PSS Tutorial
Accellera Day, Talwan

Today's Speakers
= Sharon Rosenberg, Cadence
= Stewart Li, Mentor Graphics

= Tom Lin, Synopsys

SYSTEMS INITIATIVE

Sharon Rosenberg, Cadence Designh Systems

PORTABLE STIMULUS

THE NEXT LEAP IN
VERIFICATION & VALIDATION PRODUCTIVITY

IIIIIIIIIIIIIIIII

A Brief History of Verification

Portable

Stimulus

Standard

System Methodology
Verilog
Directed those who MDV OVM
Verification? Testing can't, Verify

accellera

SYSTEMS INITIATIVE

U

Why Portable Stimulus?

Verification Productivity is not scaling with complexity of projects.

= Need to reduce product life cycle w/ efficiency gains via portable content
- Use cases replicated in different stimulus languages on different execution platforms

= Enforce single interpretation of a product specification
- Disjoint activities in different platforms lead to expressing, covering & debugging multiple times

= Enable mainstream and methodical automation of test content reuse
- Re-use between IP and SoC is a significant challenge in pre-silicon simulations
- Technology advantages of different platforms not utilized efficiently to reduce investment

= Encourage verification and validation plans to become a continuum
- Precious verification and validation knowledge not captured and reused

- Test planning activities mostly disjoint, escapes to later stages b/c of earlier assumptions
accellera

SYSTEMS INITIATIVE

Re-Imagined Development Process

() |P S t (A N/) ()
. ystem pps
Architect Design/DV | Design/DV Eval Software Test
_) A _ J _) _)
4 Use) V4 4 N\ N\ [)
Cases IP DUT, SUT, Device
’ PSS PSS Scenarios . Scenarios
PSS Drivers
Models Models
\ Models \. J 0 / U J
PS Enabled Development Framework
4) N) (" Evaluation, \ (Virtual, \()
TLM Simulation
Customer Emulator, Tester
Madel Boards Silicon
SV, UM Multiple
\ SystemC) e+) U crer+ U)

SYSTEMS INITIATIVE

What Portable Stimulus Is and Is Not

= Portable Stimulus is :
A single representation of test intent that is reusable :

By a variety of users
- Architects, Validation, DV, Test, Software

Across different levels of integration

In a variety of execution platforms
- Post-Si, FPGA-prototyping, Virtual, Emulation, Simulation and more

Under different configurations within and across the dimensions above

= Portable Stimulus iIs not :

- One forced level of abstraction - Expressing intent from different perspectives
IS a primary goal.

- Monolithic - Representations would typically be composed
of portable parts.

- Intended to replace all testing activities in any single platform.

accellera

SYSTEMS INITIATIVE

U

What About UVM?

= The Good
- Common Language/Framework for Verification Engineers
- Smart Testbench Architecture to allow for “Checkers” to be re-used vertically

= The Bad

- Non DV & Designer Engineers are not familiar with System Verilog & UVM
- Overly complicated and hard to debug
- Need to be an expert in UVM to create a simple directed test

- Excellent for Block/IP Level Verification,
- Does not scale to System Level Verification, Only Solves “Checking” Portability Problem
- Stimulus at block level SV Based, at system level needs to be C code.
- Methodology does not translate seamlessly from simulation to emulation

- No consideration for Software/Evaluation/Test Engineering needs.
accellera

SYSTEMS INITIATIVE

U

What is the PSWG trying to Fix?

Product Development Cycle

il 2 3 4 5
N

Role Software* Eval * Test
)
AY4 N

Drivers Functionality .

Focus Tools Performance Everything

J _)
) Virtual Evaluation I)

Platform Model Schematic Board Tester
J _ J _)
AY4 Y4 N

Verilog .

Language| SystemC VHDL CIC++ Multiple

J_ \, J _)

What's Wrong with this Picture?

9 SYSTEMS INITIATIVE

Portability Use Cases &
Potential Capabilities

Stimulus Re-Use

Simplified Test Authoring

Improved Collaboration

Horizontal Re-Use
Simulation 2> Emulation
Simulation = Silicon
\ ProjectA>ProjectB)

()

Bi-Directional Re-Use
Eval Board Failure to IP

Coverage Based
Test Creation

4 N\ 7 4 N
Vertical Re-Use Verification Stimulus Test Visualization,
IP - System Libraries Clearer Communication
_ J \U J)
4 \ 7 4 N

Improved Debug Efficiency

\, J

Dataflow Based
Test Creation

Test
()
Re-Use SW Drivers in
Simulation
_ J

Multiple Constraint Types

[Enable Customer/Vendor\
Innovations!

Manufacturing Tests?
Formal?

_ Machine Learning?

J

accellera

U

SYSTEMS INITIATIVE

Simplify Test Authoring

Different Roles have Different “Care-Abouts” & “Points of View”

' N)
. Throughput,
Architect Latency, Q0S
- AN /
4 N _ _ N\
Block/IP Mlcro-Ar_chlte_cture
Functionality
Dsgn/DV
Performance
- 7\ /
4 N)
System Correct Connectivity
Dsan/DV Use Cases
g System Robustness
- /U /
4 N [)
Eval Silicon Performance
. VAN)

Want to write tests from the System Point of view
Enable All DMAs in parallel
Create test where DMA FIFO full while core in deepsleep

Want to write tests that are IP Centric
Exercise all modes, error conditions
Then Create random combinations of those modes

Want to write tests from System Point of View
Interrupts/Pinmux/Fabric properly connected to IP Block
Tests to ensure all memory regions accessible
Complex Stress Tests
"Real" system-level use case tests

Do not want to write tests at all

xisting languages are not expressive enough
Existing runtime frameworks are not portable

SYSTEMS INITIATIVE

12

Deployment Use Cases:

Transactional Reuse

QD Simulation - BFM/

@C Simulation - Bly

SoC Simulation - Core
2 7

Deployment Use Cases: SW Driver Prototype
| o — ——
' =

[e]
=

=) N

=

Short UVM :
RAL Sequences Med length driver Iaﬁ\r,%? Iig?;?y e
prototype in C inC . *
. IP FPGA — Core : .
. . . _ | Post-Si Tester — Core
Q’ Simulation - BFM/ | %C Emulation — Core !

SYSTEMS INITIATIVE

14

e =

C lib with linker
managed
memory

SoC Emulation —

K Linux OS /

/.l\

[
Transactions in C

with PSS
managed
memo

SoC Emulation —

@ Operating Systey

Deployment Use Cases: SW and FW Awareness

= e

SYSTEMS INITIATIVE

Why a Dedicated PS Standard?

= Enable Expansion of VIP Ecosystem = beyond UVM simulation VIP
- Accelerate SoC integration/testing across all platforms via EDA PS libraries
- Empower portable compliance testing suites by protocol standards (PCle, etc.)

= Enable innovation for re-use across platforms from EDA vendors
- A standard levels playing field and focus innovation on next set of challenges

= Increase predictability for mobility across platforms and vendors
- Emulation & Simulation EDA suppliers may be different
- Standard enables common input for both platforms

- Standard dictates consistent semantics of user input and experience
across execution platforms

accellera

SYSTEMS INITIATIVE

U

Stewart Li, Mentor Graphics Corp.

