Their differences include:

• Cmodule always and initial blocks begin and end with curly
braces {}. There are no begin-end or fork-join blocks
within them.

• The statements inside cmodule always and initial blocks
are C/C++ statements, they are never Verilog statements. There
are also special statements that you can use in these blocks, see
“Event Control Statements” on page 2-29 and “Delay
Statements” on page 2-30.

The always Block Sensitivity List

A cmodule always block sensitivity list is similarly to an event
control “sensitivity list” for an always block in Verilog. (The IEEE
Standard 1364-1995 does not mention the concept of a sensitivity
list for an always block but in practical usage and event control
immediately following the always keyword is a sensitivity list for the
always block and its use has important performance considerations
in VCS.)

A cmodule always block sensitivity list is between the always
keyword and the opening curly brace {, and begins with @ (the “at”
character), for example:

 Part IV 2-19

Cmodules User-Defined Functions

always @(posedge inport1 or negedge inport2) {
.
.
.

}

The sensitivity list contains an event expression that is enclosed in
parentheses and can include one or more input or inout port (if more
than one, separated by the or keyword) and the negedge or
posedge keyword (to specify a falling or rising edge on the port, just
like in Verilog).

VCS does not begin to execute the always block until the event
expression is true. In this example VCS does not begin to execute
the always block until there is a rising edge on port inport1 or a
falling edge on port inport2.

Cmodule sensitivity lists differ from cmodule event control
statements in that they do not end with a semicolon (;). See “Event
Control Statements” on page 2-29.

User-Defined Functions

You can define a C/C++ function in a .vc file that contains a cmodule
definition. You can define these functions inside the cmodule
definition (where they are local to the cmodule) or above a cmodule
definition (where they are global to all cmodules that your design
uses).

These functions, like initial and always blocks can include
delay and event control statements, see “Event Control Statements”
on page 2-29 and “Delay Statements” on page 2-30. Synopsys
recommends that you use these types of statements with caution in

2-20 Part IV

Cmodules Scope

user-defined functions and only in void function because the order
of execution of functions with these types of statements cannot be
defined.

For each function there is a separate stack for each call of the
function, provided the different calls come from different concurrent
blocks like different initial or always block or another user-
defined function. Their local data is private to each call.

Variables declared static in such a function will be shared across
calls of the same function, for all cmodule instances, as per C/C++
semantics. Two concurrently executing copies of the function can
overwrite the values of such shared static variables.

Scope

For cmodules there are three levels of scope:

Global Scope Variables and named events declared, and functions defined,
outside and above the cmodule definition but inside the .vc file
that contains the cmodule definition.

“This scope is equivalent to the scope of C++ variables declared
globally outside any class. As in C/C++, static variables declared
in this scope have visibility restricted to the source file.

Cmodule Scope Variables and named events declared inside a cmodule definition
but outside an always or initial block or a function defined
inside a cmodule definition.

Functions defined inside a cmodule definition.

always and initial blocks are always at the cmodule scope,
they cannot be specified in another always or initial block or
a function

Block or Function
Scope

Variables and declared inside an always or initial block or a
function.

Functions cannot be defined inside an always or initial
block.

 Part IV 2-21

Cmodules Scope

Global functions can do the following:

• Call global functions defined above them in the.vc file

• Access global variables declared above them in the .vc file as
well as variables declared inside the global function

• Trigger global named events declared above them in the .vc file.
(You can declare a named event in a global function, but if you do
you cannot trigger it from outside the global function or use it in
an event control statement in the cmodule.)

