
System Verilog 3.1 Donation
Part II: Assertions
Version 1.1, May 2002

Contains proprietary information of Synopsys, Inc.

ii

Copyright © 2002 Synopsys, Inc. Synopsys. All rights reserved. This documentation contains

proprietary information that is the property of Synopsys, Inc.

The Synopsys logo and VERA are registered trademarks of Synopsys, Inc. OpenVera is a
trademark of Synopsys Inc. All other brands or products are trademarks of their respective owners
and should be treated as such.

System Verilog 3.1 Donation

 Part II 1-1

OpenVera Assertions

1
OpenVera Assertions 1

This chapter describes the language for expressing timing
relationships between design objects. Using this language, you can
specify one or more expressions, their functional and timing
relationships, and a set of criteria for the relationships to fail or
succeed. This chapter includes:

• Evaluating Sequence Expressions

• Specifying Edge Events and Clocks

• Specifying Time Shift Relationships

• Defining Expressions

• Specifying Temporal Assertions

• Specifying Assertions for an Instance of a Module

• Specifying Assertions for A Module

1-2 Part II

OpenVera Assertions Evaluating Sequence Expressions

• Name Resolution

• Specifying Composite Sequences

• Specifying Conditional Sequence Matching

• Matching Repetition of Sequences

• Specifying Conditions Over Sequences

• Specifying Unconditional Number of Clock Ticks

• Grouping Assertions as a Library

Evaluating Sequence Expressions

This section describes how sequence expressions are evaluated.
There are two important aspects of expression evaluation: one
indicates whether the expression matched the simulation results,
and the other explains the start and end time of the evaluation. The
concepts of expression evaluation and advancement of time are
used in deriving the success/failure of assertions, and are
fundamental to understanding the descriptions of language features.

A sequence is a Verilog boolean expression in a linear order of
increasing time. These boolean expressions must be true at those
specific points in time for the sequence to be true over time. A
boolean expression at a point in time is a simple case of a sequence
with time length of one unit.

A sequence expression describes one or more sequences by using
temporal operators that specify a range of possibilities of and
repetitions of sequences. During the sequence expression
evaluation, the temporal operators act upon the boolean
expressions over those possibilities of time and repetition during the

 Part II 1-3

OpenVera Assertions Evaluating Sequence Expressions

sequence expression evaluation. After such monitoring and
evaluation of a sequence expression, one or more sequences can
actually satisfy the expression. This section provides several
examples to illustrate how evaluation is carried out in time and
results computed for assertions.

The variables or operands in sequence expressions are Verilog regs,
integers, and all varieties of nets. There is also an OpenVera
Assertions event that can be a variable or operand.

Note:
In this manual variable in an expression refers to these types of
design objects and not the sense of the term variable in the
Verilog-1364-2001 standard.

Timing Model and Edge Events

The timing model employed in this specification is based on clock
ticks, and uses a generalized notion of clock cycles. The definition of
a clock is explicitly specified by the user, and can vary from one
expression to another. In addition, a user can choose to use the
simulation time as a clock to express asynchronous events.

A clock tick is an atomic moment in time and implies that there is no
duration of time in a clock tick. The value of a variable in an
expression at a clock tick is sampled precisely one simulation tick
before the clock tick. The sampled value is the only valid value of a
variable at a clock tick. Figure 1-1 shows the values of a variable as
the clock progresses. The value of signal req is low at clock ticks 1
and 2. At clock tick 3, the value is sampled as high and remains high
until clock tick 9. The value of variable req at clock tick 9 is low and
remains low.

1-4 Part II

OpenVera Assertions Evaluating Sequence Expressions

Figure 1-1 Sampling a Variable on Simulation Ticks

Note:
For accessing the value of a variable from Verilog at a simulation
time, the value is obtained after all the event computations have
been performed at that simulation time and no more changes in
the value are expected to occur. The value of a variable one
simulation tick before the clock is considered as the sampled
value for the variable with respect to its clock.

An expression is always tied to a clock definition. The values of
variables are sampled only at clock ticks. These values are used to
evaluate edge events (such as posedge and negedge) or boolean
sub-expressions that are required to determine a match with respect
to a sequence expression.

An edge event at a clock tick changes the value of an expression
from the value of that expression at the previous clock tick. Like
boolean expressions, an edge event evaluates to true if the event
occurs, and to false if the event does not occur.

For example, when a signal changes its value from low to high (a
rising edge), it is considered a posedge event. Figure 1-2 illustrates
two examples of edge events:

• edge event e1 is defined as (posedge req)

• edge event e2 is defined as (negedge ack)

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

simulation
ticks

 Part II 1-5

OpenVera Assertions Evaluating Sequence Expressions

Figure 1-2 Edge Events

The clock used for sampling the events is clock, which is different
than the simulation ticks. Assume, for now, that this clock is defined
in this language elsewhere. At clock tick 3, event e1 occurs because
the value of req at clock tick 2 was low and at clock tick 3, the value
is high. Similarly, event e2 occurs at clock tick 6 because the value
of ack was sampled as high at clock tick 5 and sampled as low at
clock tick 6.

Note:
A vertical bar, in figures like Figure 1-2, without an arrow on the
top or the bottom of the bar indicates an occurrence of an edge
event.

Matching A Sequence

Another way to look at a sequence is that it is a series of checkpoints
described by a sequence expression. These checkpoints are
dispersed in time from the beginning to the end of evaluation time of
the expression. At each checkpoint, a boolean expression or an
edge event is evaluated, resulting in a true/false value. A boolean
expression is evaluated in the same way as a Verilog expression. To
determine a match of a sequence, checkpoints are evaluated at

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

ack

e1

simulation

e2

ticks

1-6 Part II

OpenVera Assertions Evaluating Sequence Expressions

appropriate times to satisfy the expression. If all the checkpoints are
satisfied, then a match of a sequence to the simulation results
occurs.

A sequence expression that specifies a complete assertion, that is
not a sub-expression of a larger expression, typically has a
checkpoint at every clock tick to see if it is violated. To test the
assertion at a clock tick, a new evaluation attempt for the expression
is carried out, independent of any attempt at a previous clock tick.
The results of each attempt are also reported separately. Generally,
we will be discussing one attempt when we describe the behavior of
the language constructs.

For example, consider the sequence of edge events, s1, in
Figure 1-3. s1 is defined as:

e1 #3 e2

Figure 1-3 Matching a Sequence

The # notation is used to refer to clock ticks. The above example
says that e2 is expected to occur at the third clock tick after the
occurrence of e1. Figure 1-3 illustrates this process for an attempt
starting at clock tick 3 and shows how the time is advanced for the

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

s1

ack

e1

e2

 Part II 1-7

OpenVera Assertions Evaluating Sequence Expressions

attempt. e1 is evaluated to be true at clock tick 3. The outcome of
this result is the continuation of checking the expression for the next
checkpoint, which is event e2 at clock tick 6. No evaluation or
checking is performed at clock ticks 4 and 5 for this attempt. Thus,
variables can take on any values during these clock ticks. Event e2
occurs at clock tick 6, so the expression is said to match for the
attempt starting at clock tick 3.

Note:
A sequence match is indicated as an upward arrow and a no
match is indicated as a downward arrow. At all other points in
time where there is no upward or downward arrow, the
expression is in the process of evaluating a match. A time line is
shown with a dashed horizontal line with a left and a
right arrow to indicate that an evaluation is in progress during that
time period.

Note:
The values of signals shown in diagrams in this manual are the
derived sampled values of those signals with respect to their
clock, and not the actual simulation values at the corresponding
simulation time.

The above example shows the evaluation of events as part of
checkpoints in an expression. A checkpoint can also be a variable or
a boolean expression that is evaluated to determine if the checkpoint
is true or false. Reconsider the same example with a change that
signal (ack==0) is tested instead of negedge ack in the
expression as shown below.

e1 #3 (ack==0)

1-8 Part II

OpenVera Assertions Evaluating Sequence Expressions

This example is illustrated in Figure 1-4 for the evaluation attempt
starting at clock tick 8. The value of signal ack is low, so there is a
sequence match at clock tick 11.

Figure 1-4 Matching a Sequence with a Variable

Note:
If only a variable is specified as a checkpoint, then it is implicitly
converted to its logical value during the checkpoint evaluation by
the rules of Verilog. For the above example, if the expression
were written as:

e1 #3 ack

Then, ack is converted to its logical value using the above rule
and the expression is true if ack is true at the proper clock tick.

Start and End Time of A Sequence

Each sequence has a start time and an end time. As seen from the
examples in Figure 1-3 on page 1-6 and Figure 1-4 on page 1-8,
while monitoring sequences the reference time (current time) is
advanced according to the clock ticks between the checkpoints.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

s1

ack

e1

 Part II 1-9

OpenVera Assertions Evaluating Sequence Expressions

The start time for a sequence match is the time from which a new
evaluation attempt of the sequence expression begins. The end time
is the time at which a success or a failure for the sequence is
detected. Let us examine the start and end times of the evaluation
attempt at clock tick 3 for the example illustrated in Figure 1-5. The
attempt starting at clock tick 3 matches at clock tick 6, so the start
and end times are clock ticks 3 and 6 respectively.

Figure 1-5 Start and End Times of a Sequence

A sequence can consist of sub-sequences, again dispersed in time.
Same rules apply to sub-sequences regarding the start time and end
time. Now, assume a series of events (e1, e2, e3 and e4) at the
corresponding clock ticks (3, 4, 5 and 8). Consider a sequence s
consisting of two sub-sequences s1 and s2, where s1 is (e1 #1
e2) and s2 is (e3 #3 e4), and s is defined as (s1 #1 s2), and
shown in Figure 1-6 on page 1-10. The time clause #1 specifies the
expectation of the occurrence of the second operand event in the
next clock tick after the occurrence of the first operand event. The
time clause #3 specifies the expectation of the occurrence of the
second operand event at the third clock tick after the occurrence of
the first operand event.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

s1

ack

e1

e2

1-10 Part II

OpenVera Assertions Evaluating Sequence Expressions

Figure 1-6 Start and End Times of Sub-sequences

The sequence expression is:

(e1 #1 e2) #1 (e3 #3 e4)

Let us examine the evaluation attempt at clock tick 3 in Figure 1-6.

• The attempt starting at clock tick 3 succeeds for sub-sequence
s1 at clock tick 4.

• Next, #1 directs to move to the next clock tick, so the evaluation
of s2 begins at the next clock tick after sub-sequence s1, and the
start time of sub-sequence s2 becomes 5.

• Sub-sequence s2 terminates when event e4 occurs, resulting in
the end time for sub-sequence s2 as clock tick 8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

e1

s1

e2

e3

e4

s2

s

 Part II 1-11

OpenVera Assertions Evaluating Sequence Expressions

Single vs. Multiple Sequences of Evaluation

A more complex scenario arises when the expression evaluation
branches out to compute all alternative sequences implied by a
construct. In such cases, a sequence match is determined for every
sequence independent of each other. The expression can result in
multiple successful or failed matches. If such a sequence expression
is a sub-expression of a larger expression, then the resulting
matches are used to determine sequence matches of the enclosing
expression. An example of evaluating multiple sequences follows:

e1 #[1..3] (ack==0)

Event e1 is defined as (posedge req).

This statement says that signal ack must be low at the first, second,
or third clock ticks after the occurrence of event e1. To determine a
match for each of these three cases, three separate evaluations are
started. An example is illustrated in Figure 1-7. The three sequences
are:

e1 #1 (ack==0)
e1 #2 (ack==0)
e1 #3 (ack==0)

1-12 Part II

OpenVera Assertions Specifying Edge Events and Clocks

Figure 1-7 Evaluating Multiple Sequences

Let us consider an evaluation attempt at clock tick 3:

• At clock tick 3, event e1 occurs, so three sequences are started.

• Sequence1 fails to match at clock tick 4 as signal ack is 1.

• Sequence2 and sequence3 match at clock ticks 5 and 6
respectively, as signal ack is 0 at those clock ticks.