INTRODUCING
PORTABLE STIMULUS

CONCEPTS & CONSTRUCTS

IIIIIIIIIIIIIIIII

Raising the Abstraction Level

= Gate — RTL => Synthesis
- Randomize numbers ($urandom(), etc)

= RTL — Transaction => UVM
- Constrained random transactions (randomize())
- Structural randomization/customization (build(), config_db())

= Transaction — Scenario => Portable Stimulus
- Declarative partial specification of key intent
- Randomize scenarios based on system-level constraints

SYSTEMS INITIATIVE

Stimulus at a Higher Level

Transaction-Level

class my seq extends
uvm_sequence#(tr_t);
“uvm_object utils(my_seq)
task body;
for(int 1=0; 1< 3; 1++) begin
req = tr_t::type id::create(''tr');
start_item(req);
req.randomize() with {.};
finish_item(req);
end
endtask
endclass

18

Scenario-Level

UART odem
receive eceive
i /’l

SYSTEMS INITIATIVE

Actions Capture Intent

= Behaviors captured as actions

- Simple actions map directly to target
iImplementation

- Compound actions modeled via activity graphs

= Actions are modular
Reusable

Interact with other actions

Inputs and Outputs define dataflow requirements

Claim system resources subject to target
constraints

= Activity graph defines scheduling of critical
actions

- Define scheduling constraints
- Flow objects and resources constrain scenarios

channel_s

\/data_buff_s

oid tes t(){
// modify_translation_seq

do_stw(0x 104 0 AAAAAAAA):
do_stw(0x110, OxBBBBBBBB);

do_switch_tl Iat on(-..);
do, | ad_ h l< ord(1);

// modify_translation_seq

do_stw(oxllZ . OxAAAAAAAA) H
do_stw(0x140, OxBBBBBBBB);

do_switch_tral It'(DX
dldhk ord(1);

// modify_translati seq

do_stw(0x:

_stw(0x
do_switch
by

ran: Iat' n(...);

do,
E _load_check_word(1);

Ox 120 O AAAAAAAA);
0x102, OxBBBBBBBB);
_ti

SYSTEMS INITIATIVE

Data

20

Simple Example: UART

Command

)

stream data_stream_ s {
rand int size;

}

buffer data buff b {
rand int size;

}

= UART receives/transmits data packets via Data port

= Packets DMA to/from memory

- Concurrent with receive/transmit operation

= Command port accesses registers/memory

- Configure UART/DMA
- Read/Write MEM data

SYSTEMS INITIATIVE

Simple Example: UART

Command

)

J

rand int size;

}

rand int size;

}

stream data_stream s {

buffer data buff b {

Generate pkt
stream

N\

7

action read in a {

action g2m_xfer { ~

DMA pkt stream
Into mem buffer

>

input data_stream_s src;

output data_stream_s data;

|

}s

}

action write_out_a {

output data buff b dst;

DMA mem buffer
/ into pkt stream

input data

stream s data;}e

}s P

Consume pkt
stream

21

action m2g_xfer {
input data_buff_b src;

output data stream s dst;

SYSTEMS INITIATIVE

Actions are Modular

= Behavioral descriptions can be reused
- Behaviors eventually mapped to VIP and/or embedded CPU in target
- Flexible mechanism to map to different targets

= Actions encapsulate
- Their own intrinsic properties
- Rules for interaction with other actions

= Actions represent functionality
First step is to identify target design behaviors to be exercised

What data do these behaviors require/produce?
Where are these behaviors executed? (DUT? VIP?)
What system resources are required to accomplish these behaviors?

These questions are independent of the implementation details of the DUT

accellera

SYSTEMS INITIATIVE

U

Basic Scenario — Data Recelve

Declare action action data_rx {

Declare subactions ‘ . .
read in_a rd _i;

Declare constraints g2m_xfer g2m;

. N
Constraints can be named | [™sconstraint {q2m.src.size % 4 == 0;}

Bind subaction /’%i”d rd_i.data g2m.src;
inputs/outputs activity { \
— - parallel {
activity defines _the / rd_i;| //receive data in UART
graph of subaction q2m; [/DMA into memory
}
Q : /
[
rd_i d_str g2m
e

SYSTEMS INITIATIVE

h = accellera
5 coellrd)

23

Basic Scenario — Data Recelve C++

Declare action

public:

Declare subactions

> read_in a rd i {"rd_i"};

Declare constraints

Constraints must be named

g2m_xfer g2m {"gq2m"};

*constraint cl {..};

Bind subaction | __—

inputs/outputs

activity defines the
graph of subactions

3G

Need to register the type in the PSS library
Different from ‘decltype’ in C++11

~ -
\\ ’/

//

activity a {
parallel {

class data _rx : public action

my test2(const scope& s) :

—>»bind b {this, rd_i.data, g2m.data};

action(this) {}

Action class derives
from library class

rd_i,*
g2m
}
}s
}s

Activity defined as a tree
of library class instances
representing statements

type decl<data _rx> data_rx _decl;

SYSTEMS INITIATIVE

Activities

= Action "instances" can be thought of as "nodes" in an activity graph

= Optionally allows inline constraints

= Node may represent a variable randomization

= By default, activity statements execute sequentially
- final_;, completes before initial, starts

action A {
rand bit[3:0] f;

}

action top {
A al, a2;
action int [@..5] i;
activity {
al;
i;
a2 with { f < 10 };
}
}

observed
behavior

randomize i

SYSTEMS INITIATIVE

26

Activity — Robust Scheduling

= Parallel branches start at the same time
- Initial action(s) in all branches have the same set of predecessors

- No cross-branch dependencies

action top {
A al, a2;
B bl, b2;

activity {
parallel {

}
}
}

{ a1, a2 };
{ b1, b2 };

observed
behavior

= Select statement randomly chooses one branch from the block

- Executes one and only one branch
- Choice subject to other constraints

observed
behavior

action top {
A a; Bb; Cc;

activity {
a
select {
b;
Cs
}
}
}

— 4 6

observed
behavior

— &

SYSTEMS INITIATIVE

27

Activity — Robust Scheduling

= |[f-Else block
= Do-while
= Repeat

= Foreach

- For each element of an array

= Schedule

- Actions in a schedule block execute in
whatever order is legal given constraints

observed
behavior

— i«

observed
behavior

— T

- All actions must execute | action top {

A a;
B b;
C c;

activity {
a
schedule {
b;
c;
}
}
}

observed
behavior

SYSTEMS INITIATIVE

Flow Objects: Dataflow & Scheduling

= Flow objects are user-defined datatypes

- Special types of struct

struct base_s {

- May inherit from struct but not from rand int size;

each other }

buffer data_buff b : base_s {
rand bit[31:0] start_addr;
rand bit[1:0] mode;

- Action inputs or outputs

= Buffer objects define sequential }
data/control flow stream data_strm_s : base s {
o . ; rand bit[1:0] inside [1..3] stop_bits;
- Pre- or post-condition for action execution rand dir_enum direction;
}

- Persistent storage; can be read after written

= Stream objects define parallel data/control flow
- Model parallel data flow
- Message/notification exchange

= State objects define the state of an element at a particular time

- State object writes must be sequential
- Reads can be concurrent with other reads, but not writes accellera

SYSTEMS INITIATIVE

Buffer Object Semantics

= An action that inputs a buffer object must be bound to an action that
outputs a buffer object of the same type

- Outputting action can be referenced explicitly or implicitly

= Buffer object output can be connected to O:N input actions
- Must be of the same type

= Producing action must complete before execution of consuming
action may begin

buffer data buff s {
rand int[4..1024] size;

rand bit[63:0] addr; observed
}; behavior
\
action cons_mem_a { prod_mem_a
¥ \

action prod_mem_a {
output out_data;

SYSTEMS INITIATIVE

Stream Object Semantics

= An action that inputs a stream object must be bound to an action
that outputs a stream object of the same type

- Outputting action can be referenced explicitly or implicitly

= An action that outputs a stream object must be bound to an action
that inputs a stream object of the same type

- Inputting action can be referenced explicitly or implicitly

= Execution of outputting and inputting actions occur in parallel

stream data_strm_s {
rand int[4..1024] size;

rand bit[63:0] addr; observed
}; behavior

action cons_mem_a { prod_mem_a

input in_data; |
g B, CONS_mem_a

action prod_mem_a {
output out_data;

SYSTEMS INITIATIVE

Defining Target-Specific Constraints

= Certain actions may require target resources
- DMA Channel
- Video pipe
- Compress/Decompress engine
- etc.