Cmodule scope functions can do the following:

• Call global functions defined above them in the.vc file and
cmodule scope functions defined above them in the cmodule

• Access global variables declared above them in the .vc file,
cmodule scope variables declared above them in the cmodule,
as well as variables declare inside the cmodule scope function

• Trigger global named events declared above them in the .vc file,
and cmodule scope named events declared above or below them
in the cmodule. (You can declare a named event in a cmodule
function but if you do you can’t trigger it from outside the cmodule
function or use is in an event control statement outside the
cmodule function.)

always and initial blocks can:

• Call global functions defined above them in the.vc file and
cmodule scope functions defined above or below them in the
cmodule

2-22 Part IV

Cmodules Scope

• Access global variables declared above them in the .vc file,
cmodule scope variables declared above or below them in the
cmodule, as well as variables declare inside the always and
initial block

• Trigger global named events declared above them in the .vc file
and cmodule scope named events declared above them in the
cmodule. (You can declare a named event in an always or
initial block but if you do you cannot trigger it from outside the
always or initial block or use is in an event control statement
outside the always or initial block.)

The following .vc files, used for an example design, show the
different levels of scope:

// ex1.vc

‘stacksize 32k
‘timescale 1ns/1ns
#include <stdio.h>

int i, j;

void glob_func1 (char data)
 {
.
.
.
 }

global variables

global function

global event

 Part IV 2-23

Cmodules Scope

cmodule mycmod(clk, flag,indata,outdata)
 input reg clk;
 output reg flag;
 input reg [7:0] indata;
 output reg [7:0] outdata;
{
 vc_event do_it;

 char karak;

cmodule event

cmodule variable

initial {
int int_true = 1;
karak = ’a’;
glob_func1(karak);
.
.
.
vc_trigger(do_it);
.
.
.
vc_trigger(glob_event);
.

initial block variable

accessing a cmodule
variable

calling a global function

triggering a cmodule
event

triggering a global
event

2-24 Part IV

Cmodules Scope

 always
 {
@(do_it);
@(glob_event);
.
.
.
printer(i);
 }

void printer (int arg)
 {
.
.
.

cmodule event in event
control statement

global event in event
control statement

call of a cmodule function

cmodule function

// ex2.vc

‘stacksize 32k
‘timescale 1ns/1ns
#include <stdio.h>
vc_event glob_event1,glob_event2;
int j2;
char k;
void glob_func2(char char1)
{
.
.
.

global events in different .vc
files can’t have the same
name

global functions in different
.vc files can’t have the same
name

void glob_func3()
{
char c = ’c’;
glob_func2(c);
.
.

A global function can call
a global function that
precedes it in the .vc file

 Part IV 2-25

Cmodules Scope

cmodule mycmod2(clk, flag)
 input reg clk;
 output reg flag;
{
.
.

void cmod_funk1 ()
{
.
.
.
 cmod_funk3();
.
.
.
}
.
.
.

In a cmodule function, call of a
cmodule function defined later
in the cmodule

 initial{
 cmod_funk4();
 botint=1;
 }

int botint;

void cmod_funk4()
 {
 .
.
.
 }

In an initial block, call of a
function defined later in the
cmodule

In an initial block, access
of a cmodule variable
declared later in the cmodule

2-26 Part IV

Cmodules Timescale Specification

Static Variables

You can define static variables in the following scopes:

• Globally, outside the cmodule definition but inside the .vc file.
These static variables are accessible by all functions and
always and initial blocks.

Global static variables can be access by functions and always
and initial blocks in other .vc files if there is an extern
declaration for it.

• At the cmodule level. These static variables are accessible by all
functions and always and initial blocks inside the cmodule
definition.

• At the block or function level. These static variables cannot be
accessed from another function or always or initial block.

Timescale Specification

The possibility of delay statements in a cmodule require the ability to
specify a time scale. You can use a ‘timescale compiler directive
in a .vc file, just like to ‘timescale compiler directive in your Verilog
source files, to specify the time scale and time precision for these
delay statements.

There is nothing different about a ‘timescale compiler directive in
a .vc file. It takes two arguments time_unit and
time_precision just like it is specified in IEEE Standard 1364-
1995 pages 225-227. For example,

‘timescale 10ns/1ns

 Part IV 2-27

Cmodules Stack Size Specification

This compiler directive specifies that the delay value in a delay
statement is multiplied by 10 ns, rounded to the nearest 1 ns.