Specifying Edge Events and Clocks

Edge Events

The syntax for specifying edge events is as follows:

posedge | negedge | edge bit_vector_expr
matched event_name

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

sequence2

ack

e1

sequence1

sequence3

 Part II 1-13

OpenVera Assertions Specifying Edge Events and Clocks

One important use of events is being able to describe change in
values of variables. In practical situations, most activities in systems
are initiated based on detecting a change in value.
bit_vector_expr is an expression that results in a single or
multi-bit vector. Three clauses are provided to specify change in
values:

posedge bit_vector_expr

Is used to express positive edge and generates an event upon 0
to1 transition on the value of the expression bit_vector_expr.

negedge bit_vector_expr

Is used to express negative edge and generates an event upon
1 to 0 transition on the value of the expression bit_vector_expr.

edge bit_vector_expr

Is used to express a change in value and generates an event
upon either 1 to 0, or 0 to 1 transition on the value of the
expression bit_vector_expr.

Note that Verilog semantics are used to evaluate edge events. In
particular, if bit_vector_expr is a vector, then only the least
significant bit is considered for determining the result of an edge
event.

An example of posedge, negedge and edge is shown in Figure 1-8.

1-14 Part II

OpenVera Assertions Specifying Edge Events and Clocks

Figure 1-8 Edge Events

A sequence event is another case of a simple event specification
and is specified as shown below.

matched event_name

The matched operator is used to test if the sequence event occurred
or not. If the sequence event was generated by event event_name,
then the result is true, otherwise the result is false. The event_name
refers to a sequence expression specified by the event clause. The
event and matched clauses are explained in “Defining
Expressions” on page 1-23.

Clocks

The syntax for specifying a clock is as follows:

clock | sclock edge_expr
{

statements other than clock
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

frame

devsel

frame | devsel

negedge
(frame|devsel)

posedge
(frame|devsel)

edge
(frame|devsel)

 Part II 1-15

OpenVera Assertions Specifying Edge Events and Clocks

Each sequence or boolean expression is associated with a clock.
The clock determines the sampling times for variable values.

A clock tick occurs whenever the edge event described by
edge_expr occurs during simulation.

Note that if a clock is not explicitly specified, then the simulation
clock is used as the clock for the expression. This is useful for
asynchronous events, but can substantially slow the simulation.

Figure 1-9 illustrates the use of event clauses for specifying clocks.
Four clocks are shown as follows:

• clk1 as simulation time

• clk2 as posedge clk

• clk3 as negedge clk

• clk4 as edge clk

Figure 1-9 Specifying Clocks with Event Clauses

A clock can be specified for any individual sequence expression, for
example:

clk4
(edge clk)

clk

clk3

simulation

(negedge clk)

ticks

clk2
(posedge clk)

clk1
(simtime)

1-16 Part II

OpenVera Assertions Specifying Time Shift Relationships

clock posedge clk {
event tex1: start_sig #1 end_sig ;

}
clock posedge global_clk {

event tex2: trans #1 trans_end ;
}

In the above case, posedge global_clk is used as a clock for
sequence expression tex2, while posedge clk is used as a clock
for sequence expression tex1.

There are two types of clock: weak clock with the keyword clock,
and strong clock with the keyword sclock. The only difference
between the two types of clock is that clock does not require the
edge_expr to be true, while sclock enforces the clock to be true at
least once during simulation. In the case when a weak clock does not
tick at all during simulation, the assertion is considered to be true at
the end of simulation. On the contrary, a strong clock is required to
occur at least once. The assertion that is clocked by sclock is
considered to be false at the end of simulation if the clock does not
tick.

A strong clock is an actual clock signal in your design. A weak clock
is another design object that is not an actual clock but you want to
use it as a clock for an assertion anyway.

Specifying Time Shift Relationships

The syntax for time shift relationships is as follows:

int | [int .. int] | [int ..]

->>

 Part II 1-17

OpenVera Assertions Specifying Time Shift Relationships

Time is expressed in terms of clock ticks and is specified using #
notation. a #t b, means that a should occur, followed by (t-1)
clock ticks, followed by b. In other words, a must occur, followed by
b t clock ticks later.

Table 1-1 shows variations of time specifications that can be used.

In addition, the following must be noted:

• ->> is a shorthand notation for expressing #[1..], or eventuality of
occurrence.

• t, t1 and t2 cannot be negative numbers, specifying activities
in the past. They can be zero.

• In case of a range specification, t2 must be greater then t1.

The clock that determines the basic unit of time (clock tick) is inferred
from the context of the expression in which time is specified. How to
specify clock has been described in a previous section.

The syntax for specifying timing sequences is as follows:

Table 1-1 Time Specification Syntax

Specification Meaning

#t t clock tick delays

#[t1..t2] A variable time delay between t1 and t2. It defines a period
between clock tick t1 and clock tick t2, with t1 and t2 being
inclusive. t1 must be less than t2.

#[0..t2] A period between the current clock tick and clock tick (t2),
with current time and t2 being inclusive.

#[t1..] A period between clock tick t1 and the end of simulation.

#[1..] A period between the next clock tick and the end of
simulation.

1-18 Part II

OpenVera Assertions Specifying Time Shift Relationships

[sequence_expr] time_shift sequence_expr

This basic time notation is used to express temporal relationships
between expressions, and provides the building blocks for
sequences. Examples of specification are:

• clock ticks between sequences

• specific clock tick when a sequence is expected to occur

• time period during which a sequence is expected to complete

• eventuality of occurrence of a sequence

Clock ticks between two sub-expressions is specified using:

sequence_expr time_shift sequence_expr

All variations of time_shift can be used between the two
sequence expressions. Note that the time specified by time_shift
can take on only a positive value. Consider two expressions that are
expected to occur, one followed by the other in the next clock tick.
This can be written as:

event t1: te1 #1 te2;

Here where te1 and te2 are events, te1 must evaluate to true first,
then te2 must evaluate to true in the next clock tick. t1, as
illustrated in Figure 1-10, for the attempts at clock ticks 1, 3, 5, 11,
and 12 matches at clock ticks 2, 4, 6, 12 and 13 respectively because
te2 is true one clock tick after te1.

 Part II 1-19

OpenVera Assertions Specifying Time Shift Relationships

Figure 1-10 Time Specification event t1: te1 #1 te2;

When an activity is allowed to end within a range of time (time
window), then the time_shift clause with a minimum and
maximum time specification is used to express the time window.
When a range of time is specified, multiple matches can occur. At
each clock tick within the time window, a new evaluation attempt is
made to determine a match.

Consider the following example:

event t5 :te1 #[2..5] te2;

Here, te2 can be true anywhere within a time window starting at 2
clock ticks after te1 becomes true, and ending at 5 clock ticks after
te1 becomes true. Figure 1-11 illustrates this example for the
evaluation attempt at clock tick 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

t1
#1 #1 #1 #1 #1 #1

1-20 Part II

OpenVera Assertions Specifying Time Shift Relationships

Figure 1-11 Range Time Specification

The time window for attempt starts at 5 and ends at 8. This attempt
generates two matches at clock ticks 5 and 6 because te2 is true at
those clock ticks. At clock ticks 7 and 8, te2 does not match.

Consider another example:

event t8: te1 #[2..] te2;

In the expression t8, the maximum time is the end of simulation for
te2 to evaluate to true. te1 must first evaluate to true, followed by
te2 some time after 1 clock tick, but before the end of simulation.

The time window for t8 is shown in Figure 1-12 for the attempt at
clock tick 3. The attempt generates matches at clock ticks 5 and 6,
reports failures for the rest of the simulation.

Figure 1-12 Until Simulation End Time Specification

A special case of this range is when the minimum time is one clock
tick (next clock tick).

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

te1

te2

t5
#[2..5]

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

te1

te2

t8
#[2..]

 Part II 1-21

OpenVera Assertions Specifying Time Shift Relationships

event ch9: te1 ->> te2;

The above assertion can be written as:

event t9 : te1 #[1..] te2;

The notation ->> specifies any subsequent clock tick until the end of
simulation and is provided because this type of sequence expression
is frequently used.

So far, we have described time_shift operation in a binary
context, when one sequence expression follows another.
time_shift operation can also be specified as a unary operator,
where it is used as a delay.

The syntax for the time shift unary operator is as follows:

time_shift sequence_expr;

All variations of time_shift can be used. Time can be of 0 or
positive value.

event t10 : (#5 te1) #2 te2;

The above sequence expression has an additional requirement for
te1: four clock ticks must precede te1, which implies to reject any
te1 which occur prior to 5 clock ticks from the beginning of
simulation. In sub-expression (#5 te1), time_shift is used as a
unary operator.

This is shown in Figure 1-13.

1-22 Part II

OpenVera Assertions Specifying Time Shift Relationships

Figure 1-13 Time Shift as an Unary Operator

To express certain amount of delay following an expression, any
clause is used as follows.

sequence_expression time_shift any ;

any denotes an empty expression that always evaluates to true (see
“Specifying Unconditional Number of Clock Ticks” on page 1-71). In
the above expression, after satisfying sequence_expression, time is
advanced unconditionally by an amount specified in the time_shift.

event t11 : (#5 te1) #2 te2 #2 any;

Figure 1-14 illustrates the above expression. Notice that 2 clock ticks
are required at the end of the expression because it ends with #2
any. At clock tick 10, the expression (#5 te1) #2 te2 is matched.
Two clock ticks later, at clock tick 12, t11 is matched.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

te1

te2

t10 #5

 Part II 1-23

OpenVera Assertions Defining Expressions

Figure 1-14 any at the End of a Sequence

Defining Expressions

The syntax for defining expressions follows:

bool name [(param1, ..., paramN)] : boolean_expr ;

event name [(param1, ..., paramN)] : sequence_expr ;

Expressions are categorized as boolean or sequence. A boolean
expression consists of variables with boolean operators as defined
in Verilog, and returns true or false as the result of the evaluation of
the expression. A boolean expression is defined using the bool
clause.

A bool clause declares a boolean expression with an identifier to
name the expression. Optionally, a list of parameters, separated by
commas, can be declared for the expression, in which case, the
parameters supplied at the time of instantiation replace the
corresponding variables. Regardless of whether the declaration is
made under an explicit clock or without a clock, no clock is
associated with the expression until it is instantiated in an
expression. Upon its usage, the bool definition is expanded in the

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

te1

te2

t11
#2 any

1-24 Part II

OpenVera Assertions Defining Expressions

expression where used and becomes part of the expression. The
values of the signals of the bool expression are sampled according
to the clock associated with the expression where instantiated.

For example,

bool b1: !req && ack;
clock posedge sysclk {

bool b2: b1?(addr[3:2]==0):(addr[3:2]!=0);
}

In this example, boolean expression b1 gets replaced by its
expression in b2, as follows:

clock posedge sysclk {
bool b2:(!req && ack)?(addr[3:2]==0):(addr[3:2]!=0);

}

b2 evaluates its expression at each posedge of clock sysclk using
the sampled values of req, ack and addr.

An example with parameters is shown below.

bool b3(ad[3:0]): (!ad[0])&&ad[1]&&!ad[2]&&ad[3]);
clock posedge sysclk {

bool b4: (req&&pack1)?b3(addr[6:3]):b3(addr[10:7]);
}

In the above example, boolean expression b3 is declared with a
parameter ad. b3 is instantiated twice in boolean expression b4 with
different parameters. In the first instantiation, b3 is evaluated with
variable addr[6:3], while in the second instantiation, b3 is
evaluated with variable addr[10:7].

A sequence expression uses boolean as well as temporal operators,
and returns sequences that matched the expression. A sequence
expression is defined using the event clause. An event is

 Part II 1-25

OpenVera Assertions Defining Expressions

declared with an identifier to name the expression, and a sequence
expression to specify the relationship for monitoring. An explicit clock
may be specified for sampling values/events. If the clock is not
specified, the simulation clock is assumed as a clock.

Like the bool clause, an event can be defined with parameters,
such that multiple instantiations of the sequence expression can be
made with different variables as arguments.