= Resources modeled as user-defined types
- Specialized struct type

= Actions may claim a resource for the duration of their execution
- Lock: excludes other actions from accessing the same resource
- Share: no action may lock the resource until action completes

= Test defines how many resources are available
- Pool defines how many are available
- Pools may bind to actions

SYSTEMS INITIATIVE

Resource Objects

= Lock Example: = Share Example:
resource channel s{..}; resource channel s{..};
pool [1] channel_s chans; pool [1] channel_s chans;
action xfer_a { action xfer_a {
lock channel_s chan; share channel_s chan;
}s }s
action xfer_b { action xfer_b {
lock channel_s chan; lock channel_s chan;
}s }s
action xfer_c {
share channel_s chan;
¥
gbf]er_/ed observed
il behavior

Vv

B

N

yd

SYSTEMS INITIATIVE

Data

Back to the Example: Resources

Command

)

action g2m_xfer {
input data_stream_s src;
output data_buff b dst;

lock dma_
rand dma_

constraint cl { src.size ==

channel_r channel;
xfer_params_s params;

dst.size; }

constraint params_c {

params.
params.
params.
params.

mode == 'b0o1;
src_addr == src.addr;
dst_addr == dst.addr;

channel == channel.instance_id;}

33

resource dma_channel r {
//implicit instance_id attribute

ceey

OR:

struct
rand
rand
rand
rand

dma_xfer_params_s {
bit[1:0] mode;
bit[31:0] src_addr;
bit[31:0] dst_addr;
bit[5:0] channel;

action base_xfer {
lock dma_channel r channel;
rand dma_xfer_params_s params;

}

action g2m_xfer:base_xfer {
input data_stream_s src;
output data_buff b dst;

constraint cl { src.size == dst.size; }
constraint params_c {
params.mode == 'b0ol;
params.src_addr == src.addr;
params.dst_addr == dst.addr;
params.channel

== channel.instance_id;}

~—__~"

SYSTEMS INITIATIVE

Components & Pools

= Components are type namespaces

= Reusable groupings of
- actions

- pools
- objects
- resources
- configuration parameters

= A pool is a collection of
object/resource instances

- Bind directive associates pools
with actions

- Specify which actions can
exchange flow objects

- Specify which actions contend for
the same pool of resources

component uart_c {
import dma_xfer_pkg::*;

resource uart_r {..};
pool [1] uart_r uart_p;
bind uart_p {*};

action read_in_a {
output data_stream_s data; // via import
lock uart_r myuart;
constraint cl {data.size % 4 == 0;}

}s

action write_out_a {
input data_stream_s data;
lock uart_r myuart;

}s

SYSTEMS INITIATIVE

Components & Pools: C++

= Components are type namespaces

= Reusable groupings of
- actions

- pools
- objects
- resources
- configuration parameters

= A pool is acollection of
object/resource instances

- Bind directive associates pools
with actions

- Specify which actions can
exchange flow objects

- Specify which actions contend for
the same pool of resources

class uart_c :
public:
uart_c(const scope& s):component(this){}

public component {

class uart_r : public resource {...};
pool<uart_r> uart_p {"uart_p", 1};
bind bl {uart_p};

class read_in_a :

public:
read_in_a(const scope& s):action(this){}
lock<uart_r> uart_1{"uart_1"};

public action {

output<data_stream_s> out{"out"};
constraint cl1 { .. };
};

type_decl<read_in_a> read_in;

class write out_a :
public:
write out_a(const scope& s):action(this){}
input<data_stream_s> in{"in"};

public action {

lock<uart_r> uart_1{"uart_1"};

};
type_decl<write_out_a> write_out;

}s

éra

SYSTEMS INITIATIVE

36

Back to the Example
= The DMAC Component

component dmac_c {

pool dma_channel_r chan_p;
bind chan_p {*};

action g2m_xfer_a {
input data_stream_s in;
output data_buff_b out;
lock dma_channel_r chan;

}

action m2qg_xfer_a {
input data_buff_b in;
output data_stream_s out;
lock dma_channel_r chan;

}

action m2m_xfer_a {...}

Cazm) Cmam) Cnza)

uart_p

SYSTEMS INITIATIVE

37

Back to the Example
= The DMAC Component in C++

class dmac_c : public component {
public:
dma_c(const scope& s):component (this){}

pool<dma_channel r> chan_p;
bind bl {chan_p};

class g2m_xfer_a : public action {
public:
g2m_xfer_a(const scope& s):action(this){}

input<data_stream_s> in{"in"};
output<data_buff _b> out{"out"};
lock<dma_channel _r> chan{"chan"};

}s

type_decl<q2m_xfer_a> q2m_xfer;

class m2q_xfr_a : public action {..};..
class m2m_xfr_a : public action {..};..

}s

Cazm) Cmam) Cnza)

uart_p

SYSTEMS INITIATIVE

38

Back to the Example

= Top-level Component

component pss_top {

uart_c uarte;
dmac_c dma@;

pool data_stream_s stream_p;
bind stream_p {*};

pool data_buff_b buff_p;
bind buff_p {*};

SYSTEMS INITIATIVE

Back to the Example

= Top-level Component in C++

class top_c : public component {

public: —
top_c(const scope& s):component(this){}

uart_c uarte {"uarte"};
dmac_c dma@® {"dma@"};

pool<data_stream s> stream_p {"stream_p"};
bind b2 {stream p};

pool<data_buff_b> buff_p {"buff_p"};
bind b2 {buff_p};

J; sfrm_p |

uart_p

SYSTEMS INITIATIVE

Creating a Test

= Actions specify behaviors
- Actions define input/output to communicate with other actions
- Actions claim resources that are target-specific

= Activities define top-level scenarios
- Compound actions define high-level intent
- Graphs define scheduling of actions

= Resources & Flow Objects define additional scheduling constraints
- Locking resources prevents other actions from using them in parallel
- Stream objects require another action to execute in parallel
- Buffer objects allow another action to execute sequentially

= Components group useful stuff for reuse

SYSTEMS INITIATIVE

Creating a Test: Loopback

= Receive data on UART and DMA into memory (in parallel)
- read_in_a & q2m_xfer Iin parallel

= DMA from memory to UART and transmit (in parallel)
- m2g_xfer & write out_a action in parallel

action loopback_test {
d_str
bind rd_i.data g2m.src;

bind wr_o.data m2q.dst;
bind g2m.dst m2q.src;

activity { =
parallel { @ d_str
rd_i;

q2m;

}
parallel {

wr_o;
m2q;

}
. accellera

SYSTEMS INITIATIVE

Creating a Test: Loopback

= Activity graph only needs to define critical intent [the "what"]

= Flow objects and resources constrain the possible scenarios
- Tool can infer supporting actions [the "how"]

action loopback test {
d_str

bind wr_o.data m2q.dst;

activity { =
@ d_str
rd_i;

parallel {
wr_o;
m2q;

}
. accellera

42 SYSTEMS INITIATIVE

Creating a Test: Loopback

= Activity graph only needs to define critical intent [the "what"]

= Flow objects and resources constrain the possible scenarios
- Tool can infer supporting actions [the "how"]

action loopback test {
activity { -
rd_i;

wr_o;

. accellera

43 SYSTEMS INITIATIVE

44

Creating a Test: Loopback

= Must make sure to prevent illegal inferencing
- UART cannot read and write at the same time

resource uart_r {..};
pool uart_r myuart;

action loopback_test {

activity {
rd_i;
wr_o;
}
}

SYSTEMS INITIATIVE

45

Creating a Test: Loopback

= Can infer any actions that create a legal scenario

- Subject to constraints
- Object constraints
- Resource constraints
- Scheduling constraints

resource uart_r {..};
pool uart_r myuart;

action loopback_test {

activity {

wr_o;

SYSTEMS INITIATIVE

46

Creating a Test: Loopback

= Can infer any actions that create a legal scenario

- Subject to constraints
- Object constraints
- Resource constraints
- Scheduling constraints

resource uart_r {..};
pool uart_r myuart;

action loopback_test {

activity {

wr_o;

~ -
\\ ’/

d_buf

d_buf

SYSTEMS INITIATIVE

Creating a Test: Loopback in C++

class top_c : public component { d str
public: =
top_c(const scope& s): component(this){} S~ o _--

e d_buf
uart_c uart® {"uarte"};

dmac_c dma® {"dma@"};

pool<data_stream_s> stream_p;
bind bl { stream_p }

pool<data_buff_b> buff_p;
bind bl { buff_p }

class loopback_test_a : class action {

public:
loopback_test_a(const scope& s):action(this){} S -
action_handle<write_out_a> wr_o {"wr_o"}; h 1
activity a {
wr_o @
}s
}s

type_decl<loopback_test_a> loopback_ test; acce//era

SYSTEMS INITIATIVE

}s

Sharon Rosenberg, Cadence Designh Systems

BUILDING SYSTEM-LEVEL
SCENARIOS

IIIIIIIIIIIIIIIII

What are System-Level Scenarios?

= The whole is greater than the sum of its parts!
- And so are its bugs...