When you enter a ‘timescale compiler directive in a .vc file, the
specified time scale and precision apply to the next cmodule
definition in the .vc file. It also applies to all cmodule definitions that
follow in the .vc file, and all cmodule definitions in subsequent .vc
files on the command line, until VCS encounters another a
‘timescale compiler directive.

A ‘timescale compiler directive in a Verilog source file has no
effect on a cmodule definition, however a ‘timescale compiler
directive in a .vc file effects all Verilog module definitions not under a
‘timescale compiler directive in the Verilog source files.

Stack Size Specification

Each concurrent block runs a separate thread. The default stacksize
of a thread is 8K. Users can change the stacksize using the
‘stacksize specification.

The syntax for stacksize specification is as follows:

‘stacksize n[k]

Where n is a decimal number and the optional suffix k specifies
multiplying n by 1000. So for example ‘stacksize 4k and
‘stacksize 4000 are equivalent.

In case of a highly recursive function, you might need to set the
stacksize to a very high value. DirectC attempts to detect stack
overflow but is not always successful.

2-28 Part IV

Cmodules Named Events

Named Events

Cmodules can contain and use named events just like Verilog
modules can. In cmodules they work the same way, they don’t have
value, they are just triggered to make some other event happen.

The details of their declaration, triggering statement, and how you
use them to make other events happen are different:

• In Verilog you declare a named event with a declaration using the
event keyword. You can declare a named event inside a module
definition or inside a named begin-end or fork-join block.

You trigger a Verilog named event with the -> event triggering
operator followed by the event name. You can specify a
hierarchical name for the event.

You can use a Verilog named even in an event control on a
statement or block of statements to control when the statement
or statements are executed.

• In cmodules you declare a named event using the vc_event
keyword, for example:

vc_event event1, event2;

You can declare a named event at the global scope, in the .vc file
but outside the cmodule definition, or at the cmodule scope
inside the cmodule definition. (You can also declare them inside
a global function, cmodule function, or an initial or always
block, but if you do you cannot trigger or use them outside of the
function or initial or always block.)

 Part IV 2-29

Cmodules Event Control Statements

You trigger a cmodule named event with the predefined function
vc_trigger(named_event), for example:

vc_trigger(event1);

You can use a named event is an event control statement. In
cmodules event controls are separate statements, for example:

@(event1);

This statement halts execution of a function or an initial or
always block until the event is triggered by the vc_trigger
function.

Event Control Statements

Event control statements halt the execution of an always or
initial block, or a function defined inside a cmodule until the
event expression in these statements become true. For example:

always {
@(port1);

.

.

.
}

In this example the execution of the always block stops until there
is a change of value on port port1.

Cmodule event control statements are similar to Verilog event
controls in that they both contain event expressions and they halt
execution until the event expression is true.

2-30 Part IV

Cmodules Delay Statements

Cmodule event control statements are different from a Verilog event
control in that a Verilog event control applies to the statement or
block of statements that follow it, or, when used as an intra-
assignment timing control, controls when the value of the RHS is
assigned to the LHS, and is not in and of itself a statement. In
cmodules there are event control statements and you cannot apply
an event control to another statement.

The event expression is enclosed in parentheses, can include one or
more ports or named events (but not other types of local of external
variables) and can include, like Verilog, the posedge, negedge, and
or keywords.

You can use an event control statement in an initial or always
block or in a C/C++ function that you define inside a cmodule.

Delay Statements

Delay statements halt the execution of an always or initial
block, or a function defined inside a cmodule for a specific amount of
simulation time. For example:

always {
vc_delay(5);

.

.

.
}

The delay statement is designed to look like a predefined function
call. It is not the same as a Verilog delay specification. Cmodule
delay statements do not apply to other statements or constructs,
instead they are individual statements of themselves.

 Part IV 2-31

Cmodules Conditional Compilation

You can use a delay statement in an initial or always block or
in a C/C++ function that you define inside a cmodule.

Zero Delay Statements

Zero delay statements are possible and they serve the same
purpose as zero delays in Verilog. A zero delay statement in an
initial or always block or in a C/C++ function that you define
inside a cmodule suspends the execution of that block or function
until all other events scheduled to occur in the current time step have
executed.