There are two ways in which an event is used:

• To decompose a complex sequence expression into simpler
sub-expressions. The sub-expressions are used as part of the
expression by simply referencing their names. The evaluation of
a sequence expression that references an event sequence
expression is performed the same way as if the event
sequence expression was a lexical part of the expression. In
other words, the event sequence expression is “invoked” from
the expression where it is referenced. An example is shown
below:

clock posedge sysclk {
event seq: a #1 b #1 c;
event rule: if (trans) then

start_trans #1 seq #1 end_trans;
}

This is equivalent to:

clock posedge sysclk {
event rule: if (trans) then

start_trans #1 a #1 b #1 c #1 end_trans;
}

• To use the event sequence expression to generate a simple
event called sequence event. In this case a sequence event is
generated each time the sequence expression succeeds. The

1-26 Part II

OpenVera Assertions Defining Expressions

occurrence of the event can be tested in any sequence
expression by using the clause matched. An example is shown
below:

clock posedge sysclk {
event e1: posedge rdy #1 proc_1 #1 proc_2;
event rule: if (reset)

then inst #1 matched e1 #1 branch_back;
}

In this example sequence expression e1 must end successfully
one clock tick after inst. If the keyword matched wasn’t there,
sequence expression e1 starts one clock tick after inst.

As described above, event clause can be used to specify a
sequence expression as a sequence event. So far the expressions
are described as monitors that use variable values to check for edge
events or boolean expressions at specified times. A sequence event
is different from an edge event. The main difference between an
edge event and a sequence event is that when the sequence
expression attached to event succeeds, a sequence event is
generated. However, if the sequence expression fails, then the
results are discarded and no event is generated. So, while an edge
event is said to occur if a change in value at a clock tick compared
to the previous clock tick is detected, a sequence event occurs when
its corresponding event clause succeeds.

Consider the following:

clock posedge sysclk {
event t1: te1 #1 te4 #1 te7;
event t2: te2 #1 te5 #1 te8;
event t3: te3 #1 te6 #1 te9;
event rule: if (matched t1) then

matched t2 #1 matched t3;
}

 Part II 1-27

OpenVera Assertions Defining Expressions

The sequence events t1, t2 and t3 define sequence expressions
that are used in rule. When the sequence expression te1
succeeds, a sequence event is generated for t1. Similarly,
sequence events t2 and t3 are generated. The event rule ensures
that these sequence events occur in a specific sequence. The
event clause is used for building sub-expressions.

The event clause enables you to specify sequence expressions at
different clocks and use their results in another sequence
expression.

Consider the following:

clock posedge clk1 {
event t1: sequence_expr1 ;

}
clock posedge clk2 {

event t2: sequence_expr2 ;
}
clock posedge clk3 {

event rule2: if (matched t1) then matched t2 ;
}

Event t1 is defined with a clock clk1 and event t2 is defined with
a clock clk2, while rule2 is defined with a clock clk3. rule2
uses the sequence event t1 and t2 to construct a more complex
expression rule2.

To illustrate the generation and use of sequence event, consider the
following example. A master device issues a transaction request
using master clock. The device examines the request and issues a
device selection signal within 3 clock ticks of posedge dclk. Note that
signals mclk and dclk are different signals and may posses no
timing relationship.

1-28 Part II

OpenVera Assertions Defining Expressions

clock posedge mclk {
event trans: negedge frame ;

}
clock posedge dclk {

event rule3: if (matched trans)
then #[1..3] negedge devsel;

}

The semantics of the if then clause is discussed in “Specifying
Conditional Sequence Matching” on page 1-53. A brief description of
its usage follows.

event event_name : if boolean_cond then
sequence_expression

The expression boolean_cond is evaluated. If boolean_cond
evaluates to false, then that particular evaluation of event_name is
considered successful with a matched sequence of just
boolean_cond. Consequently, boolean_cond acts as a
precondition to evaluating expression sequence_expression.
Whenever boolean_cond evaluates to true, then
sequence_expression is evaluated that results in sequence
matches for the event event_name.

In Figure 1-15, at clock tick 9 for clock mclk, negedge frame
occurs. Figure 1-15 illustrates this evaluation attempt. As a result, a
sequence event trans is generated and latched for clock dclk. This
sequence event trans is available at the clock tick 5 for clock dclk.
negedge devsel occurs at clock tick 6 of clock dclk, matching
rule3.

 Part II 1-29

OpenVera Assertions Defining Expressions

Figure 1-15 if-then Example

Note that the sequence event is only generated when its associated
sequence expression succeeds. At all other times, the sequence
event does not occur. Furthermore, the sequence event gets
latched, in the sense that it can be tested for its occurrence, until the
next clock tick of the sequence expression where it is used. The
occurrence of a sequence event is tested simply by its reference as
a variable in an expression. The test returns true if the sequence
event occurred, and false if it did not occur. For a particular success
of the associated sequence expression of the sequence event, the
sequence event will test as true only for one clock tick, after which it
will test as false. In Figure 1-15, signal trans gets latched to clock tick
9 for clock dclk. At clock tick 9, signal trans is true, but false at all
other clock ticks.

When the same clock is used for both event sequence
expressions, the sequence event coincides with the sampling clock,
and will be available in the same clock tick. This is illustrated in
Figure 1-16. The waveform shown for signal frame is the result of
sampled values of the design signal frame with respect to the clock
mclk.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

frame

trans

1 2 3 4 5 6 7dclk

devsel

rule3

1-30 Part II

OpenVera Assertions Defining Expressions

clock posedge mclk {
event trans: negedge frame;
event rule4: if (trans) then #[1..3] negedge devsel;

}

Figure 1-16 Events Using the Same Clock

Finally, if multiple sequences of evaluation are required for an
expression, the time at which the sequence event is generated is
determined by the following rule:

• Every time a match is recognized for a sequence, a sequence
event is generated at that time.

• Every time there is a match failure for a sequence, no sequence
event is generated.

Resolving Clock for Event Definitions

This section describes the rules governing the resolution of the clock
for an event expression, when event definitions are instantiated in
the expression. As we saw from the previous section, any number of
event expressions can be used as sub-expressions in the definition
of an event expression. The instantiated sub-expressions may or

1 2 3 4 5 6 7 8 9 10 11 12 13 14posedge mclk

frame

trans

devsel

rule3

 Part II 1-31

OpenVera Assertions Defining Expressions

may not be bound to a clock. This gives rise to conflicting situations
where a sub-expression may be bound to a clock different than the
clock where it is instantiated.

Following rules with examples describe the clock resolution scheme.
Consider the following code example:

event t1: a;
clock edge clk {

event t2: t1;
event t3: b #1 c;
event t4: t2 #1 t3;

}
clock negedge clk {

event t5: e #1 f;
}
event t6: t2;
event t7: t3 #1 t5;
event t8: g #1 f;
event t9: t1 #1 t8;

1. When an unclocked event is instantiated in a clocked event, it
inherits the clock of the clocked event. In the example, event t1
will be evaluated with respect to clock “edge clk” when used in
t2.

2. When a clocked event is instantiated in the definition of an
unclocked event, the definition will inherit the clock of the clocked
event. In the example, t6 will be evaluated with respect to clock
“edge clk”.

3. When two events are instantiated that are bound to different
clocks, an error is reported. In the example, event definition t7 is
an error because event t3 and t5 are bound to different clocks.
While event definition t4 is correct as both events t2 and t3 are
on the same clock.

1-32 Part II

OpenVera Assertions Specifying Temporal Assertions

4. When an unclocked event is instantiated in an unclocked
definition, the definition remains unclocked. In the example,
event t9 is unclocked as both events t1 and t8 are unclocked.

5. After resolution of clocks with respect to the sub-expression, if
the event remains unclocked, it assumes the simulation time as
clock.

Specifying Temporal Assertions

The syntax for specifying a temporal assertion is as follows:

assert event_name ;
| name : sequence_expr | event_name ;
| name : check | forbid (sequence_expr|event_name);

Assertions are expressed as assert directives. An assertion
defines a property of a system that is monitored to provide the user
with a functional validation capability. Properties are specified as
temporal expressions, where complex timing and functional
relationships between values and events of the system are
expressed. The assert directive can be specified in four different
ways:

• assert name : sequence_expr ;

An assert directive is declared with an identifier name to name
the assertion and a sequence expression sequence_expr to
specify the relationship for monitoring. While reporting, the name
serves to identify the results for that specific assertion. No explicit
clock can be associated with the assert directive.
sequence_expr is evaluated at the first clock tick only, and the
results of this evaluation generate a set of sequence matches

 Part II 1-33

OpenVera Assertions Specifying Temporal Assertions

and failed sequences. The assertion succeeds if the results
include at least one matched sequence. Otherwise the assertion
fails.

• assert name : event_name ;

In this case, event_name is an identifier of an event that
specifies the sequence expression. The sequence expression
specified by event_name is evaluated according to its clock at
the first clock tick. The success criteria of the assertion is the
same as described for the first case.

• assert event_name ;

This is similar to the second case, except that the name of the
assertion is taken to be the event_name.

• assert name : check(event_name);
assert name : check(sequence_expr);
assert name : forbid(event_name);
assert name : forbid(sequence_expr);

For the first three cases, the sequence expression is evaluated
only once, that is at the first clock tick. But, in general, the
assertions are required to hold for the entire simulation. To
accomplish that objective, two built-in functions are provided:
check and forbid.These functions start a new evaluation attempt
at every clock tick and determine if the assertion succeeds. The
check function ensures that every evaluation attempt results in at
least one matched sequence, while the forbid function ensures
that no sequences are matched. The check function is specified
with the expectation that the sequence expression will hold true
for all attempts. On the other hand, the forbid function is specified
to ensure that a certain condition never occurs. The clock is
determined in the same way as for the first three cases. That is,
if the argument to these functions is a sequence expression, then

1-34 Part II

OpenVera Assertions Specifying Temporal Assertions

the simulation clock is used as the clock to evaluate the
expressions If an event name is used as the argument if there is
a clock specified for the event that clock is used, if no clock is
specified then the simulation clock is used.

Whenever a clock tick occurs, the values and events are examined
to determine if the sequence expression for each assertion succeeds
or fails.

For example, in a bus read transaction, assume that there is a
turn-around time of one clock cycle. After the signal named frame
toggles low, the signal named trdy must not get toggled low in the
next clock tick. Also assume that signal trdy gets toggled low
eventually at some point in time in compliance with the bus operation
rules. An assertion can be written for this as follows:

assert prop_t1: check(t1);
clock posedge sysclk {

event t1: if (negedge frame) then
(#1 !(negedge trdy));

}

In this example, sysclk is used as a clock to sample the values for
the sequence expressions. If (negedge trdy) occurs in the next
clock tick, t1 will fail, otherwise t1 will succeed. In Figure 1-17,
these two cases are illustrated by showing two different waveforms
for signal trdy. Please note that the values shown for the signals are
sampled values with respect to their clock. Consider the evaluation
attempt when (negedge frame) occurs at clock tick 9. All
evaluation attempts at other clock ticks succeed as preconditions
(negedge frame) does not occur.

• In the first case, (negedge trdy) does not occur at clock tick
1 resulting in a match at clock tick 10. Thus, the attempt at clock
tick 9 succeeds.

 Part II 1-35

OpenVera Assertions Specifying Assertions for an Instance of a Module

• In the second case, (negedge trdy) occurs at clock tick 10,
resulting in a failed match at clock tick 10. Thus, the attempt at
clock tick 9 fails.

Figure 1-17 assert Example

Specifying Assertions for an Instance of a Module

The syntax for specifying assertions for an instance is as follows:

scope instance_name
{

assert, clock, and scope statements
}

The scope construct is used to bind a list of assertions to a specific
instance of the design. A scope is declared with a name that must
match a full hierarchical instance name in the design under
consideration.

Note:
A scope does not instantiate a Verilog design object, but refers
to a Verilog instance already declared within the design.