= Application use-cases involve multiple IPs interoperating
- Example — read video off a mass-storage device, decode, split audio data from
video frames, process by dedicated multi-media engines

= Stress and performance use-cases involve saturated utilization of
shared resources

- Example — all processors and DMA-enabled controllers access a certain
memory controller in parallel

= System low-power use-cases need to be crossed with functional
scenarios

= System coherency of caches/TLBs requires coordinated pattern of
accesses from CPUs and non-processor masters

accellera

SYSTEMS INITIATIVE

U

A Simple SoC Example

Quad-core CPU that
can write, read or
copy memory buffers

UART that can transmit
or receive, but is not
DMA-enabled

W

Graphics SS

Crypto engine that can
encrypt and decrypt

Multi channels
system DMA

Graphics SS that
can decode
images or videos

50

~accellera

SYSTEMS INITIATIVE

Modeling Targeted Behaviors

Step 2: Compose actions into
activities to specify scenarios,
and scenario building blocks

Step 1: Define component
types and their operations
as actions

DDR Controller

Step 3: Instantiate
components and
shared resources

Scenarios capture pure intent, abstracting
from DUT configuration, verification
environment, execution platform

il

accellera

SYSTEMS INITIATIVE

U

Reuse IP Models

[
component uart _c {

action write_out_a { .
) input data_stream_s src_data; Actions gre abstrgct,
read_in constraint src_data.direction == outwards; declarative, concise, well
}s encapsulated units of behavior

action read_in_a {
- output data_stream_s dst_data;
erte_0® constraint dst_data.direction == inwards;
- I v
_}’ component dma_c {

¥ DMA resource struct channel_s {};
pool [32] channel_s chan;

component crypto_c { bind chan *;
action encrypt {)
input data_buff s src_data; <tran3feD ac:rzoztmEZiZeEa);:e;_erz data-
encrypt b —butr_s sre_data,

output data_buff_s dst_data;
output data_buff_s dst_data;

constraint {
// operates on 128-byte blocks lock channel_s channel;
constraint src_data.seg.size ==

(src_buff._seg.size % 128) == 0; N
(dst_buff.seg.size % 128) == 0; dst_data.seg-size;

// output is encrypted, input not
Isrc_buff.encrypted;
dst_buff._encrypted;

. ageellera

52 } ? SYSTEMS INITIATIVE

SW Operations Modeling

Processor cores are resources

| component cpu_c {

abstract action sw_operation { that can be locked or shared
lock core_s core; by other components' actions
¥ (e.g. for their control)

action check data_a : sw_operation { /

input data_buff_s src_data;
component pss_top { /

check da

-,

action write_data_a : sw_operation {

write_data) output data buff_s dst_data; pool [4] core_s chan;

bind core s *;

-,

action copy data_a : sw_operation { Y
copy _data) input data_buff_ s src_data;
output data buff s dst data;
constraint cl {src_data.size == dst_data.size;}

000k

Attributes and constraints

¥ : _
}; can be associated with
resource struct core_s { resources

rand core_tag_e core_tag;
rand cluster_tag_e cluster_tag;
constraint {
cluster_tag == CLUSTER_A -> core_tag inside [CORE_AO, CORE_Al];
cluster_tag == CLUSTER_B -> core_tag inside [CORE_BO, CORE_B1];

}: _@

53 SYSTEMS INITIATIVE

Overriding Types
= Override block may be specified in an action or a component

action reg2axi_top { All instances of axi_write_action will
override { / instead use axi_write_action_x
type axi_write_action with axi_write_action_X;

instance xlator.axi_action with axi_write_action_x2; Instance xlator.axi_action will
instead use axi_write_action_x2

}

xlator_action xlator;

} New action extended
from reg2axi_top
action reg2axi_top X : reg2axi_top {

override {

¢ i writ ti Sth axi writ i 4 All instances of axi_write_action will
tybe axi_wrate_action with axi_write_actron_x=, . instead use axi_write_action_4
instance xlator.axi_action with axi_write _action_ x3; = = =

} Instance xlator.axi_action will
3 instead use axi_write_action_x3

= Qverrides are additive across extensions

= Overrides in a base type are replaced in the extension iff the
type/instance is the same

accellera
54

SYSTEMS INITIATIVE

Specifying Multi-IP Data Flows

action chainl {
Cpu_c::create _data a
crypto_c::encrypt
Cpu_c::copy_data a
crypto_c::decrypt
cpu_c::check data a

activity {
write;
enc;
copy;
dec;
check;
bind write.out buff
bind enc.dst _buff
bind copy.dst_buff
bind dec.dst buff

3

write;
enc;
copy,
dec;
check;
1 aUuUul
crypto_a™s tag
channel
databuf
addr

enc.src_buff;

databuf

Size
i

crypto_a
channel
core

copy.src_buff:
dec.src_bufT;

check.in_puf crypto_a

engine
core

activity {
schedule {
do chainl;
do chain2;

action multi_chain {

aga]uT

tag

70\

heck data

i

r

databuf

crypto_a
engine
core

tag

Resource conflict is automatically taken

care of by serializing the contending actions

databuf
Size
addr
tag

databuf
Size
addr
tag

databuf
Size
addr
tag

databuf
size
addr
tag

SYSTEMS INITIATIVE

Specifying Coordinated Flows

= A simple coherency scenario
- CPU core writes data to cacheable region

- A different core and a DMA read that same memory region

Actions can be realized with

action simple_io_coherency {

true RTL CPUs / device, or

cpu_c::write_data write;)
cpu_c::copy_data_a copy; with testbench bus transactors
dma_c::mem2mem_xfer_a xfer;

cpu_c::check data_a checkl, check2;

activity {
write with { out _buff._seg.cacheable == true; }; i
parallel { |
{
copy with { core.instance_id != write.core.instance_id; %;
checkl;
bind copy.dst buff checkl.src buff;
by
{
xFfer;
check?2; i
bind xfer.dst _buff checkl.src buff; heck_data g
}
}
bind write.out_buff {copy.src_buff, dma_xfer.src_buff};
}
}:

56

rite_data @
core

/" |databut
Size
addr

tag
cacheable

databuf
Size
addr

tag
cacheable

databuf
Size
addr

ta
cacﬁé%bm

m2m xfer a
DMA

check data 3

SYSTEMS INITIATIVE

o7

Layering System Power Concern

« Two power domains A, and B
* Each power can be in mode SO (active), S1 S2 (sleep modes)

« Subsystem operations depend on respective domain active state

DDR Controller \

Should reuse base
model of behaviors
and scenarios as is!

accellera

SYSTEMS INITIATIVE

U

Defining Power Logic

State object representing

enum power_state_e {SO, S1, SZL~ RET[s[CIEVERSS W ol RS el

state power_state s {
rand power_state e dmn_A, dmn_B; —R=all[agh=luiglelSi(=N el =r:1e0

domain

constraint initial -> {
dnmn_A == SO ;
dmn_B == SO ; : :
r T Both domains start out active
33

component power_ctrl c {
pool power_state s sys pwr_statevar;

extend pss_top {
power_ctrl_c power_ctrl;
bind power_ctrl.sys pwr_statevar *;

action change_power_state { }:
input power state s prev; .
output power_state_ s next;

33])
}: State variable is bound to

actions' inputs/outputs by
state type

Power transition action reads

the previous power state and

establishes a new state
accellera

SYSTEMS INITIATIVE

Introducing Power Dependencies

extend graphics_c::decode { Input state with a precondition
input power_state_ s curr_power_state;

constraint curr_power_state.dmn_B == SO;

LE pwr_state

Q dmn_A=S0
dmn B=S0

|

|

extend crypto_c::encrypt{
input power_state_s curr_power_state;
constraint curr_power_state.dmn_A == SO;

pwr_state
dmn_A=S0
dmn B=S2

/};

Dependencies layered on top of

existing action definitions in a non-
intrusive way

pwr_state
dmn_A=S0
dmn B=S0

action encrypt_after_low A {
activity {

do change power_state with {

next.dmn_A 1= SO;

}: Tool must infer
do encrypt; additional action due
}: to action precondition

¥

59 SYSTEMS INITIATIVE

60

Exercising Power Scenarios

A PSS compliance tool

analyzes the entire scenario

and trims the scenario space
action rand_traffic {

z
activity {
select { \

do cpu_c::copy;
do crypto_c::encrypt;