Conditional Compilation

You can use the #ifdef, #ifndef, and #endif preprocessor
directives in you cmodule file to specify identifiers for conditional
compilation.

You define these conditional compilation identifiers with the
+cmoddefine+identifier compile-time option.

Pre-Defined Functions

There are predefined functions that enable you to control the
simulation or obtain the simulation time. You can call these functions
from any initial or always block or from any global or cmodule
scope user-defined function.This section describes these functions:

2-32 Part IV

Cmodules Pre-Defined Functions

void vc_trigger(named_event)

This function triggers a named event. The named event must be
visible to the initial or always block or user-defined function that
calls this function. Name events declared in other initial or
always blocks or user-defined functions are not visible to a different
initial or always block of user-defined function.

You declare a named event with the vc_event keyword, for
example:

vc_event my_named_event;

void vc_delay(number_of_time_units)

Halts the execution of the statements in an initial or always
block for the specified number of time units.

void vc_finish()

Stops simulation just like the $finish system task.

unsigned int vc_lowtime()

Simulation time is stores in two 32-bit words. This function returns an
unsigned integer value for the first word used for recording the
simulation time.

unsigned int vc_hightime()

This function returns an unsigned integer value for the second word
used for recording the simulation time.

 Part IV 2-33

Cmodules Cmodule Ports

double vc_time()

This function returns a double value for the entire simulation time.

Cmodule Ports

Like Verilog module ports, cmodule ports are listed in the connection
list in the cmodule header and then declared separately listing their
direction (input, output, or inout) and size. Both Verilog and cmodule
ports can be scalar or vector ports.

Unlike Verilog module ports, cmodule port declarations also specify
their type and they can have two types:

• reg — for four-state simulation

• bit — for two-state simulation

These types are included in the port declaration. The following is an
example of a cmodule header and its port declarations:

In cmodules all ports are four-state or two-state registers; they are
never considered nets. Assignments to them are in cmodule scope
functions or in always or initial blocks.

Also unlike Verilog module ports, cmodule port declarations must be
in the same order as the ports are listed in the port connection list in
the cmodule header.

The following code shows example port declarations:

#define width 7
cmodule vector (in4,in2,out4,out2)
 input reg [width:0] in4;
 input bit in2;

2-34 Part IV

Cmodules Cmodule Ports

 output reg [width:0] out4;
 output bit out2;
 {
 .
 .
 .
 }

In this example:

• The ports are listed in the following order in the cmodule header
port connection list:

in4 in2 out4 out2

So the port declarations for these ports are in the same order:

in4

in2

out4

out2

• Ports in4 and out 4 can propagate all four simulation states: 1, 0,
x, and z. Ports in2 and out 2 can propagate only two simulation
states: 1 and 0.

• Ports in2 and out2 are scalar ports and ports in4 and out4 are
eight-bit vector ports.

Cmodule ports of the same direction, type, and size can be declared
together, for example:

cmodule des1 (in1,in2,out1,out2)
 input reg [7:0] in1,in2;
 output reg [7:0] out1,out2;
 {
 .

 Part IV 2-35

Cmodules Cmodule Ports

 .
 .
 }

There is no such thing as port coercion in cmodules. If you declare a
port to be an input port, then the cmodule cannot contain an
assignment statement to that port. In Verilog modules you can make
an assignment to an input port, VCS will coerce it to an inout port, so
that values can propagate both into and out of this port. For example:

module top;
reg r1,r2;
wire w1,w2;

initial
begin
#10 r1=1;
 r2=r1;
#100 $finish;
end
inst inst1(r1,w1);
cinst cinst1(r2,w2);
endmodule

module inst (in1,in2);
input in1,in2;
reg r2;

assign #3 in2 = r2;

always @ in1
#5 r2 = ~in1;

endmodule

Valid assignment to
an input port

port coerced to inout

2-36 Part IV

Cmodules Accessing Port Values

In a cmodule this is not acceptable, therefore in a corresponding
example cmodule:

In this example you must declare in2 to be an inout or output port.