1 2 3 4 5 6 7 8 9 10 11 12 13 14posedge sysclk

frame

trdy

t1

1st
case

trdy

t1

2nd
case

1-36 Part II

OpenVera Assertions Specifying Assertions for an Instance of a Module

A scope declaration helps to organize assertion specifications for
the design. All assertions specified within a scope specification
belong to that instance. For example, checker tc2 belongs to the
instance tb.a:

scope tb.a {
assert checker_tc2: check(tc2);
clock edge(clk) {

event tc2: if (posedge req) then
(#[1..11]posedge req_end);

}
}

A scope declaration provides scoping of names for Verilog variables
referred in the expressions specified for that scope. Any Verilog
variable referenced in an expression automatically assumes the
scope of its scope name. If a variable is not in the specified instance,
OVA does not search up the hierarchy for it. In the above example,
variables clk, req and req_end are assumed to be declared for
Verilog instance tb.a. A variable in another instance can be
referenced using the same conventions as Verilog for hierarchical
cross-referencing. For example, below, assertion tc2 in instance
tb.m1 refers to variable req in instance tb.m2 as tb.m2.req,
while variable reference req_end refers to a variable in instance
tb.m1.

scope tb.m1 {
assert checker_tc2: check(tc2);
clock edge(clk) {

event tc2: if (posedge tb.m2.req)
then (#[1..11]posedge req_end);

}
}

A scope declaration provides local scoping of event and assert
identifiers. Two expressions can be declared with the same name in
two different scopes. The naming conventions are the same as

 Part II 1-37

OpenVera Assertions Specifying Assertions for an Instance of a Module

hierarchical names used in Verilog. For example, below, expression
tc4 in instance top.m2 refers to a sequence event te1 in instance
tb.m1 as tb.m1.te1.

scope tb.m1 {
clock posedge sysclk {

event te1: b && c ;
event te2: posedge s ;
event te3: if (matched te1) then te2 ;

}
}
scope tb.m2 {

clock edge(clk) {
event tc4: if (matched tb.m1.te1)

then (#[1..11] posedge end_trans);
}

}

A scope declaration can be nested. This is provided so that a
hierarchy that is defined in the design can be referenced in the same
way, without explicitly defining assertions for each flat scope.

A scope declaration can be nested with or without a clock specified
for the nested scope. In the case where a clock is specified for the
nested scope, there are two restrictions on the specifications within
that scope:

• The clock applies for all the expressions in the nested scope and
the recursively nested scopes.

• No other clocks may be specified within the nested scopes and
recursively nested scopes. In other words, there is no nesting of
clocks allowed.

An example of scope nesting with and without a clock is illustrated
below:

1-38 Part II

OpenVera Assertions Specifying Assertions for A Module

scope tb {
// tb.m1 is an unclocked nested scope
scope m1 {

clock posedge sysclk {
event te1: b && c ;
event te2: posedge s ;
event te3: if (matched te1) then te2 ;

}
}
clock edge(clk) {

// tb.m2 is a clocked nested scope. No clock
// separation is allowed for check tc4 and tc5.
scope m2 {

event tc4: if (matched tb.m1.te1)
then (#[0..10] posedge end_trans) ;

}
event tc5: if (start_test)

then (start_test #[1..] end_test) ;
}

}

Specifying Assertions for A Module

The syntax for specifying an assertion for a module is as follows:

module instance_name
{

assert, clock, and scope statements
}

Assertions or expressions for a module definition can be defined
using the module construct. module is declared with a name that
must be a module definition declared in the design. Like the scope
construct, module is also a feature to provide scoping of referenced
variables. While a scope refers to a specific instance, a module
refers to a module definition, and thereby refers to all instances of
that module definition.

 Part II 1-39

OpenVera Assertions Specifying Assertions for A Module

Note:
A module does not define a Verilog design object. A module
name must refer to a Verilog module already declared within the
design.

Note these differences between a scope and a module declaration:

• Assertions declared in a module apply to all its Verilog instances.
Assertions specified for a scope apply to that Verilog instance
only.

• No module may be nested within a module. On the other hand,
a scope declaration can be nested with other scope
declarations.

An example of a module declaration is shown below. event te1 and
te2, and assert c1 and c2 belong to module cpu, while event tc3
and assert c3 belong to module iop.

module cpu {
assert c1: check(tc1);
assert c2: check(tc2);
clock posedge sysclk {

event te1: b #1 c ;
}
clock edge(dclk) {

event te2:pipe1 #1 pipe2 ;
}
clock edge(eclk) {

event tc1: if (e1) then matched te1 ;
event tc2: if (e2) then matched te2 ;

}
}
module iop {

assert c3: check(tc3);
clock edge(clk) {

event tc3: if (posedge mem_req)
then (#[0..10]posedge mem_end) ;

}
}

1-40 Part II

OpenVera Assertions Specifying Assertions for A Module

A module declaration provides scoping of names for Verilog
variables referred in the assertions specified for that module. Any
Verilog variable referenced in an expression automatically assumes
the scope of its module. If a variable is not in the specified instance,
OVA does not search up the hierarchy for it. In the example above,
variables sysclk, dclk, eclk, b, c, pipe1, e1, and e2 are
assumed to be declared in module cpu in the design, while variables
clk, mem_req and mem_end are assumed to be declared in Verilog
module iop. A variable in another module can be referenced using
the same conventions as Verilog for hierarchical cross-referencing.

Assertions declared within a module are applied to all instances of
the Verilog module. This feature is illustrated below:

module bus {
assert ce4: check(e4);
clock edge(clk) {

event e4: if (posedge req) then
(#[1..10]posedge end);

}
}

In the following code example, assertions have been specified for
module definition bus. In the Verilog description, three instances of
bus as bus1, bus2 and bus3 are declared with the full hierarchical
name of tb.bus1, tb.bus2 and tb.bus3 respectively. The
assertion specification is equivalent to:

 Part II 1-41

OpenVera Assertions Name Resolution

scope tb.bus1 {
assert ce4: check(e4);
clock edge(clk) {

event e4: if (posedge reg) then
(#[1..10]posedge end);

}
}
scope tb.bus2 {

assert ce4: check(e4);
clock edge(clk) {

event e4: if (posedge reg) then
(#[1..10]posedge end);

}
}
scope tb.bus3 {

assert ce4: check(e4);
clock edge(clk) {

event e4: if (posedge reg) then
(#[1..10]posedge end);

}
}

Name Resolution

This section specifies the rules regarding the name resolution
whenever there is a conflict between a name declared in the
sequence expression specification and a design object name from
Verilog. There can be two kinds of name conflict as follows:

1. A design object name is also a sequence expression language
keyword such as inv or in.

2. A design object name is also an identifier declared in the
sequence expression language such as for an event or bool.

To resolve the first conflict, use the escape mechanism using
v‘name to denote a design variable. An example is shown below.

1-42 Part II

OpenVera Assertions Specifying Composite Sequences

clock posedge clk {
event seq_e: if (trans) then v’inv;

}

The design variable name is inv, but as it conflicts with the keyword
inv, it is used as v’inv.

For the second kind of conflict, the compiler gives a warning that a
name is shadowing a design variable name, and resolves it to the
name declared for the sequence expression. To force the compiler
to use the design variable instead of the sequence expression name,
use the same escape mechanism using v‘. For example:

assert rule: if (matched start) then reset_end #1 v’start;
clock posedge clk {

event start: if (reset) then int_sequence;
}

In the above example, start is declared as a sequence expression.
In the declaration rule, start is referenced twice, once to refer to
the sequence expression, and second to the design object start
using v’start.

Specifying Composite Sequences

Sequences can be combined with functions such as AND and OR.
Sequences can also be modified with the invert function. The syntax
for specifying composite sequences is as follows:

sequence_expr && sequence_expr
sequence_expr || sequence_expr
inv sequence_expr

 Part II 1-43

OpenVera Assertions Specifying Composite Sequences

Logically ANDing Sequences

The binary operator && is used when both operand expressions are
expected to succeed, but the end times of the operand expressions
may be different.

sequence_expr && sequence_expr

The two operands of && are sequence expressions. The
requirement for the success of the && operation is that both the
operand expressions must succeed. When one of the operand
expressions succeeds, it waits for the other to succeed. The end
time of the composite expression is the end time of the operand
expression that completes the last.

For the expression:

te1 && te2

If te1 and te2 are events, the expression succeeds if te1 and te2
are both evaluated to be true.

An example is illustrated in Figure 1-18 to show the results for
attempt at every clock tick. The expression matches at clock tick 1,
3 and 8 because both te1 and te2 are simultaneously true. At all
other clock ticks, operation && fails because either te1 or te2 is
false.

1-44 Part II

OpenVera Assertions Specifying Composite Sequences

Figure 1-18 ANDing (&&) Two Events

When te1 and te2 are sequences, then the expression:

te1 && te2

• Succeeds if te1 and te2 succeed.

• The end time is the end time of either te1 or te2, whichever
terminates last.

First, let us consider the case when both operands are single
sequence evaluations.

An example is illustrated in Figure 1-19. Consider the following
expression with operator && where the two operands are
sequences.

(te1 #2 te2) && (te3 #2 te4 #2 te5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock

te1

te2

te1 && te2

 Part II 1-45

OpenVera Assertions Specifying Composite Sequences

Figure 1-19 ANDing (&&) Two Sequences

Here, the two operand sequences are (te1 #2 te2) and (te3
#2 te4 #2 te5). The first operand sequence requires that first
te1 evaluates to true followed by te2 two clock ticks later. The
second sequence requires that first te3 evaluates to true followed
by te4 two clock ticks later, followed by te5 two clock ticks later.
Figure 1-19 shows the evaluation attempt at clock tick 8.

This attempt results in a match since both operand sequences
match. The end times of matches for the individual sequences are
clock ticks 10 and 12. The end time for the entire expression is the
last of the two end times, so a match is recognized for the expression
at clock tick 12.

Now, consider an example where an operand sequence is
associated with a range of time specification, such as:

(te1 #[1..5] te2) && (te3 #2 te4 #2 te5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 #2 te2

te3 #2 te4 #2 te5

te4

te5

(te1 #2 te2) &&
(te3 #2 te4 #2 te5)

1-46 Part II

OpenVera Assertions Specifying Composite Sequences

The first operand sequence consists of an expression with a time
range from 1 to 5 and implies that when te1 evaluates to true, te2
must follow 1, 2, 3, 4, or 5 clock ticks later. The second operand
sequence is the same as in the previous example. To consider all
possibilities of a match, following steps are taken:

• The first operand sequence starts five sequences of evaluation.

• The second operand sequence has only one possibility of match,
so only one sequence is started.

• Figure 1-20 shows the attempt to examine at clock tick 8 when
both operand sequences start and succeed. All five sequences
for the first operand sequence match, as shown in a time window,
at clock ticks 9, 10, 11, 12 and 13 respectively. The second
operand sequence matches at clock tick 12.

• To compute the result for the composite expression, each
successful sequence from the first operand sequence is matched
against the second operand sequence according to the rules of
the && operation to determine the end time for each match.

The result of this computation is five successes, four of them ending
at clock ticks 12, and the fifth ends at clock tick 13. Figure 1-20
shows the two unique successes at clock ticks 12 and 13.

 Part II 1-47

OpenVera Assertions Specifying Composite Sequences

Figure 1-20 ANDing (&&) Two Sequences Including a Time Range

Logically ORing Sequences

The operator || is used when at least one of the two operand
sequences is expected to succeed.

sequence_expr || sequence_expr

The two operands of || are sequence expressions.

Let us consider these operand expressions as values, events and
sequences separately to illustrate the details of || operations. For the
expression:

te1 || te2

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 #[1..5] te2

te3 #2 te4 #2 te5

te4

te5

(te1 #[1..5] te2) &&
(te3 #2 te4 #2 te5)

1-48 Part II

OpenVera Assertions Specifying Composite Sequences

when the operand expressions te1 and te2 are events or values,
the expression succeeds whenever at least one of two operands te1
and te2 is evaluated to true.

Figure 1-21 illustrates || operation using te1 and te2 as simple
values. The expression fails at clock ticks 7 and 13 because te1 and
te2 are both false at those times. At all other times, the expression
succeeds, as at least one of the two operands is true.

Figure 1-21 ORing (||) Two Events

When te1 and te2 are sequences, then the expression:

te1 || te2

Succeeds if at least one of the two operand sequences te1 and te2
succeed. To evaluate this expression, first, the successfully matched
sequences of each operand are calculated and assigned to a group.
Then, the union of the two groups is computed. The result of the
union provides the result of the expression. The end time of a match
is the end time of any sequence that matched.