¥

action phased_pwr_traffic {
activity {
repeat (2) {
do change_power_state;
do rand_traffic;

do graphics_c::decode;
} <
¥

O

pwr_state
dmn_A=S0
dmn B=S0

pwr_state
dmn_A=S2
dmn B=S0

pwr_state
dmn_A=S0
dmn B=S1

SYSTEMS INITIATIVE

Tom Lin, Synopsys

GENERATING TESTS
FROM PORTABLE STIMULUS

IIIIIIIIIIIIIIIII

62

PSS Test Generation Flow

PSS Model

~ =

PSS Tool

s
CPU DDR Controller
= Il o |
‘_ T
Bus
r i
SoC

Crypto

0

UART l Graphics SS l

Verification Engine

Deployment Models

tet

PSS Model

~ =

PSS Tool

—

DDR Controller

Crypto l Graphics SS

UART VIP UVM Simulation

o

y

4,8

Interactive Test Generation
(Run-time Solving,
Potentially limited portability)

St

PSS Model

~ =

PSS Tool

DDR Cont Jller
T

Crypto l Graphics SS

Full Chip Simulation

i

UART VIP

11

Pre-Generated Test
(Generation-time Solving,
Potentially limited reactivity)

PSS Model

S =

PSS Tool

UART Crypto l Graphics SS
—J

sl Full chip Simulation

1

On Target Generation
(Model + Tool running on SoC

accellera

SYSTEMS INITIATIVE

64

Exec Block Types

= Specify mapping of PSS entities to their implementation

header

\ 4

declaration

A 4

run_start

pre_solve

pre_solve

constraint solving constraint solving

test.c

##include <stdint.h>

Could be SV
void declared_func() { or other |anguage

}
void test_main() {
do_run_start();

fork_threads(); &
do_run_end();

}

\ void threado() {

7/ step N test.sh

do_body(); gcc -c test.c -DBARE_METAL

1

fvoid threadl() {

}

Could be multiple threads on one core,
or threads running on different cores aceellera

U

SYSTEMS INITIATIVE

65

Using Code Templates in Exec-Body

= Exec ‘body’ block specifies implementation
- Call init_uart_rx, specifying appropriate stop _bits
- Call gen_uart_traffic with stop_bits and size

:) Can be arbitrary SV/UVM code
action read_in_a {

output data_stream:i”ijiii”_,,—’—————;»
exec body SV = """

init_uart_rx({{data.stop_bits}});
gen_uart_traffic({{data.stop_bits}}, {{data.size}});

}

= Exec 'declaration' block can introduce
declarations into generated test

- UVM factory calls
- Layered constraints

topO

\

UART VIP

SYSTEMS INITIATIVE

Platform 1: UVM Simulation

= Procedures implemented as SV tasks
- Leverage platform infrastructure (VIP, registers)

= Test runs as a virtual sequence

class uvm_simtest_base extends subsys_vseq;
task init_uart_rx(byte unsigned stop_bits);

C m_uart_regs.LCR.STB = StOp_bltS;)_/
m uart regs.update();

endtask

task gen_uart_traffic(
byte unsigned stop_bits,
int sz);
uart_vip_tx_seq tx_seq = new();
assert(tx_seq.randomize() with {
n_stop_bits == stop_bits;
n_bytes == sz;
).

fork
tx_seq.start(m_uart_vip.seqr);
join_none

endtask

endclass API Implementation

AXI VIP

EES) mm

—| oo s o]

Generated by

"exec body SV" template |
class uvm_simtestl extends”uvm_simtest_base;

// Action execution realization
init _uart_rx(1);
gen_uart_traffic(1, 128);

/]

// Action execution realization
init _uart_rx(2);
gen_uart_traffic(2, 27);

endtask Example Test

endclass
accellera

SYSTEMS INITIATIVE

67

Using Code Templates in Exec-Body

= Exec ‘body’ block specifies implementation
- Call init_uart_rx, specifying appropriate stop _bits
- Call gen_uart_traffic with stop_bits and size

action read_in_a {
output data_stream_s data;

exec body C = """
init_uart_rx({{data.stop_bits}});
gen_uart_traffic({{data.stop_bits}}, {{data.size}});

}

= Exec 'declaration’ block can introduce
top-level declarations into generated C test

- Types
- Global objects

topO

| \

accellera

SYSTEMS INITIATIVE

68

Platform 2: Software Driven Emulation

= Procedures implemented as C functions

- Write directly to UART registers

- Trigger UART traffic by writing to the UART VIP’s snoo

extern void write32(uint32_t *addr, uint32_t data);
extern uint32_t read32(uint32_t *addr);

extern uint32_t
extern uint32_t

*UART_BASE;
*UART_VIP_SNOOP_ADDR;

#define UART_LCR_OFFSET 3
#define UART_LCR_STB 2

void init_uart_rx(uint8_t stop_bits) {
uint32_t lcr = read32(&UART_BASE[UART_LCR_OFFSET]);
lcr &= (~(1 << UART_LCR_STB)));
lcr |= (stop_bits << UART_LCR_STB);
write32(&UART_BASE[UART_LCR_OFFSET], lcr);

}

void gen_uart_traffic(uint8_t stop_bits, int sz) {
// Write to the UART VIP snoop address
// to trigger sending traffic.
write32(UART_VIP_SNOOP_ADDR,
(sz & OxFFFF) | (stop_bits << 16));

API Implementation

Generated by
"exec body C" template

ution realization
init_uart_rx(1);
gen_uart_traffic(1l, 128);

// Action execution realization
init_uart_rx(2);

gen_uart_traffic(2, 27);

return 0;

} Example Test

SYSTEMS INITIATIVE

Platform 3: Post-Si Host Bus Adapter

= Procedures implemented as C functions

- Send PCle TLPs to access UART
- Send serial traffic via host UART

void init uart rx(uint8 t stop bits) {

uint32_t lcr = pcie_read32(&UART_BASE[UART_LCR_OFFSET]);
lcr &= (~(1 << UART_LCR_STB)));

lcr |= (stop_bits << UART_LCR_STB);
pcie_write32(&UART_BASE[UART_LCR_OFFSET], lcr);

Ll

J

void gen_uart_traffic(uint8_t stop_bits, int sz) {
int i;
struct termios opt;

// Create random data
uint8 t *data = (uint8_t *)malloc(sz);
for (i=@; i<sz; i++) { data[i] = rand(); }

Mnfigur‘e the stop bits
tcgetattr(UART_FD, &opt);
opt.c_cflag &= (~CSTOPB);

opt.c_cflag |= (sz==2)?CSTOPB:0;
tcsetattr(UART_FD, &opt);

// Send data

write(UART_FD, data, sz);
\\\fisifdata);
}

UART

PCIE Host Bus Adapter Card

69

SYSTEMS INITIATIVE

70

Using import functions in Exec-Body

= External procedures implement the test
- Program UART receive mode
- Trigger generation of UART traffic

// Initializes the UART to receive
import void init_uart_rx(bit[1:0] stop_bits);

// Triggers an external agent to generate UART traffic
import void gen_uart_traffic(bit[1:0] stop_bits, int sz);

= Exec ‘body’ block specifies implementation
- Call init_uart_rx, specifying appropriate stop_bits
- Call gen_uart_traffic with stop_bits and size

action read_in_a {
output data_stream_s data;

exec body {
init_uart_rx(data.stop bits);
gen_uart_traffic(data.stop_bits, data.size);
}
}

topO

\

UART VIP

SYSTEMS INITIATIVE

Platform 1: UVM Simulation

= Procedures implemented as SV tasks
- Leverage platform infrastructure (VIP, registers)

= Test runs as a virtual sequence

class uvm_simtest_base extends subsys_vseq;

task init_uart_rx(byte unsigned stop_bits);

endtask

task gen_uart_traffic(
byte unsigned stop_bits,
int sz);
uart_vip_tx_seq tx_seq = new();
assert(tx_seq.randomize() with {
n_stop_bits == stop_bits;

n_bytes == sz;
).
fork
tx_seq.start(m_uart_vip.seqr);
join_none
endtask .
endclass API Implementation

C m_uart_regs.LCR.STB = StOp_bltS;)_/
m uart regs.update();

AXI VIP
T

UART

Generated by
import function |uaien

class uvm_simtestl extends uy

’’simtest_base;

virtual task body();
//...