Connecting To Cmodule Ports

When you instantiate a cmodule, connect only nets to the inout or
output ports. You can connect both registers and nets to input ports.

Accessing Port Values

In cmodules you use the assignment operator = to assign values to
an inout or an output port. You must assign values to the entire port,
there is no way to assign to a bit-select or a part-select of an inout or
output port.

In cmodules you use access functions to obtain information about
ports including their value. You use these access functions to assign
the value of an input or inout port to a variable or an inout or output
port. You invoke these access functions using the C++ invoke by
method technique.

cmodule cinst (in1,in2)
input reg in1,in2;
{
always{
 @(in1);
 vc_delay(8);
 in2 = !in1.toChar();
 }
}

Assignment to in2
results in a compiler error

 Part IV 2-37

Cmodules Accessing Port Values

You can assign the value of a bit-select or part-select of a port to a
variable including an inout or output port.

The access functions return different data types (like int and
char*) depending on what sort of information you are trying to
obtain about the port (such as its size or value) and the nature of the
port (such as whether it contains two- or four-state simulation values,
or whether it’s a scalar or vector port). When obtaining the values of
ports logic values are converted to int, char, and string values.

In assignments of values to inout and output ports that can contain
four-state simulation values, string and char values such as “x/X”, “z/
Z”, “0”, and “1” will be converted to logic values X, Z, 0, and 1. In
assignment to inout and output ports that contain two-state
simulation values, a “1” is converted to 1 and all string and char
values that are not “1” are converted to 0.

The following line-numbered .vc file shows an example cmodule to
show you how values are obtained and assigned:

1 #include <iostream.h>
2 #include <stdio.h>
3
4 cmodule bitselect (a,b,c,d,e,f)
5 input reg a;
6 input reg [7:0] b;
7 inout reg [7:0] c;
8 output reg d;
9 output reg [7:0] e;
10 output reg [1:0] f;
11 {
12 int i;
13 always @(b) {
14 vc_delay(10);
15 c = b.toString();
16 i = b.toInteger() ;
17 vc_delay(10);

2-38 Part IV

Cmodules Accessing Port Values

18 d = a.toChar();
19 vc_delay(10);
20 d = b[7];
21 f = b.range(7,6);
22 vc_delay(10);
23 assigner();
24 vc_delay(10);
25 e = c.toString();
26 }
27
28 void assigner(){
29 d = a.toChar();
30 }
31 }

In the always block, on line 15, inout port c is assigned the value of
input port b. The access function toString() that was written for the
type of port that b is, returns a string value to inout port c.

On line 16 int variable i is assigned the value of input port b,
converted to an integer by access function toInteger().

On line 18 output port d is assigned the value of input port a using
the access function toChar(). The access function returns a char
type, possibly “x”, “z”, “1”, or “0” and the assignment operator
converts these char values to their corresponding logic values.

On line 20 output port d is assigned a bit-select of input port b. Using
the square brackets [] to specify a bit-select also invokes a special
access function to return the value of the bit.

On line 21 output port f is assigned a part-select of input port b. The
range() access function for this type of port returns a string with the
values of the specified bits.

On line 25 output port e is assigned the value of inout port c using
the access function toString() that was written for this type of port.

 Part IV 2-39

Cmodules Accessing Port Values

On line 29, in a cmodule function, output port d is assigned the value
of input port a using the toChar access function.

Port Classes

Ports, depending on their direction, size, and type (four-state or two-
state), are organized into classes. This implementation detail needs
to be pointed out because the access functions that have been
implemented for each class of port and error messages from these
access functions sometimes refer to the classes of ports. The
classes of ports are as follows:

vcInputBit Scalar input port for two-state simulation

vcInputBitSv Vector input port, 32-bits or fewer, for two-state simulation

vcInputBitv Vector input port, more than 32-bits, for two-state
simulation

vcInputReg Scalar input port for four-state simulation

vcInputRegSv Vector input port, 32-bits or fewer, for four-state simulation

vcInputRegv Vector input port, more than 32-bits, for four-state
simulation

vcInOutBit Scalar inout port for two-state simulation

vcInOutBitSv Vector inout port, 32-bits or fewer, for two-state simulation

vcInOutBitv Vector inout port, more than 32-bits, for two-state
simulation

vcInOutReg Scalar inout port for four-state simulation

vcInOutRegSv Vector inout port, 32-bits or fewer, for four-state simulation

vcInOutRegv Scalar inout port for two-state simulation

vcOutputBit Scalar output port for two-state simulation

vcOutputBitSv Vector output port, 32-bits or fewer, for two-state
simulation

vcOutputBitv Vector output port, more than 32-bits, for two-state
simulation

2-40 Part IV

Cmodules Accessing Port Values

For each of these classes there is a set of different access functions.
Each access function is unique and is implemented for a particular
operation for passing data to and from a particular class of port or
obtaining other information about that class of port.

However access functions in different classes have the same name
if they have the same purpose. For this reason, to avoid
unnecessary repetitiveness, these access functions are presented in
the remainder of this section, by function, instead of by class.

The following are the access functions from the various classes of
ports:

vcSignal getType()

Type vcSignal is a range of integers from 11 to 28. The getType()
functions return a vcSignal that stands for the type of a port specified
as the argument. There is, of course, an access function with this
name that returns this integer in all classes. The following is an
example of its use:

#include <stdio.h>
#define SHORT 31
#define LONG 32
cmodule getType (in0,in1,in2,in3,in4,in5,io0,io1,io2,
 io3,io4,io5,out0,out1,out2,out3,out4,out5)
 input reg [LONG:0] in0;
 input reg [SHORT:0] in1;
 input reg in2;
 input bit [LONG:0] in3;
 input bit [SHORT:0] in4;

vcOutputReg Scalar output port for four-state simulation

vcOutputRegSv Vector output port, 32-bits or fewer, for four-state
simulation

vcOutputRegv Scalar output port for two-state simulation

 Part IV 2-41

Cmodules Accessing Port Values

 input bit in5;
 inout reg [LONG:0] io0;
 inout reg [SHORT:0] io1;
 inout reg io2;
 inout bit [LONG:0] io3;
 inout bit [SHORT:0] io4;
 inout bit io5;
 output reg [LONG:0] out0;
 output reg [SHORT:0] out1;
 output reg out2;
 output bit [LONG:0] out3;
 output bit [SHORT:0] out4;
 output bit out5;
{
 initial{
 printf("\n input reg in2 type is %d\n",
 in2.getType());
 printf("\n input reg [LONG:0] in0 type is %d\n",
 in0.getType());
 printf("\n input reg [SHORT:0] in1 type is %d\n",
 in1.getType());
 printf("\n input bit in5 type is %d\n",
 in5.getType());
 printf("\n input bit [LONG:0] in3 type is %d\n",
 in3.getType());
 printf("\n input bit [SHORT:0] in4 type is %d\n",
 in4.getType());
 printf("\n output reg out2 type is %d\n",
 out2.getType());
 printf("\n output reg [LONG:0] out0 type is %d\n",
 out0.getType());
 printf("\n output reg [SHORT:0] out1 type is %d\n",
 out1.getType());
 printf("\n output bit out5 type is %d\n",
 out5.getType());
 printf("\n output bit [SHORT:0] out4 type is %d\n",
 out4.getType());
 printf("\n output bit out5 type is %d\n",
 out5.getType());
 printf("\n inout reg io2 type is %d\n",
 io2.getType());
 printf("\n inout reg [LONG:0] io0 type is %d\n",

2-42 Part IV

Cmodules Accessing Port Values

 io0.getType());
 printf("\n inout reg [SHORT:0] io1 type is %d\n",
 io1.getType());
 printf("\n inout bit io5 type is %d\n",
 io5.getType());
 printf("\n inout bit [LONG:0] io3 type is %d\n",
 io3.getType());
 printf("\n inout bit [SHORT:0] io4 type is %d\n",
 io4.getType());
 }