An example is illustrated in Figure 1-22. Consider an expression with
|| operator where the two operands are sequences.

(te1 #2 te2) || (te3 #2 te4 #2 te5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock

te1

te2

te1 || te2

 Part II 1-49

OpenVera Assertions Specifying Composite Sequences

Figure 1-22 ORing (||) Two Sequences

Here, the two operand sequences are: (te1 #2 te2) and (te3
#2 te4 #2 te5). The first sequence requires that te1 first
evaluates to true, followed by te2 two clock ticks later. The second
sequence requires that te3 evaluates to true, followed by te4 two
clock ticks later, followed by te5 two clock ticks later. In Figure 1-22,
the evaluation attempt for clock tick 8 is shown. The first sequence
matches at clock tick 10 and the second sequence matches at clock
tick 12. So, two matches for the expression are recognized.

Consider an example where an operand sequence is associated
with time range specification, such as:

(te1 #[1..5] te2) || (te3 #2 te4 #2 te5)

The first operand sequence consists of an expression with a time
range from 1 to 5 and specifies that when te1 evaluates to true, te2
must be true 1, 2, 3, 4 or 5 clock ticks later. The sequences from the
second operand require that first te3 must be true followed by te4

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 #2 te2

te3 #2 te4 #2 te5

te4

te5

(te1 #2 te2) ||
(te3 #2 te4 #2 te5)

1-50 Part II

OpenVera Assertions Specifying Composite Sequences

being true two clock ticks later, followed by te5 being true two clock
ticks later. At any clock tick if an operand sequence succeeds, then
the composite expressions succeeds. As shown in Figure 1-23, for
the attempt at clock tick 8, the first operand sequence matches at
clock ticks 9, 10, 11, 12, and 13, while the second operand matches
at clock ticks 12. The match of the composite expression is
computed as a union of the matches of the two operand sequences,
which results in matches at clock ticks 9, 10, 11, 12, and 13.

Figure 1-23 ORing (||) Two Sequences Including a Time Range

Inverting Sequences

Use the inv operator when you are interested in inverting a
sequence match to a no match. This allows you to detect a failure of
an individual sequence and use it as an a precondition for checking.
Please note that the inv operator does not compute the true
complement of a sequence expression.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 #[1..5] te2

te3 #2 te4 #2 te5

te4

te5

(te1 #[1..5] te2) ||
(te3 #2 te4 #2 te5)

 Part II 1-51

OpenVera Assertions Specifying Composite Sequences

inv sequence_expr

The operand expression can be a sequence expression.
sequence_expr is matched to determine the match for the (inv
sequence_expr) expression. The composite expression matches
if sequence_expr results in at least one no match of a sequence,
and fails to match if all the sequences from the expression result in
a match. The inv operator simply inverts the match of its operand.
This is an important point to note that the inv operator is applied to
every single match occurring for its operand, and not just to the
overall success/failure of an assertion. Let us first consider the case
when the operand expression is a signal.

inv te1

Figure 1-24 illustrates the operation of inv operator for all attempts
of this expression. Since te1 is a signal, its value is examined at
every clock tick. If the value of te1 is false, then the expression
succeeds, otherwise the expression fails.

Figure 1-24 Inverting (inv) an Event

te1 is false at clock ticks 2, 4, 5, 6, 7, 9, 10, 11, 12, and 14.
Accordingly, the expression “inv te1” matches at those times.
Conversely, te1 is true at clock ticks 1, 3, 8, and 13, so the
expression fails to match at those clock ticks.

Now consider an expression which is a sequence,

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock

te1

inv te1

1-52 Part II

OpenVera Assertions Specifying Composite Sequences

inv (te1 #2 te2 #2 te3)

The operand expression (te1 #2 te2 #2 te3) is a sequence.
The above example is illustrated in Figure 1-25 for the attempts at
clock tick 2 and 8.

Figure 1-25 Inverting (inv) a Sequence

The sequence (te1 #2 te2 #2 te3) matches at clock ticks 6 and
12. The results of the inverted sequence are computed by inverting
the match for the sequence. The inverted sequence inv(te1 #3
te2 #3 te3) fails to match at clock ticks 6 and 12.

Consider an example with a variable delay specification as shown
below.

event t5: te1 #[2..5] te2;
event t5_inverted: inv(te1 #[2..5] te2);

The results of t5 are shown in Figure 1-26. t5_inverted is
computed by inverting the match of t5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 #2
te2 #2 te3

inv (te1 #2
te2 #2 te3)

 Part II 1-53

OpenVera Assertions Specifying Conditional Sequence Matching

Figure 1-26 Inverting (inv) a Sequence Including a Time Range

Specifying Conditional Sequence Matching

The syntax for conditional sequence matching is as follows:

if boolean_expr then sequence_expr
[else sequence_expr]

These constructs allow a user to monitor sequences based on
satisfying some criteria. Most common uses are to attach a
precondition to a sequence, and to select a sequence between two
alternatives, where the selection is made based on the success of a
condition.

Two kinds of clauses are provided:

if boolean_cond then sequence_expr

This clause is used to precondition monitoring of a sequence
expression. (The functionality provided here is the same as obtained
by an implication operator in some temporal languages).The
condition boolean_cond must be satisfied in order to monitor
sequence_expr. If the condition boolean_cond fails then
sequence_expr is skipped for monitoring. boolean_cond is a

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

t5

t5_inverted

1-54 Part II

OpenVera Assertions Specifying Conditional Sequence Matching

logical expression that results in true or false, and sequence_expr
is a sequence expression that can result in one or match sequence
matches.

Please note that boolean_cond cannot be a sequence expression
but it can be matched clocked_sequence_expr.

If the condition is evaluated to true, then the evaluation of
sequence_expr is conducted. The sequence matches of
sequence_expr matches become the matches of the clause if
then.

if boolean_cond then sequence_expr1 else sequence_expr2

This clause is used to select a sequence expression between two
alternatives. If boolean_cond results is true, then
sequence_expr1 is monitored. If boolean_cond is false, then
sequence_expr2 is selected for monitoring. The expression
boolean_cond is logical and must result in true or false.
sequence_expr1 and sequence_expr2 can be sequence
expressions. The match of clause if then else depends on the match
of the sequence expression, sequence_expr1 or
sequence_expr2, whichever gets selected for monitoring.

Clause if can be nested to contain another if within it, such as:

if (!reset) then
if (data_phase) then #[0..7] data_end;

When (!reset) is true, then the second if condition data_phase
is tested. If data_phase evaluates to true, then the evaluation
continues for the expression #[0..7] data_end.

 Part II 1-55

OpenVera Assertions Specifying Conditional Sequence Matching

Since the else of if-then-else is optional, the binding of the else can
be confusing in the case of a nested if specification. The ambiguity
of binding an else to its if is resolved by associating the else with the
closest previous if that lacks an else. An example below illustrates
the binding of a nested if with an else part.

if (!reset) then
if (data_phase) then #[0..7] data_end

else #[0..7] addr_phase;
if (!reset) then transfer_cmd

else if (data_phase)
then #[0..7] data_end
else #[0..7] addr_phase;

The bold font highlights the association of the if with its then and its
else. If such association is not intended, then using parenthesis can
enforce a binding, such as shown in the example below.

if (!reset) then
(if (data_phase) then #[0..7] data_end)
else #[0..7] addr_phase;

if (!reset) then transfer_cmd
else if (data_phase) then

(if (burst_mode) then #[0..7] data_end)
else #[0..7] addr_phase;

The semantics of if then else specification is explained by examples
here. Consider a bus operation for data transfer from a master to a
target device. When the bus enters a data transfer phase, multiple
data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on
which irdy is asserted and either trdy or stop is asserted. Note
that an asserted signal here implies a value of low. The end of a data
phase can be expressed as:

1-56 Part II

OpenVera Assertions Specifying Conditional Sequence Matching

clock posedge mclk {
event data_end :

if (data_phase) then
((irdy==0)&&(negedge trdy||negedge stop));

}

Each time a data phase completes, a match for data_end is
recognized. The attempt at clock tick 6 is illustrated in Figure 1-27.
The values shown for the signals are the sampled values with
respect to the clock. At clock tick 6 data_end is matched because
stop gets asserted while irdy is asserted.

Figure 1-27 Conditional Sequence Matching

data_end can be used to ensure that frame is de-asserted within
2 clock ticks after data_end occurs. Further, it is also required that
irdy gets de-asserted one clock tick after frame gets de-asserted.

A sequence expression is written to express this condition as shown
below.

clock posedge mclk {
event data_end_rule1:

if (matched data_end) then
#[1..2] posedge frame #1 posedge irdy;

}

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

 Part II 1-57

OpenVera Assertions Specifying Conditional Sequence Matching

event data_end_seq first evaluates data_end at every clock
tick to test if its value is true. If the value is tested to be false, then
that particular attempt to check the assertion is considered a
success. Otherwise, the sequence expression associated with the
then clause is monitored. The sequence expression:

#[1..2] posedge frame #1 posedge irdy

Specifies looking for the rising edge of frame within two clock ticks
in the future. After frame toggles high, irdy must also toggle high
after one clock tick. This is illustrated in Figure 1-28. Event
data_end is acknowledged at clock tick 6. Next, frame toggles
high at clock tick 7. Since this falls within the timing constraint
imposed by #[1..2], it satisfies the sequence and continues to
monitor further. At clock tick 8, irdy is evaluated according to #1
specification. Signal irdy transitions to high at clock tick 8,
satisfying the sequence specification completely for the attempt that
began at clock tick 6.

1-58 Part II

OpenVera Assertions Specifying Conditional Sequence Matching

Figure 1-28 Nested Conditional Sequences

Generally, assertions are associated with preconditions so that the
checking is performed only under certain specified conditions. As
seen from the previous example, the if clause provides this
capability to specify preconditions with sequences that must be
satisfied before continuing to match those sequences. Let us modify
the above example to see the effect on the results of the assertion
by removing the precondition for the sequence. This is shown below
and illustrated in Figure 1-29.

clock posedge mclk {
event data_end_rule2:

#[1..2] posedge frame #1 posedge irdy;
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

frame

data_end_rule1

 Part II 1-59

OpenVera Assertions Specifying Conditional Sequence Matching

Figure 1-29 Results without the Condition

The sequence is evaluated at every clock tick. For the evaluation at
clock tick 1, the rising edge of signal frame does not occur at clock
tick 1 or 2, so the evaluation fails and the result for the sequence is
a failed match at clock tick 1. Similarly, there is a failure at clock ticks
2, 3, and 4. For attempts starting at clock ticks 5 and 6, the rising
edge of signal frame at clock tick 7 allows checking further. At clock
tick 8, the sequences complete according to the specification,
resulting in a match for attempts starting at 5 and 6. All later attempts
to match the sequence fail because posedge frame does not
occur again.

As one can see from Figure 1-29, removing the precondition of
checking event data_end from the assertion causes failures that
are not relevant for consideration. It becomes important from the
validation standpoint to determine these preconditions and use them
in the assertion to filter out inappropriate or extraneous situations.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

frame

data_end_rule2
#[1..2]

1-60 Part II

OpenVera Assertions Matching Repetition of Sequences

Matching Repetition of Sequences

The BNF for matching repetitions of sequences is as follows:

sequence_expr * [int] | [int .. int] | [int ..]

There are situations when a sequence expression is monitored
repeated times in succession. In such cases, monitoring is
performed for a specified number of times, and each time a success
is expected to result from evaluating the sequence expression. In
other words, repetition is same as concatenation of the same
sequence expression for the specified number of times. Repetition is
expressed with a repetition parameter to specify the number of times
an expression needs to be monitored. This parameter can be a
number or a range of values.

sequence_expr * [int]

The int operand must be a positive integer constant.
sequence_expr can be any sequence expression. The above
expression is semantically equivalent to the following expression:

sequence_expr #1 sequence_expr #1 sequence_expr ... for
int number of times

• sequence_expr is repeated int times, where int is a positive
integer. For example:

(ev1 #1 ev2) * [3]

says “sequence (ev1 #1 ev2) must occur three times in a
row”. It is equivalent to writing:

(ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2)

 Part II 1-61

OpenVera Assertions Matching Repetition of Sequences

• Note that the default number of clock ticks between repetitions is
1.