// Action execution realization
init _uart_rx(1);
gen_uart_traffic(1, 128);

/]

// Action execution realization
init _uart_rx(2);
gen_uart_traffic(2, 27);

endtask Example Test

71

endclass
accellera

SYSTEMS INITIATIVE

72

Platform 2: Software Driven Emulation

= Procedures implemented as C functions

- Write directly to UART registers

- Trigger UART traffic by writing to the UART VIP’s snoop addr

extern void write32(uint32_t *addr, uint32_t data);
extern uint32_t read32(uint32_t *addr);

extern uint32_t
extern uint32_t

*UART_BASE;
*UART_VIP_SNOOP_ADDR;

#define UART_LCR_OFFSET 3
#define UART_LCR_STB 2

void init_uart_rx(uint8_t stop_bits) {
uint32_t lcr = read32(&UART_BASE[UART_LCR_OFFSET]);
lcr &= (~(1 << UART_LCR_STB)));
lcr |= (stop_bits << UART_LCR_STB);
write32(&UART_BASE[UART_LCR_OFFSET], lcr);

}

void gen_uart_traffic(uint8_t stop_bits, int sz) {
// Write to the UART VIP snoop address
// to trigger sending traffic.
write32(UART_VIP_SNOOP_ADDR,
(sz & OxFFFF) | (stop_bits << 16));

API Implementation

Generated by
import function

i

int main(int arg
//...

// Action execut
init_uart_rx(1);
gen_uart_traffic

// Action execut
init_uart_rx(2);

gen_uart_traffic

return 0;

i;ljrip,rfgkgv) {

ion realization
(1, 128);
ion realization

(2, 27);

Example Test

SYSTEMS INITIATIVE

Platform 3: Post-Si Host Bus Adapter

= Procedures implemented as C functions

- Send PCle TLPs to access UART
- Send serial traffic via host UART

void init uart rx(uint8 t stop bits) {

uint32_t lcr = pcie_read32(&UART_BASE[UART_LCR_OFFSET]);
lcr &= (~(1 << UART_LCR_STB)));

lcr |= (stop_bits << UART_LCR_STB);
pcie_write32(&UART_BASE[UART_LCR_OFFSET], lcr);

Ll

J

void gen_uart_traffic(uint8_t stop_bits, int sz) {
int i;
struct termios opt;

// Create random data
uint8 t *data = (uint8_t *)malloc(sz);
for (i=@; i<sz; i++) { data[i] = rand(); }

Mnfigur‘e the stop bits
tcgetattr(UART_FD, &opt);
opt.c_cflag &= (~CSTOPB);

opt.c_cflag |= (sz==2)?CSTOPB:0;
tcsetattr(UART_FD, &opt);

// Send data

write(UART_FD, data, sz);
\\\fisifdata);
}

UART

PCIE Host Bus Adapter Card

73

SYSTEMS INITIATIVE

74

Using HSI Abstraction in Exec-Body

class uart_c : public component {
public:
uart_c(const scope& s):component(this){}

class read_in_a : public action {
public:
read_in_a(const scope& s):action(this){}

output<data_stream_s> out{"out"};
constraint c1 { .. };
constraint c2 { .. };

uart_hsi hsi{“hsi”};
randv<bit<0,0>> stop_bits{“stop_bits"};

regs.lcr.stop_bits = stop_bits;
void body() { regs.lcr.update(status);

hsi.init_uart_rx(stop_bitszi\\~////f

// drive input data on VIP

}
}s

type_decl<read_in_a> read_in;

}s

topO

\

UART VIP \

SYSTEMS INITIATIVE

75

Platform 1: UVM Simulation

class uart_c : public component {
public:

uart_c(const scope& s):component(this){

UVM AXI Transaction
Register Read/Write

class read_in_a : public action {
public:
read_in_a(const scope& s):action(thijs){}

output<data_stream_s> out{"out"};
constraint c1 { .. };
constraint c2 { .. };

uart_hsi hsi{“hsi”};
randv<bit<0,0>> stop_bits{“stop_bitfs"};

void body() {

Gsi .init_uart_rx(stop_bits);

(// drive input data on VIP
}

AXI VIP

UART VIP

};

type_decl<read_in_a> read_in;

};

Drive UART VIP
Config / Data

DDR Controller
[1]
| |

SYSTEMS INITIATIVE

Platform 2: Software Driven Emulation

};

class uart_c : public component {
public:

uart_c(const scope& s):component(

class read_in_a : public action {
public:
read_in_a(const scope& s):actio

output<data_stream_s> out{"out"}};

Py —

constraint c1 { .. };
constraint c2 { .. };

uart_hsi hsi{“hsi”};

Pre-Generate Software
Driven Test Case

(this){}

3

randv<bit<0,0>> stop_bits{“sto&kbits"};

void body() {

(hsi .init_uart_rx(stop_bits)y

(// drive input data on VIP

};

type_decl<read_in_a> read_in;

}

DDR Contaller

CPU

Bus

Crypto Graphics SS

UART VIP

76

Drive UART VIP
Config / Data

SYSTEMS INITIATIVE

I

Platform 3: Post-Si Host Bus Adapter

class uart_c : public component {
public:
uart_c(const scope& s):component(this){}

- o

class read_in_a :
public:
read_in_a(cons

PCIE Write

constraint c2 {

uart_hsi hsi{“hsi”};

randv<bit<0,0>> stop_bits{“stop_byjts"};

void body() {

<E1si.init_uart_rx(stop_bits);

(// drive input data on VIP }

};

L 7 77CJ

UART

DDR Controller
CLT T I8 o |

type_decl<read_in_a> read_in;

UART Tr

oo s |
PCIE Host Bus Adapter Card
ansmit

};

SYSTEMS INITIATIVE

COVERAGE IN
PORTABLE STIMULUS

IIIIIIIIIIIIIIIII

Demystifying Coverage

= What coverage is and is NOT in Portable Stimulus
= Defining scenario coverage
= Coverage monitoring

= Usage Examples

SYSTEMS INITIATIVE

What is Portable Stimulus Coverage?

Mnney.sl
/47 the AddMoney helper.<fsummary:>
%/ public IMoney Add{IMoney m)
{
return mw.AddMoney ithis):
}
4o public IMoney AddMoney (Money m)

{
if (m.Currency.EgualsCurrency) |

m (:O d e (:Ove ra e‘ p) N 0 e o [T e sy EHEereE)
L] recurn new MoneyBag (this, m);

¥

=] public IMoney AddMoneyBay (MoneyBagy =)

recurn =.AddMoney ithis) ;

= Functional Coverage? Closer ey e

covergroup wycov [sup;

- Covergroups? Could be, but not at coverpoint acar (vins al4] = ([0:2551):)

coverpoint tr_type (bhins tr[] = {rd, brd, wr, bur}:}

addr_type: cross addr, tr_type;

implementation/protocol level. el

wycov covl = new; f/ instantiate cowvergroup

= Test Coverage? Ok, but can’t we do better?

A B C D E F

1 |Sec# Descrip TESTMAME STATUS OWMER COV class my test : proj_test_base {
2 |51 System Tests 5/7 (71.4%)

_ // Override run_test with your test
3 |51.1 peie_dma_test PASS Mary 1/1 (100%) // Return the number of errors seen during the test]
4 |5.1.2 eth_dma_test FAIL Phil int run_test() {
5 513 mem_exhaust PASS John 1/1 (100%)

- // Implement test code here

A 1514 all clava reoc wr DASS PAary 111 110ne&L

return 0; // Test passed with no errors

SYSTEMS INITIATIVE

Portable Stimulus Coverage
Opportunity & Challenge

= Examples of system level coverage:
- Connectivity and addressability testing
- Power state sequencing
- Resource utilization - Did all internal memories get used by DMA tests?

Formalization of Ability to formally

system level describe coverage of
scenarios and the legal scenarios
models and attributes

= Introduction of random => Need coverage to confirm usefulness

= Portability challenge — collecting coverage in non-simulation
environments

- Lack of visibility in HW-based platforms makes traditional coverage collection difficult

accellera

SYSTEMS INITIATIVE

U

Re-Imagined Coverage

() |P S t (A N/) ()
. ystem pps
Architect Design/DV | Design/DV Eval Software Test
_) A _ J _) _)
4 Use) V4 4 N\ N\ [)
Cases IP DUT, SUT, Device
’ PSS PSS Scenarios . Scenarios
PSS Drivers
Models Models
\ Models \. J 0 / U J
PS Enabled Development Framework
4) N) (" Evaluation, \ (Virtual, \()
TLM Simulation
Customer Emulator, Tester
Madel Boards Silicon
SV, UM Multiple
\ SystemC) e+) U crer+ U)

SYSTEMS INITIATIVE

Types of Coverage in Portable Stimulus

= Action Coverage
- Were all (or a specified subset of) defined actions executed?