}

This example prints the following:

 input reg in2 type is 11

 input reg [LONG:0] in0 type is 12

 input reg [SHORT:0] in1 type is 13

 input bit in5 type is 14

 input bit [LONG:0] in3 type is 15

 input bit [SHORT:0] in4 type is 16

 output reg out2 type is 17

 output reg [LONG:0] out0 type is 18

 output reg [SHORT:0] out1 type is 19

 output bit out5 type is 20

 output bit [SHORT:0] out4 type is 22

 output bit out5 type is 20

 inout reg io2 type is 23

 Part IV 2-43

Cmodules Accessing Port Values

 inout reg [LONG:0] io0 type is 24

 inout reg [SHORT:0] io1 type is 25

 inout bit io5 type is 26

 inout bit [LONG:0] io3 type is 27

 inout bit [SHORT:0] io4 type is 28

int toInteger()

The toInteger() functions return an integer value for a scalar port or
a short (32-bits or fewer) vector port. These toInteger() functions are
in all classes of ports except those for vector ports wider that 32 bits.
The following is an example of a cmodule that uses these access
functions.

#include <stdio.h>
cmodule toInteger
(in1,in2,in3,in4,in5,in6,out1,out2,out3,out4,out5,out6)
input reg in1;
input reg [32:0] in2;
input reg [31:0] in3;
input bit in4;
input bit [32:0] in5;
input bit [31:0] in6;
output reg out1;
output reg [32:0] out2;
output reg [31:0] out3;
output bit out4;
output bit [32:0] out5;
output bit [31:0] out6;
{
always{
 @(in1 or on2 or in3 or in4 or in5 or in6);
 out1 = in1.toInteger();
 out2 = in2.toString();
 out3 = in3.toInteger();

2-44 Part IV

Cmodules Accessing Port Values

 out4 = in4.toInteger();
 out5 = in5.toString();
 out6 = in6.toInteger();
 }
}

This simple example cmodule passes values from input ports to
output ports. The corresponding ports are the same size and are
both declared for two-state or four-state simulation.

Notice that assignment statements are for assigning values to output
or output ports but that access functions are needed to obtain port
values.

Also notice that toInteger() functions were used for scalar and short
vector ports, but different functions named toString() were needed
for the ports wider that 32 bits.

These functions return a 0 for a Z value and a 1 for an X value.

char toChar()

The toChar() functions return ‘0’, ‘1’, ‘X’, or ‘Z’ characters for the
values of scalar ports. These functions are only in the classes for
scalar ports. The following is an example of a cmodule that uses
these access functions.

#include <stdio.h>
cmodule toChar
(in1,in2,in3,in4,in5,in6,out1,out2,out3,out4,out5,out6)
input reg in1;
input reg [32:0] in2;
input reg [31:0] in3;
input bit in4;
input bit [32:0] in5;
input bit [31:0] in6;
output reg out1;

 Part IV 2-45

Cmodules Accessing Port Values

output reg [32:0] out2;
output reg [31:0] out3;
output bit out4;
output bit [32:0] out5;
output bit [31:0] out6;
{
always{
 @(in1 or in2 or in3 or in4 or in5 or in6);
 out1 = in1.toChar();
 out2 = in2.toString();
 out3 = in3.toString();
 out4 = in4.toChar();
 out5 = in5.toString();
 out6 = in6.toString();
 }
}

Notice that the toChar() functions are only used with scalar ports.

int getLeftRange()
int getRightRange()

All vector ports are declared with a bit width that assigns an integer
to its most significant bit and its least significant bit. This bit width
specifies the size of the vector port because the bit width specifies a
range of bits bound by the most and least significant bits.