An example, where a sequence of events is repeated, is shown in
Figure 1-30. A bus read transaction in burst mode is expected to
read data in eight data phases. Each data phase follows the next,
where a data phase is said to occur when signals irdy and trdy
are de-asserted at the same time. In the last data phase signal
frame is de-asserted to indicate the end of transaction.

assert burst_rule: check(burst);
clock posedge mclk {

event burst:
if (negedge burst_mode) then

#2((trdy==0) && (irdy==0)) * [7];
}

Figure 1-30 Matching Repetition of a Sequence

The assertion burst_rule says “when a falling edge of
burst_mode is detected, two clock ticks later, data transfer begins
(trdy and irdy both de-asserted) and continues for 7 times”. As
can be seen from Figure 1-30, the falling edge of burst_mode
occurs at clock tick 2 and data transfer begin at clock tick 4. The
assertion becomes successful at clock tick 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7(irdy==0)

1-62 Part II

OpenVera Assertions Matching Repetition of Sequences

sequence_expr * [int .. int] | [int ..]

The interval can be specified as [n1..n2] or [n1..]

The interval specifies the restrictions on the number of times a
sequence expression can be repeated. n1 and n2 specify the
minimum and the maximum respectively. If the repetition is required
forever, i.e., until the end of simulation, then n2 must not be
specified.

Consider an example,

(ev1 #1 ev2) * [3..5]

Says (ev1 #1 ev2) must occur for at least 3 times and no more
than 5 times. In this case there is a lower limit of 3 and an upper limit
of 5 on the number of times that the sequence is expected to repeat.
It is equivalent to writing:

((ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2)) ||
((ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2)) ||
((ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2) #1 (ev1 #1 ev2)) #1 (ev1 #1 ev2)

Again, repetitions occur back to back in terms of clock ticks. The
delay between the repetitions can be adjusted to the requirement by
adding addition explicit delay, such as:

(#4 (ev1 #1 ev2)) *[3..5]

which translates to:

(#4 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2)) ||
(#4 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2))||
(#4 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2) #5 (ev1 #1 ev2))

 Part II 1-63

OpenVera Assertions Specifying Conditions Over Sequences

Another requirement that is commonly encountered is a time range
specification, which imposes indeterminate amount of time between
each repetition. In such cases, each repetition of a sequence is
expected to occur “sometime later” after the occurrence of a
preceding sequence. This could be expressed as

(#[0..](ev1 #1 ev2)) * [3..5]

which translates to:

(#[0..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2)) ||
(#[0..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2)) ||
(#[0..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2) #[1..] (ev1 #1 ev2))
#[1..] (ev1 #1 ev2)

Specifying Conditions Over Sequences

The syntax for specifying conditions applied to a sequence
expression is as follows:

cond_spec1, ..., cond_specN in sequence_expr

With cond_spec being either of:

• istrue boolean_expr

• length int | [int .. int] | [int ..]

Sequences of events often occur under the assumptions of some
conditions for correct behavior. A logical condition must hold true, for
instance, while processing a transaction. Or, a transaction must
complete within a given period of time, no matter what variation of
commands are issued in the transaction to be processed. Also

1-64 Part II

OpenVera Assertions Specifying Conditions Over Sequences

frequently, occurrence of certain events is prohibited while
processing a transaction. These situations can be expressed directly
using the following two constructs:

istrue boolean_expr in sequence_expr

boolean_expr is an expression which must result to true at every
clock tick during the monitoring of sequence_expr, where
sequence_expr is a sequence expression. If a sequence for the
sequence_expr starts at time t1 and ends at time t2, then
boolean_expr must hold true from time t1 to t2.

length int in sequence_expr
length int_interval in sequence_expr

int or int_interval specifies the length of the
sequence_expression. The length is measured as the total number
of clock ticks during the sequence. All variations of the
int_interval specification are allowed. If a single number is
specified for int_interval, then it represents fixed length. In
other words, the sequence expression must terminate at a specific
clock tick that is determined by the int_interval number. If
int_interval specifies a range of numbers, then the
sequence_expression may terminate anytime within a time period
determined by the minimum and maximum numbers.

Consider the example illustrated in Figure 1-31. If an additional
constraint were placed on the expression as shown below, then the
checker burst_rule would fail at clock tick 9.

 Part II 1-65

OpenVera Assertions Specifying Conditions Over Sequences

assert burst_rule1: check(burst1);
clock posedge mclk {

event burst1:
if (negedge burst_mode)

then istrue (!burst_mode)
in (#2 ((trdy==0)&&(irdy==0)) * [8]);

}

Figure 1-31 Match with istrue-in Restriction Fails

In the above expression, the value of signal burst_mode is
required to be low during the sequence (from clock tick 2 to 11), and
is checked at every clock tick during that period. At clock ticks from
2 to 8, signal burst_mode remains low and matches the expression
at those clock ticks. At clock tick 9, signal burst_mode becomes
high, thereby failing to match the expression for burst_rule1.

If signal burst_mode were to be maintained low until clock tick 11,
the expression would result in a match as shown in Figure 1-32.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule1

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

1-66 Part II

OpenVera Assertions Specifying Conditions Over Sequences

Figure 1-32 Match with istrue-in Restriction Succeeds

Let us consider a modified version of the example in Figure 1-32 as
shown below.

assert burst_rule2: check(burst2);
clock posedge mclk {

event burst2:
if (negedge burst_mode)

then (#[0..4](trdy==0)&&(irdy==0)) * [8];
}

The assertion burst_rule2 has been relaxed to require each
repetition of the sequence to occur between 1 and 4 clock ticks after
the preceding occurrence of the sequence. This is illustrated in
Figure 1-33 on page 1-67.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule1

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

 Part II 1-67

OpenVera Assertions Specifying Conditions Over Sequences

Figure 1-33 Match without Restriction Succeeds

Two additional clock ticks delay the fifth repetition and one additional
clock tick delays the sixth repetition as signal trdy becomes high to
suspend the next data phase for two clock ticks and one clock tick
respectively. The expression matches at clock tick 14.

If an additional constraint were placed on the expression as shown
below, then the expression for checker burst_rule3 would not
match at clock tick 13.

assert burst_rule3: check(burst3);
clock posedge mclk {

event burst3:
if (negedge burst_mode) then

length [9..11]
in (#[1..4] ((trdy==0)&&(irdy==0))*[8]);

}

In the above expression, the total length of the entire repeated
sequence must not be less than 9 clock ticks and not greater than 11
clock ticks. This restriction is expressed by length [9..11] in the
expression. From Figure 1-34 on page 1-68, the corresponding time
to complete all repetitions is 12 clock ticks which exceeds the
maximum allowed length, so the expression fails to match at clock
tick 13.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule2

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

1-68 Part II

OpenVera Assertions Specifying Conditions Over Sequences

Figure 1-34 Match with length-in Restriction Fails

The failure is corrected by reducing the delay for the fifth repetition
from 2 clock ticks to 1 clock tick. This is shown in Figure 1-35.

Figure 1-35 Match with length-in Restriction Succeeds

To express the constraints of a condition and a time period on the
same sequence, the two constraint clauses are specified separated
with a comma as shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule3

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

11 ticks maximum

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule3

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

11 ticks maximum

 Part II 1-69

OpenVera Assertions Specifying Conditions Over Sequences

assert burst_rule4: check(burst4);
clock posedge mclk {

event burst4:
if (negedge burst_mode) then

(istrue(!burst_mode), length [9..11])
in (#[1..4] ((trdy==0)&&(irdy==0))*[8]);

}

Now the two constraints are:

• istrue(!burst_mode) to ensure that signal burst_mode
remains low

• length [9..11] to ensure that the sequence takes at least 9
clock ticks and completes in at most 11 clock ticks

Both constrains must hold for the assertion to succeed, i.e, signal
burst_mode must remain low throughout the allowed period for the
sequence.

The expression for burst_rule4 fails to match in Figure 1-36 on
page 1-70 because signal burst_mode becomes high at clock tick
9.

1-70 Part II

OpenVera Assertions Specifying Conditions Over Sequences

Figure 1-36 Match with Two Restrictions Fails

The failure is corrected by maintaining signal burst_mode to low
value throughout the sequence as shown in Figure 1-37 on
page 1-71. The expression matches at clock tick 13 as it satisfies
both constraints on the sequence: the total time period for the
sequence is 12 clock ticks that is within the time period requirement,
and signal burst_mode is held low throughout these 12 clock ticks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule4

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

 Part II 1-71

OpenVera Assertions Specifying Unconditional Number of Clock Ticks

Figure 1-37 Match with Two Restrictions Succeeds

Specifying Unconditional Number of Clock Ticks

The syntax for specifying an unconditional number of clock ticks is
as follows:

any

The any specification returns true every time it is evaluated in an
expression. any is most often used in an expression to extend a
sequence by appending an unconditional delay, such as:

te1 #t1 any

In the above specification, sequence expression te1 is extended by
time t1+1. The entire expression completes on the t1 clock tick after
te1 completes.

Let us consider an example of a burst mode transaction, where there
are back to back repeated operations. Figure 1-38 shows such an
example with the assertion:

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule4

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

1-72 Part II

OpenVera Assertions Specifying Unconditional Number of Clock Ticks

assert burst_delayed: check(burst_d);
clock posedge mclk {

event burst_d:
if (negedge burst_mode1) then

#2 (((!trdy && !irdy) #1 any) * [4]);
}

Figure 1-38 Using any

In the above burst mode, a sequence representing the operation is
repeated four times. The repeated sequence is:

((!trdy && !irdy) #1 any) #1 ((!trdy && !irdy) #1 any)
#1((!trdy && !irdy) #1 any) #1 ((!trdy && !irdy) #1 any)

No expectation is placed on any signal at the clock tick where any is
monitored. By using any at the tail of each repetition, the operation
is extended by an additional clock tick. In Figure 1-38, the burst
mode starts at clock tick 2 when signal burst_mode1 becomes low.
First repetition is satisfied 2 clock ticks. Between each repetition 2
clock ticks are expected, and satisfied accordingly at clock ticks 4, 6,
8, and 10. The expression matches at clock tick 10.

As seen from the previous example, any evaluates to true in an
expression. However, if there was a constraint placed on a sequence
to hold a condition true using the istrue in clause, then that condition

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode1

burst_delayed

irdy

trdy

(!trdy) &&
1 2 3 4(!irdy)

 Part II 1-73

OpenVera Assertions Manipulating and Checking Data

must evaluate to true for any clause also. For example, the previous
example now is modified to maintain signal burst_mode1 to low
during the entire sequence.

assert burst_delayed1: check(burst_d1);
clock posedge mclk {

event burst_d1:
if (negedge burst_mode1) then

istrue (!burst_mode1)
in (#2 (((!trdy && !irdy) #1 any) * [4]));

}

Figure 1-39 illustrates that the expression fails because signal
burst_mode1 becomes high at the time any is evaluated at clock
tick 7. istrue requires that the condition (!burst_mode1) be
maintained true at every clock tick during the time sequence (#2
(((!trdy && !irdy) #1 any) * [4])) is evaluated.

Figure 1-39 Using any with an istrue-in Restriction

Manipulating and Checking Data

The syntax for the constructs used in manipulating and storing data
is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode1

burst_delayed1

irdy

trdy

(!trdy) &&
1 2 3 4(!irdy)

1-74 Part II

OpenVera Assertions Manipulating and Checking Data

var [[int:int]] name [[int:int]];
init var_name_ref = bit_vector_expr;
var_name_ref <= bit_vector_expr;

This section describes how to incorporate specification of properties
that require either temporary storage or accumulation and
manipulation of specific values to be associated at different times
during a sequence. These features greatly simplify data checking
along with the temporal relationships between design objects. Like
in Verilog, a variable is declared and assigned with the capability of
examining the assigned values at any point during a sequence.