= Scenario (Action Sequence) Coverage
- What legal sequences of actions were exercised? Aka “control path coverage”

= Datapath Coverage

- Were all legal sources and sinks for an action sequence datapath (input/output)
covered?

= Value Coverage
- Think covergroups for attributes (config values, state values, ...)

= Resource Coverage
- Any resources added to a resource pool that went unused?

= Crosses of any of the above types a@

SYSTEMS INITIATIVE

Defining Scenario (Action Sequence)
Coverage

= Scenarios are all legal behavior defined between entry
and exit points

- Choices are made by the tool between these points
- e.g. alternative actions, resource usage, data source

= |f we can enumerate the choices,
we can measure coverage of them

- In theory a tool could also target this coverage
- I.e. make choices based on what has/hasn’'t been covered

=Warning: with great power comes great responsibility
- Be careful of the number of choices between your entry and exit points

- Don’t try to target a coverage with more choices than atoms in the

universe
accellera

SYSTEMS INITIATIVE

U

Monitoring Coverage

= Stimulus monitoring

- Generation time tool can output what it generated/scheduled

- As long as test “passes”, the coverage data is valid

= Runtime State monitoring

- Requires generation of monitoring code
- May be C/C++ code running on target cpu

Back to School
v" Checklist

back pack a
[J

crayons Caye
-

pencils -

markers

—e.g. data sent out “trickbox” mechanism T Project .)

- May be “off-chip” monitoring via test ports
I Useof:
or other communication ports | Crayons

' Pencils
| Markers

1
| Glue

Grading

v

Red , Blue, Yellow, Green

Solid, Sh¥ding,

Dry- Srose . Smelly,

All corners pressed down?

NS Y

a

accellera

SYSTEMS INITIATIVE

U

Usage Examples

= Cover — Resource utilization
- cover resource mem with (type == SRAM)

= Cover — Uart example

= Cover — DMA example

SYSTEMS INITIATIVE

Simple Example: UART

Data

Command

stream
rand
rand

data_stream_ s {
int size;

)

dir_enum direction;
rand bit[1:0] inside [1..3] stop_bits;

}

buffer
rand

data buff b {
int size;

}

Generate pkt
stream

DMA pkt stream
Into mem buffer

e

N\

action read_in_a {

action g2m_xfer {

/

L=

DMA mem buffer

input data stream_s src;

L/

output data_stream_s data;

s

Y

output data buff b dst;

/

Into pkt stream

87

action write out _a {
input data_stream_s data;

coverjpec {
sizé cp :

bins size_bins [1..20]:1;

}s

coverpoint data.size {

SYSTEMS INITIATIVE

Cover Memory to Memory System Data Paths
Value/attribute coverage (source->destination locations, size, ...)

Command

abstract action move_data_a {
I input data buff_s src_buff;
output data buff_s dst_buff;
constraint {src_buff.seg.size == dst_buff.seg.size};

coverspec {
src_cp : coverpoint src_buff.location;
dst_cp : coverpoint dst_buff.location;
srcXdst : cross src_cp, dst cp;
size_cp : coverpoint src_buff._seq.size {

bins size bins = [1..20]:1;

+

}

Data <

move_data_a

core_s

SYSTEMS INITIATIVE

88

Cover Memory to Memory System Data
Paths

Value/attribute coverage (source->destination locations, size, ...)

abstract action move_data_a {
input data _buff_s src_buff;
output data buff s dst buff;
constraint {src_buff._seg.size == dst_buff.seg.size};

coverspec {
constraint {src_buff.seg.size 1= 10}; move_data_a
src_cp : coverpoint src_buff.location; core_s
dst_cp : coverpoint dst_buff.location;
srcXdst : cross src_cp, dst cp;
size_cp : coverpoint src_buff.seq.size {

bins size bins = [1..20]:1;

}

by

SYSTEMS INITIATIVE

THE HARDWARE/SOFTWARE
INTERFACE LIBRARY

IIIIIIIIIIIIIIIII

91

The Story so far...

= Importance of Portability of test-cases

- To different environments
- And different platforms

= Capturing complex use-cases

= Measuring Coverage

Is that all there Is to 1t?

92

Scope
(Integration)

Middleware
(Graphics, Audio,
etc..)

OS & Drivers

Bare Metal SW

System on Chip
(HW + SW)

Sub-System

User
e, oy Analog SW Verification | SWTest P\?:Ifdig‘;‘;“
Developer | Developer | Developer | Engineer Engineer Ennasy

| Abstract Portable Stimulus Model

* Syntax/Concepts/Semantics + Visualization
*+ Use Case Verification Runtime Portable Semantics

\

-

Tools (Secret Sauce) APls

Virtual Platform m FPGA Prototype Silicon Board
atiorm

Need for HW-SW Interface in PS

From a single spec...

...generate Hardware
dependent software
(HdS) aka “drivers” in
different environments
and languages

Hardware-Software Interface spec is required for “real portability”

across environments

SYSTEMS INITIATIVE

What 1s HSI?

= Hardware/Software Interface layer is

- ...an abstraction responsible for device management
- Device initialization, operations such as configure, transmit/receive
- Registration of device capabilities

- ...set of constructs for capturing the Hardware aspects required to
Implement the abstraction

- Programming registers, setting up descriptor chains, interrupt properties and
handling, ...

- Capture all programming sequences

- ...to summarize: construct the programmer’s view of a device agnostic
to the underlying verification environment

accellera

SYSTEMS INITIATIVE

U

94

Scenarios and HW/SW interface

Scenarios/Use
Cases

Driver API Interface

HW/SW Interface

Captures the test intent

Uses Driver APIs specified in the
Driver API Interface Layer

Device agnostic, but specific to a device-
function (category)

Is device specific

Sequences for configuration,
initialization, descriptor
management, data transfer, ...

Interrupt handling
Publish device capabilities

accellera

SYSTEMS INITIATIVE

U

What HSI Enables

Test cases Test cases Test cases
Stimulus = Test bench (in C, (in C, (in C,
Spec (in SV) executing on executing on executing on

host PC) host PC) target)

HSI Spec Driver Driver Driver Driver (in C, on
for DMAC (in SV) SR (in C, on host) o - =
: (in C, on host) target)

==

= o

RTL Accelerated simulation FPGA, w/ external FPGA, w/ embedded
Simulation with Emulator PCle master core

Ensures Portability of Scenarios across Environments

SYSTEMS INITIATIVE

What HSI| Enables

Test
Test cases - = = rarios ™ =P Test cases

Driver for Driver for Driver for Driver for
DMAC-A UART-A DMAC-B UART-B
75 Y A [}

| |
I I [I

HSI Spec o _ _| HSI Spec HSI Spec = _ _| HSI Spec

for DMAC-A for UART-A for DMAC-B for UART-B

]

Enables Portability of Scenarios across Devices/SoCs

96 SYSTEMS INITIATIVE

HW/SW Interface Spec Elements

Capabilities Init/configure Téiggmf
1 l Sequences | | = Reglisters
<> G <> = EIFOs
= Virtual registers
//v = Descriptor management
’ _ = Interrupt management
Interrupt Descriptor
management Management

ﬁ @ @ = Sequences

= Device capabilities

Register Access

|I e [117 [
= O1m

Registers FIFOs Virtual Registers

SYSTEMS INITIATIVE

DMA Allocation Revisited

resource pool rp with 4 instances of type channel

action type mem2mem xfer_a {

mem2mem_xfer_a /

'Registers

A mem2queue_xfer7a/
A
| A

Declare Reg as a register bank

With Channel as array of register bank

With Register src of 32b;
With Register dst of 32b;

With Register ctrl of 32b

With field src incr;

¥;
i
, gueue2mem xfer a _—
ac a A Assign Reg-Channefirc]-src = Address g rc_data
Al | Assign Reg.Channel[rc].dst = of dst_data;

A Assign Reg.Channel[rc].size of src_data;

Al | Assign Reg.Channel[rc].c

i .src_incr = FIXED;
IE A Assign Reg.Channel[rc

trl.dst_incr INCR;