The getLeftRange() functions return the integer for the most
significant bit of a vector port, and the getRightRange() functions
return the integer for the least significant bit of a vector port. These
functions are in all classes for vector ports. The following cmodule
uses these functions:

#include <stdio.h>
cmodule ranges (in, out)
input reg [7:0] in;
output reg [7:0] out;
{

2-46 Part IV

Cmodules Accessing Port Values

 always{
 @(in);
 int l = in.getLeftRange();
 int r = in.getRightRange();
 int i;
 for (i = l; i >= r; i--){
 printf("\n working on bit [%d]\n\n",i);
 .
 .
 .
 }
 }
}

unsigned int* toArray()

The toArray() functions are for assigning the values of vector ports
larger that 32 bits. These toArray() functions are only in the classes
for these long vector ports. The following cmodule uses one of these
functions:

#include <iostream.h>

cmodule inputLvTest (c,d)
input reg [33:1] c ;
output reg [33:1] d;
{
 always @(c) {
 unsigned int* cVal ;
 .
 .
 .
 cVal = c.toArray() ;
 .
 .
 .
 d = cVal;
 }
}

 Part IV 2-47

Cmodules Accessing Port Values

int getWord()

Data for vector ports is stored in 32-bit chunks. These functions
returns an integer values that is the number of 32-bit chunks needed
for a class of vector ports. The getWord() functions are in all classes
for vector ports. The following cmodule uses one of these functions:

#include <iostream.h>

cmodule inputLvTest (a)
input reg [131:0] a ;
{
 always @(a) {
 //Array of return value
 unsigned int* aVal = a.toArray();

 cout << " Size of a = " << a.getSize() << endl;
 cout << " No. of 32 bit chunks = " << a.getWord() << endl;
 }
}

This cmodule outputs the following:

Size of a = 132
No. of 32 bit chunks = 5

char* toString()

The toString() functions return a string of characters for the values of
the bits in a vector port. These functions are in all classes for vector
ports. The toString() functions for four-state simulation vector ports
can return x and z values. The cmodule example for the toChar()
functions also uses a toString() function.

2-48 Part IV

Cmodules Accessing Port Values

int getSize()

The getSize() functions return the number of bits in a vector port.
These functions are in all classes for vector ports. The following
cmodule uses a getSize() function:

#include <stdio.h>

cmodule getSize (in0,out0)
 input reg [32:0] in0;
 output reg [32:0] out0;
{
 always{
 @(in0);
 if (in0.getSize() == out0.getSize())
 out0 = in0.toString();
 }
}

char* range(int,int)

The range() functions return a string of characters for a part-select of
a vector port. You specify the part-select with the int arguments to the
functions. There is a range() function in all classes for vector ports.
The range() functions for four-state simulation vector ports can
return x and z values for bit with these values. The following cmodule
uses one of these functions:

#include <iostream.h>

cmodule range (inport,outport)
input reg [7:0] inport;
output reg [7:0] outport;
{

always{
@(inport);
cout <<" Middle 4 bits of inport are "

<< inport.range(5,2) << endl ;

 Part IV 2-49

Cmodules Accessing Port Values

}
}

If the Verilog module that instantiate this cmodule passes a value to
the input port:

module test;
reg [7:0] a;
wire [7:0] b;

range r1 (a,b);

initial
a = 8’b10xz10xz;

endmodule

The cmodule outputs the following:

Middle 4 bits of inport are xz10

2-50 Part IV

Cmodules Accessing Port Values

	The DirectC Interface
	Making a Direct Call to a C/C++ Function
	How C/C++ Functions Work in a Verilog Environment
	Declaring The C/C++ Function
	Calling The C/C++ Function

	Using Direct Access
	Passing Class Objects in Verilog/VeraLite and DirectC
	Using Abstract Access
	Using vc_handle
	Using Access Routines
	The Access Routines

	Storing Vector Values in Machine Memory
	Converting Strings
	Avoiding a Naming Problem

	Cmodules
	Introducing Cmodules
	Cmodule Example
	Cmodule Instantiation
	Cmodule Always and Initial Blocks
	The always Block Sensitivity List

	User-Defined Functions
	Scope
	Static Variables

	Timescale Specification
	Stack Size Specification
	Named Events
	Event Control Statements
	Delay Statements
	Conditional Compilation
	Pre-Defined Functions
	Cmodule Ports
	Connecting To Cmodule Ports

	Accessing Port Values
	Port Classes