A one- or two-dimensional variable is declared as follows:

var [[int:int]] name [[int:int]];

The syntax follows the syntactic rules of Verilog for the declaration of
registers and memories. Also, the rules of scoping and qualification
for the name are identical to any Verilog object name. Effectively, the
declared variable can be accessed in the expressions in the same
way as if it was declared in the corresponding Verilog module. If
neither dimension is specified, the width is assumed to be one bit.

There is, however, one deviation from Verilog. The variables can be
declared either for a module or for a scope. In the case of a variable
declaration under a module, a separate copy of the variable is
associated with each instance of the module. For the case of a
variable declaration under a scope, the variable gets bound to only
that instance and is not created for any other instance of its module.

By default, the value of this variable is initialized at the beginning of
simulation to unknown. An initialization statement can be used to
override the unknown value with the value of an expression as
below:

 Part II 1-75

OpenVera Assertions Manipulating and Checking Data

init var_name_ref = bit_vector_expr;

The var_name_ref references a variable name with optional
bit-select, part-select or word-select with the same rules as Verilog.
init statement is executed only once at the beginning of simulation.
All design variable values are considered unknown (value x) when
evaluating the bit vector expression.

The value of the variable can be updated at every clock tick by using
a non-blocking assignment statement.

var_name_ref <= bit_vector_expr;

This statement must be placed under the clock to which its execution
is based upon. The clock tick triggers the assignment in the order as
follows:

1. Evaluate event expressions.

2. Evaluate right-hand side of the assignment
(bit_vector_expr).

3. Update the value of the variable on the left-hand side.

When the clock tick occurs, the statement is executed by evaluating
the expression bit_vector_expr and placing the result in the
variable. The updated value is available for the next clock tick. There
can be only one assignment per variable.

Even though the assignment takes place under a specific clock, its
value can be used in any event expression of another clock, just like
a design variable. The name of the variable also follows the rules as
if it was declared for the corresponding instance in Verilog.

1-76 Part II

OpenVera Assertions Manipulating and Checking Data

Below is an example of using variables.The problem describes
validating the number of words written for a block write command.
The number of words is specified by signal w_size which can vary
from 1 to 32. Each word written is specified by signal w_start and
the end of block write is indicated by signal w_end. Signal write
begins the command.

clock posedge sysclk {
var[4:0] n;
init n = 0;
n <= (posedge write) ? w_size : n - matched(detect);
event occur(e): (e || (!e * [1..] #1 e));
event detect: posedge w_start;
event prop_w: if (posedge write) then

(istrue(!w_end) in #1 occur(n==0)) #1 w_end;
}
assert block_write_rule: check(prop_w);

In addition to accessing values of signals at the time of evaluation of
a boolean expression, the past values can be accessed with the
past function.

past(bit_vector_expr [, number_of_ticks])

The argument number_of_ticks specifies the number of clock
ticks in the past. If number_of_ticks is not specified, then it
defaults to 1. past returns the value of the expression
bit_vector_expr that was present number_of_ticks prior to the
time of evaluation of past.

Another useful function provided for the boolean expression is
count, to count the number of 1s in a bit vector expression.

count(bit_vector_expr)

 Part II 1-77

OpenVera Assertions Grouping Assertions as a Library

Grouping Assertions as a Library

The syntax for library groupings is as follows:

template name [(formal_param1, ..., formal_paramN)] :
{

template_body
}

With formal_param being:

name [= boolean_expr | sequence_expr]

This section describes how to group statements to construct a library
of assertions and expressions. Such a group is called template
which is given a name and can be instantiated with parameters.
When instantiated with parameters, the parameters provide the
binding to the actual design objects or other definitions specified
elsewhere in the description. A template has the following syntax:

template name [(formal_param1, ..., formal_paramN)] :
{

template_body
}

A formal parameter is used to replace a name in the template body.
A formal parameter can be an identifier representing one of the
following:

• a bool name

• an event name

• an integer constant

• a bit vector

1-78 Part II

OpenVera Assertions Grouping Assertions as a Library

• a boolean or sequence expression

The default values for a formal parameter can be specified by using
an equal sign with the left-hand side of the equal sign as the formal
parameter name and right-hand side as the default value. For
example,

template ova_hold(exp, min = 0, max = 15, clk):{
clock posedge clk {

event ova_e_hold:
(past(exp)==exp)*[min..max];

}
}

The body of the template may contain:

• assert statements

• clocked or unclocked expression definitions event and bool

• clocked or unclocked variable declarations and assignments to
variables

A template is instantiated with the following syntax:

name [ins_name] [(actual_param1, ..., actual_paramN)];

The template instance name is optional. When the name is not
specified, the name is the global sequence number of the instance
in the form tiseq_number. For example, the first template instance
compiled would be assigned the name ti1.

As template instances are expanded, the names of expression
definitions and variables declared in the template body are
constructed by appending the definition name with the template

 Part II 1-79

OpenVera Assertions Grouping Assertions as a Library

instance name and an underscore character. Such an expansion of
a name uniquely identifies its definition. The following example
illustrates the name expansion of definitions.

template range():{
clock posedge clk2 {

bool c1: enable;
event crange_en: if (c1) then (minval <= expr);

}
assert range_chk: check(crange_en);

}
scope test {

range t1();
range t2();
assert term_chk: if (t1_c1) then p_low #1 p_end;

}

The definitions c1, crange_en, and range_chk are expanded as
shown below.

scope test {
clock posedge clk2 {

bool t1_c1: enable;
event t1_crange_en: if (c1) then

(minval <= expr);
}
assert t1_range_chk: check(crange_en);
clock posedge clk2 {

bool t2_c1: enable;
event t2_crange_en: if (c1) then

(minval <= expr);
}
assert t2_range_chk: check(crange_en);
assert term_chk: if (t1_c1) then p_low #1 p_end;

}

Using this naming scheme, an expression defined within a template
can be referenced outside the template as shown above in the
definition of assert term_chk.

1-80 Part II

OpenVera Assertions Grouping Assertions as a Library

The actual parameters may not resolve all signals specified within
the template. When the template is instantiated, the parameters and
the unresolved signals get bound to the design objects.

If a formal parameter is specified with a default value in the template
definition, then the corresponding actual parameter may be
optionally omitted. In the example below, the formal parameter max
is not supplied when the template is instantiated.

template ova_hold(exp, min = 0, max = 15, clk):{
clock posedge clk {

event ova_e_hold:
(past(exp) == exp) * [min..max];

}
}
scope test {

ova_hold hold_instance(s, 5, , posedge clk);
}

If the default parameter value is not declared in the template
definition, omission of the corresponding actual parameter value in
the template instantiation will result in an error.

An example of a template is presented below to check data
consistency during a transaction. Data data_in is latched at the
occurrence of event pre in variable data_store. The latched data
is checked when the last event post occurs against data_out. It is
expected that the data_out at the time of the last event of the
transaction must be equal to the data at the beginning of the
transaction.

 Part II 1-81

OpenVera Assertions Grouping Assertions as a Library

template data_check(pre, data_in, size, post,
data_out, clk_expr): {
clock clk_expr {

var[size-1:0] data_store;
data_store <= matched e1 ? data_in :data_store;
event e1: pre;
event e2: post;
event consistent: if (matched e1) then

#1 e2 #0 (data_out == data_store);
}
assert data_consistency: check(consistent);

}

bool rising: posedge sysclk;
event trans_begin: pck_init #1 pck * [8];
event trans_end: pck_trfr * [32] #1 pck_term;
data_check(trans_begin, id_in, 8, trans_end, id_out,

rising);

1-82 Part II

OpenVera Assertions Grouping Assertions as a Library

 Part II 2-1

The OVA Engine API

2
The OVA Engine API 2

This chapter describes the OVA Engine API. The API provides a
convenient way for external modules to control the OVA Engine,
providing flexibility and modularization to the OVA environment
without the sacrifice of efficiency.

• General Requirements

• The Use Model

• The API

• Notes

2-2 Part II

The OVA Engine API General Requirements

General Requirements

External modules require means of two-way communication with the
OVA Engine in both synchronous and asynchronous modes.
Synchronous mode is required for interactive modules (GUI,
debugger, scripting, etc.) while asynchronous mode is used by batch
modules (report generators and such). The API is designed to
minimize the latency of communication between the OVA Engine
and its clients, retaining enough control over the OVA Engine
operation. The API is easily implemented in diverse communication
environments from C-level API to IPC.

The Use Model

The event-driven use-model is utilized by this API. The client
registers itself with the engine and receives its unique ID to identify
itself to the engine. Then the client subscribes to be notified of the
events it is interested in receiving. The client may influence the
engine’s behavior by issuing commands.

 Part II 2-3

The OVA Engine API The Use Model

Two basic types of events are defined to enable the communication:

• Event - This type of event is used by the engine to notify its clients
about the changes in the engine environment state. See
“OvaEngEvent Group” on page 2-11 and “OvaAssertEvent
Group” on page 2-12 for more information.

• Action (Command) - This type of event is used by the clients to
control the engine operation. See “OvaEngAction Group” on
page 2-12 and “OvaAssertAction Group” on page 2-13 for more
information.

The OVA Engine The Client

ovaRegisterClient()

Ova_ClientID

ovaAddEngListener(clientID, eventID, ovaProcessStateEvent, userData)

Ova_Bool

ovaAddAssertListener(clientID, eventID, ovaProcessAssertEvent, userData)

Ova_Bool

ovaProcessStateEvent(eventID, time, userData)

ovaProcessAssertEvent(eventID, time, assertionID, attemptID, userData)

ovaDoAction(clientID, actionID, userData)

Ova_Bool

ovaFirstAssert(clientID)

Ova_ID

ovaAssertDoAction(clientID, actionID, assertID, attemptID, userData)

2-4 Part II

The OVA Engine API The API

In addition to event-driven communication, the engine provides
iterator-based access to the assertions data. The client may iterate
over assertions, assertion validation attempts, and request all
relevant data.

The API

The OVA Engine Data Types/Constants

Ova_ClientID - Client identifier type that is ensured to be unique in the
OVA Engine environment.

• OVA_CLIENTID_NULL - Null value equivalent for Ova_ClientID.

Ova_AssertID - Assertion identifier type that is ensured to be unique in
the OVA Engine environment.

• OVA_ASSERTID_NULL - Null value equivalent for Ova_AssertID.

Ova_AssertAttemptID - Assertion attempt identifier type that is ensured
to be unique in the OVA Engine environment.

• OVA_ASSERTATTEMPTID_NULL - Null value equivalent for
Ova_AssertAttemptID.

Ova_AssertClockID - Assertion clock expression identifier type that is
ensured to be unique in the OVA Engine environment.

• OVA_ASSERTCLOCKID_NULL - Null value equivalent for
Ova_AssertClockID.

Ova_AssertName - Assertion name type.

Ova_String - The OVA string representation.

 Part II 2-5

The OVA Engine API The API

Ova_SrcFileBlock - Source file reference block type. Has the following
fields:

• fileName - Name of the OVA source file.

• startRow - Definition start row in the OVA source file.

• startColumn - Definition start column in the OVA source file.

• endRow - Definition end row in the OVA source file.

• endColumn - Definition end column in the OVA source file.

Ova_EngEvent - The OVA Engine state change event type. See
“OvaEngEvent Group” on page 2-11.

• OVA_ENGEVENT_ALL - Alias to the set of all event types in
Ova_EngEvent group.

 Ova_EngAction - The OVA Engine action event type. See
“OvaEngAction Group” on page 2-12.

Ova_AssertEvent - The assertion state change event type. See
“OvaAssertEvent Group” on page 2-12.

• OVA_ASSERTEVENT_ALL - Alias to the set of all event types in
Ova_AssertEventgroup.

Ova_AssertAction - The assertion action event type. See
“OvaAssertAction Group” on page 2-13.

Ova_EngCallback - The OVA Engine event callback function type. See
“The OVA Engine Client Interface” on page 2-10.

Ova_AssertCallback - The OVA Assertion event callback function type.
See “The OVA Engine Client Interface” on page 2-10.

2-6 Part II

The OVA Engine API The API

Ova_UserData - User data type. Used as optional argument for
callback functions. See “The OVA Engine Client Interface” on
page 2-10.