Wi A
ac Assign Reg.IntraC].xfer_end = 1;
W Assign Reg.Chéannel[rc].enable = 1;
re - i
Wait for Intr.xfer_end[rc];
(od0]
(6{6)
}: T
Note: Exampn: T PSTCUTUTUTT; TTUT aCTUar TCPTCSTTTTOtTOTT

nterrupts

Declare Intr as interrupt line

With xfer_end as array of interrupts

With Status
Reg.Intr STS[rc].xfer end;

Enable by Reg.Intr[rc].xfer_end=1;

Disable by Reg.Intr[rc].xfer_end=0;

SYSTEMS INITIATIVE

DMAC HSI Specification

#include 'pss.h”

class dma_src : public pss::reg

{
public:
dma src(/* ... */) - pss::reg (
description("'Source address™)
, oFfset(0x0)
, width(32)
, access(pss::PSS ACCESS RW)
, reset(0x0))
{1}
};
class dma_dst : public pss::reg
{
public:
dma_dst(/* ... */) : pss::reg (
description('Destination address'™)
, offset(0x4)
, width(32)
, access(pss::PSS ACCESS RW)
, reset(0x0))
{1}
};
class channel_regs : public pss::reg_group
{
public:
dma_src src{''src"'};
dma_dst dst{''dst"};
/* Other registers */
};

class dmac_regs :

{

j

class dmac_interrupts :

{

j

class dmac :

{

public pss::reg_group
public:

pss::vector<channel_regs> channel{ 'channel', 8};
/* Other registers */

public pss::intr_line

public:
pss::intr_event xfer_done{ 'xfer_done'"};
/7 .. */

public pss::hsi

public:
dmac(/* ... */) { }
void burld(void);
void mem2mem_xfer(void);
void mem2queue_xfer(void);
void queuez2mem_xfer(void);

dmac_regs regs;
dmac_interrupts intr;

99

SYSTEMS INITIATIVE

DMAC HSI Specification

void dmac: :build(void)

{
intr.xfer_done
.event_type(pss: :PSS _STATUS)
-enable(PSS_ANON_FUNC({regs.intr_enable.xfer_done = 1;}))
.disable(PSS_ANON_FUNC({regs.intr_enable.xfer_done = 0;}))
.get_status(PSS_EXPR({regs.intr_status.xfer_done == 1;}))
+
void dmac: :mem2mem_xfer(dma_xfer_request &req)
{
regs.channel[req.rc].src = req.src_data.address();
regs.channel[req.rc].dst = req.dst data.address();
regs.channel[req.rc].size = req.src_data.size();
regs.channel[req.rc].ctrl.src_incr = FIXED;
regs.channel[req.rc].ctrl.dst_incr = INCR;
regs.intr_enable._xfer_done = 1;
regs.channel[req.rc].enable = 1;
wairt(intr.xfer_done);
+

SYSTEMS INITIATIVE

Capabilities

F N

Init/configure

Truly Portable Stimulus

Transmit/
Receive

A

101

Sequences
v v ﬂ
o
~ &
f o —
Interrupt Descriptor
management Management
Register Access Ok \
| | == [ITT] | |
== 11
Registers FIFOs Virtual Registers

m ¢ SystemVerilog =
_/

/ Test bench

Bare metal drivers for
bring up/validation

5

VxWorks

Firmware/
OS Device Drivers

accellera

SYSTEMS INITIATIVE

U

Sharon Rosenberg, Cadence Designh Systems

CONCLUSION

IIIIIIIIIIIIIIIII

We Hope You Learned...

Portable stimulus is a perfect solution for many real problems we
have today — even within a single platform

Portable stimulus can stretch productivity and quality across
platforms, users, integrations, and configurations

‘M___——————’/

Portable Stimulus Standard is a serious and timely industry effort
under Accellera

_——____-_—/

How this standard offers unique concepts and constructs
(components, actions, flow objects and resources) to build powerful
scenarios that map with flexibility to target platforms.

SYSTEMS INITIATIVE

We Hope You Will...

\v/

Participate in shaping this promising standard with your suggestions,
use cases and requirements through:
 Your company’s Accellera representation

« EDA vendor voicing your thoughts
 Contacting any of the speakers or PSWG officers

v_/

Be an agent of change
 Rethink verification and validation efficiency for your team and

consumers
Cross the aisle and communicate with peers in other platforms

to accomplish more reuse with portable stimulus

accellera

SYSTEMS INITIATIVE

We Thank...

Accellera and DVCon 2017 for offering PSWG the opportunity and real
estate to deliver this tutorial to the community

All speakers who spent several hours and weeks preparing and
Improving this tutorial

All PSWG members for their feedback to improve tutorial’s message
and content

accellera

105 SYSTEMS INITIATIVE

U

Thank You!!

	PSS Tutorial�Accellera Day, Taiwan�
	Today's Speakers
	Portable Stimulus�The Next leap in �Verification & validation Productivity
	A Brief History of Verification
	Why Portable Stimulus?
	Re-Imagined Development Process
	What Portable Stimulus Is and Is Not
	What About UVM?
	What is the PSWG trying to Fix?
	Portability Use Cases & �Potential Capabilities
	Simplify Test Authoring�
	Deployment Use Cases: Transactional Reuse
	Deployment Use Cases: SW Driver Prototype
	Deployment Use Cases: SW and FW Awareness
	Why a Dedicated PS Standard?
	Introducing �Portable Stimulus�concepts & constructs
	Raising the Abstraction Level
	Stimulus at a Higher Level
	Actions Capture Intent
	Simple Example: UART
	Simple Example: UART
	Actions are Modular
	Basic Scenario – Data Receive
	Basic Scenario – Data Receive C++
	Activities
	Activity – Robust Scheduling
	Activity – Robust Scheduling
	Flow Objects: Dataflow & Scheduling
	Buffer Object Semantics
	Stream Object Semantics
	Defining Target-Specific Constraints
	Resource Objects
	Back to the Example: Resources
	Components & Pools
	Components & Pools: C++
	Back to the Example
	Back to the Example
	Back to the Example
	Back to the Example
	Creating a Test
	Creating a Test: Loopback
	Creating a Test: Loopback
	Creating a Test: Loopback
	Creating a Test: Loopback
	Creating a Test: Loopback
	Creating a Test: Loopback
	Creating a Test: Loopback in C++
	building system-level scenarios
	What are System-Level Scenarios?
	A Simple SoC Example
	Modeling Targeted Behaviors
	Reuse IP Models
	SW Operations Modeling
	Overriding Types
	Specifying Multi-IP Data Flows
	Specifying Coordinated Flows
	Layering System Power Concern
	Defining Power Logic
	Introducing Power Dependencies
	Exercising Power Scenarios
	Generating Tests �from Portable Stimulus
	PSS Test Generation Flow
	Deployment Models
	Exec Block Types
	Using Code Templates in Exec-Body
	Platform 1: UVM Simulation
	Using Code Templates in Exec-Body
	Platform 2: Software Driven Emulation
	Platform 3: Post-Si Host Bus Adapter
	Using import functions in Exec-Body
	Platform 1: UVM Simulation
	Platform 2: Software Driven Emulation
	Platform 3: Post-Si Host Bus Adapter
	Using HSI Abstraction in Exec-Body
	Platform 1: UVM Simulation
	Platform 2: Software Driven Emulation
	Platform 3: Post-Si Host Bus Adapter
	Coverage in �Portable Stimulus
	Demystifying Coverage
	What is Portable Stimulus Coverage?
	Portable Stimulus Coverage�Opportunity & Challenge
	Re-Imagined Coverage
	Types of Coverage in Portable Stimulus
	Defining Scenario (Action Sequence) Coverage
	Monitoring Coverage
	Usage Examples
	Simple Example: UART
	Cover Memory to Memory System Data Paths�Value/attribute coverage (source->destination locations, size, …)
	Cover Memory to Memory System Data Paths�Value/attribute coverage (source->destination locations, size, …)
	The Hardware/Software Interface Library
	The Story so far…
	Need for HW-SW Interface in PS
	What is HSI?
	Scenarios and HW/SW interface
	What HSI Enables
	What HSI Enables
	HW/SW Interface Spec Elements
	DMA Allocation Revisited
	DMAC HSI Specification
	DMAC HSI Specification
	Truly Portable Stimulus
	conclusion
	We Hope You Learned…
	We Hope You Will…
	We Thank…
	Thank You!!