• OVA_USERDATA_NULL - Null value of Ova_UserData.

Ova_Time - Character string.

Ova_Mode - The OVA Engine operation mode.

• OVA_MODE_SYNC - Blocking (synchronous) mode of operation.

Ova_Bool - Boolean type.

• OVA_TRUE - Boolean true.

• OVA_FALSE - Boolean false.

Ova_ExprType - Assertion expression type.

• OVA_OVA_EXPR_TYPE - Type of the assertion expression is “ova”.

• OVA_CHECK_EXPR_TYPE - Type of the assertion expression is
“check”.

• OVA_FORBID_EXPR_TYPE - Type of the assertion expression is
“forbid”.

Ova_AssertSyntaxInfo - Assertion syntax information type. Has two
fields:

• Ova_AssertName name - Assertion name.

• Ova_ExprType exprType - Assertion expression type.

• Ova_SrcFileBlock srcBlock - OVA source file reference block.

• Ova_AssertSyntaxInfoNull- Null value of Ova_AssertSyntaxInfo.

 Part II 2-7

The OVA Engine API The API

Ova_AssertAttemptSyntaxInfo - Assertion syntax information type. Has
one field:

• Ova_Time timestamp - The attempt start time.

• Ova_AssertAttemptSyntaxInfoNull - Null value of
Ova_AssertAttemptSyntaxInfo.

Ova_AssertClockSyntaxInfo - Assertion syntax information type. Has
one field:

• clockType - Textual representation of clock type.

• Ova_AssertClockSyntaxInfoNull - Null value of
Ova_AssertClockSyntaxInfo.

Ova_ConfigSwitch - The OVA Engine configuration switch. These are
binary (true/false) switches that can be passed as command line
switches to the simulator.

• Ova_ShowLineInfoConfSwitch - Show line info in messages. Default:
OVA_FALSE.

• Ova_Quiet0ConfSwitch - Do not print any messages at runtime.
Default: OVA_FALSE.

• Ova_PrintReportConfSwitch - Print report at the end of simulation.
Default: OVA_TRUE.

Ova_ConfigOption - The OVA Engine configuration options. These are
options that can be passed as command line options to the
simulator. Currently no configuration options are supported.

2-8 Part II

The OVA Engine API The API

The OVA Engine Interface

The OVA Engine should implement the following interface and
expose it to the outside world.

Ova_ClientID ovaRegisterClient() - The OVA engine constructs new,
unique ID for client to identify itself on the following requests.

Ova_Bool ovaSetMode(Ova_ClientID clientID, Ova_Mode modeID) - Set
interaction with clientID to the operating mode modeID.

Ova_Bool ovaAddEngListener(Ova_ClientID clientID, Ova_EngEvent eventID,

Ova_Callback ref, Ova_UserData udRef) - Notify clientID when state
change eventID happens by calling ref. If eventID equals
OVA_ENGEVENT_ALL, the client is notified of all events of
OvaEngEvent type.

Ova_Bool ovaAddAssertListener(Ova_ClientID clientID, Ova_AssertEvent

eventID, Ova_AssertID assertId, Ova_Callback ref, Ova_UserData udRef) -
Notify clientID when assertion eventID happens by calling ref. If
eventID equals OVA_ASSERTEVENT_ALL, the client is notified of
all events of OvaAssertEvent type.

Ova_Bool ovaDoAction(Ova_ClientID clientID, Ova_EngAction eventID,

Ova_UserData udRef) - Execute action eventID command.

Ova_Bool ovaAssertDoAction(Ova_ClientID clientID, Ova_AssertAction eventID,

Ova_AssertID assertionID, Ova_AssertAttemtID attemptID, Ova_UserData udRef)
- Perform action eventID for assertion or assertion attempt
assertionID.

Ova_AssertID ovaGetAssertByName(Ova_ClientID clientID, Ova_AssertName

name) - Get ID of the assertion with the name name. If no matching
assertion is found, OVA_ASSERTID_NULL value is returned.

 Part II 2-9

The OVA Engine API The API

Ova_AssertID ovaFirstAssert (Ova_ClientID clientID) - Get ID of first
assertion. In other words, reset assertion iterator of clientID. If no
assertions are loaded into the engine, OVA_ASSERTID_NULL value
will be returned.

Ova_AssertID ovaNextAssert (Ova_ClientID clientID) - Get ID of next
assertion. In other words, advance assertion iterator of clientID. If
there are no more assertions left or this client has not called
ovaFirstAssert before ovaNextAssert was called,
OVA_ASSERTID_NULL value will be returned.

Ova_AssertAttemptID ovaFirstAssertAttempt (Ova_ClientID clientID,

Ova_AssertID assertionID) - Get ID of first attempt of the assertion
assertionID. In other words, reset assertion attempts iterator for
clientID over attempts for assertion assertionID. If no assertion
evaluation attempts were started prior to the point when
ovaFirstAssertAttempt function was called,
OVA_ASSERTATTEMPTID_NULL value is returned.

Ova_AssertAttemptID ovaNextAssertAttempt (Ova_ClientID clientID,

Ova_AssertID assertionID) - Get ID of next assertion attempt of
assertionID. In other words, advance iterator of assertion
assertionID attempts iterator of clientID. If no more assertion
evaluation attempts are left or this client has not called
ovaFirstAssertAttempt before ovaNextAssertAttempt was called,
OVA_ASSERTATTEMPTID_NULL value is returned.

Ova_AssertClockID ovaGetAssertClock(Ova_ClientID clientID, Ova_AssertID

assertionID) - Get ID of clock expression for assertion assertionID.

Ova_Bool ovaHasSyntaxInfo(Ova_ClientID clientID) - Returns OVA_TRUE if
syntax information is available. Should be called before
ovaGetSyntaxInfo(id) is called.

2-10 Part II

The OVA Engine API The API

Ova_AssertSyntaxInfo ovaGetAssertSyntaxInfo(Ova_ClientID clientID,

Ova_AssertID id) - Get syntax information for the assertion id.

Ova_AssertAttemptSyntaxInfo ovaGetAssertAttemptSyntaxInfo (Ova_ClientID

clientID, Ova_AssertID assertID, Ova_AssertAttemptID attemptID) - Get syntax
information for the assertion attempt attemptID.

Ova_AssertClockSyntaxInfo ovaGetAssertClockSyntaxInfo(Ova_ClientID

clientID, Ova_AssertID assertID, Ova_AssertClockID id) - Get syntax
information for the assertion clock id.

Ova_Bool ovaSetConfigSwitch(Ova_ClientID clientID, Ova_ConfigSwitch

confSwitch, Ova_Bool enable) - Enable/Disable the OVA Engine runtime
switch.

Ova_Bool ovaSetConfigOption(Ova_ClientID clientID, Ova_ConfigOption

confSwitch, Ova_UserData udRef) - Set value of the OVA Engine
configuration option.

The OVA Engine Client Interface

The OVA Engine clients should implement and register a callback
function for each event type that the client is interested in receiving
notifications for. The callback function signatures are as follows:

void ovaProcessStateEvent (Ova_EngEvent eventID, Ova_Time time,

Ova_UserData udRef) - Function called when the OVA Engine state
change event eventID occurs.

void ovaProcessAssertEvent (Ova_AssertEvent eventID, Ova_Time time,

Ova_AssertID assertion, Ova_AssertAttemptID attempt, Ova_UserData udRef) -
Function called when the OVA Engine assertion event eventID
occurs.

 Part II 2-11

The OVA Engine API The API

OvaEngEvent Group

The events generated by the OVA Engine when its state changes.

OvaInitializeBeginEngE - Emitted by the OVA Engine before
initialization.

OvaInitializeEndEngE - Emitted by the OVA Engine upon completion of
initialization.

OvaStartEngE - Emitted by the OVA Engine at simstart but before
evaluation attempts start.

OvaResetBeginEngE - Emitted by the OVA Engine at the beginning of
the reset sequence.

OvaResetEndEngE - Emitted by the OVA Engine at the end of the reset
sequence.

OvaLoadBeginEngE - Emitted by the OVA Engine at the beginning of
execution of the load command.

OvaLoadEndEngE - Emitted by the OVA Engine upon completion of the
load command.

OvaFinishEngE - Emitted by the OVA Engine after simend.

OvaTerminateBeginEngE - Emitted by the OVA Engine when it is about
to terminate and before any data is destroyed.

OvaTerminateEndEngE - Emitted by the OVA Engine as a last signal
before it exits.

2-12 Part II

The OVA Engine API The API

OvaErrorEngE - Unrecoverable error. The engine will terminate. This
event is issued to all clients regardless of whether the client
registered to receive this event or not.

OvaEngAction Group

The action events accepted by the OVA Engine as commands
altering its behavior.

OvaResetEngA - Reset all data.

OvaFinishEngA - Finish. Result is the same as if simend was
encountered.

OvaTerminateEngA - Clean up and terminate.

OvaAssertEvent Group

The events emitted by the OVA Engine when the state of a particular
assertion changes.

OvaResetAssertE - Reset assertion: terminate all evaluation attempts
that are in progress.

OvaNewAttemptStartAssertE - New evaluation attempt started.

OvaAttemptRemovedAssertE - Evaluation attempt removed, for example
after this attempt failure or after assertion has been removed from
the environment.

OvaAttemptFailureAssertE - Assertion match attempt failed.

OvaAttemptSuccessAssertE - Assertion match attempt succeeded.

 Part II 2-13

The OVA Engine API Notes

OvaDisableNewAttemptsAssertE - Generation of new evaluation
attempts of particular assertion disabled.

OvaEnableNewAttemptsAssertE - Generation of new evaluation attempts
of particular assertion enabled.

OvaAssertAction Group

The action events accepted by the OVA Engine to alter behavior of
the assertion evaluation attempts.

OvaResetAssertA - Reset assertion. The reset assertion command has
the following effect: all ongoing evaluation attempts are discarded
and all accumulated unreported history of evaluations are discarded.

OvaDisableNewAttemptsAssertA - Do not make new attempts on the
assertion. All the attempts started before this command was
received continue to evaluate.

OvaEnableNewAttemptsAssertA - Cancel the effect of
OvaAssertDisableNewAttempts.

OvaAttemptKillAssertA - Kill an evaluation attempt.

Notes

To be able to access functions described by this API, client code
must call ovaRegisterClient() before any other API call. Such a
transfer of control from engine to the client is implementation specific
and as such beyond the scope of this document. C level
implementation will leave this initial stage for the client code care
entirely.

2-14 Part II

The OVA Engine API Notes

No data consistency is guarantied if any of the OvaEngEvent group
engine events happens while a client is iterating over assertions or
assertion attempts. It means that once the client is notified of any
event of the OvaEngEvent type, the result of ovaNextAssert() and
ovaNextAssertAttempt() calls is undefined and the client should
reset its iterators by calling ovaFirstAssert() or
ovaFirstAssertAttempt().

	OpenVera Assertions
	Evaluating Sequence Expressions
	Timing Model and Edge Events
	Matching A Sequence
	Start and End Time of A Sequence
	Single vs. Multiple Sequences of Evaluation

	Specifying Edge Events and Clocks
	Edge Events
	Clocks

	Specifying Time Shift Relationships
	Defining Expressions
	Resolving Clock for Event Definitions

	Specifying Temporal Assertions
	Specifying Assertions for an Instance of a Module
	Specifying Assertions for A Module
	Name Resolution
	Specifying Composite Sequences
	Logically ANDing Sequences
	Logically ORing Sequences
	Inverting Sequences

	Specifying Conditional Sequence Matching
	Matching Repetition of Sequences
	Specifying Conditions Over Sequences
	Specifying Unconditional Number of Clock Ticks
	Manipulating and Checking Data
	Grouping Assertions as a Library

	The OVA Engine API
	General Requirements
	The Use Model
	The API
	The OVA Engine Data Types/Constants
	The OVA Engine Interface
	The OVA Engine Client Interface
	OvaEngEvent Group
	OvaEngAction Group
	OvaAssertEvent Group
	OvaAssertAction Group

	Notes

