
Cut Your Design Time in Half 
with Higher Abstraction

Speakers: Mike Meredith – Cadence Design Systems, Inc.
Peter Frey – Mentor Graphics Corp.



Agenda

• Introduction 
– How High-Level Synthesis(HLS) works targeted for 

hardware designers
• Accellera SystemC Synthesizable Subset
• High-Level Synthesis Verification
• HLS in the Wild

– Intel Experience

5/1/2017 Cut Your Design Time in Half with Higher Abstraction 2



How High-level Synthesis Works: 
An Intro for hardware designers

Frederic Doucet
Qualcomm Atheros, Inc



High-level Synthesis

• HLS tool transforms synthesizable 
SystemC code into RTL Verilog
1. Precisely characterizes delay / area 

of all operations in a design 
2. Schedules all the operation over the 

available clock cycles
3. Can optionally increase latency 

(clock cycles) to get positive slack 
and increase resource sharing 
(reduces area)

4. Generate RTL that is equivalent to 
input SystemC

• Pipe depths / latencies decided by HLS 
scheduler

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 4

High-level 
synthesis

RTL 
Verilog

SystemC
design

Synthesis 
directives Tech. 

node
spec



High-level Synthesis

• SystemC HLS has been used in many large semiconductors companies 
for years, on both control/datapath heavy designs

• Main SystemC HLS usage:
– Encode and verify all high-level control-flow and datapath functions in 

SystemC
– Use HLS tool automatically generate all pipelines and decide latencies 

resulting in RTL is optimized for specified clk period / tech node. 

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 5



SystemC: Hardware Model in C++

• SystemC: syntax for hardware modeling framework in C++

– Modules
– Ports
– Connections
– Processes

• Inside a process is C++ code describing the functionality
– DSP processing
– Control logic
– Etc.

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 6

DUTa
b
c
d

z

nrst
clk



Example : Synthesizable SystemC

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 7

SC_MODULE(DUT) 
{

sc_in <bool> clk; 
sc_in <bool> nrst;
sc_in <int>  a;
sc_in <int>  b;
sc_in <int>  c;
sc_in <int>  d;
sc_out<int>  z;
...
void process() {
z = 0;
RESET: 
wait();

MAIN_LOOP: 
while (true) {
int v1 = a * b;
int v2 = c * d;
int v3 = v1 + v2;

COMPUTE_LATENCY:    
wait();

z = v3;
}

}
}; 

* *

+

a b c d

v3

z

v3



Example: High-level synthesis

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 8

* *

+

a b c d

v3

z

v3

Op delays: 
• mul: 4ns 
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• no micro-arch directive

* *

a b c d

v2v1

z

+

v2v1

Scheduler moved the addition across the state to get positive slack

Scheduling/resource 
allocation/binding



Example: High-level synthesis

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 9

Tool generates FSM, datapath
and allocates the registers



Example: High-level synthesis, 
second run

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 10

* *

+

a b c d

v3

z

v3

Op delays: 
• mul: 4ns 
• add: 2ns

Synthesis directives:
• clk period: 5ns
• tech node: 65lp
• minimize resources *

a b c d

v1

z

+

v2v1

*

v2

Scheduler added a state to share the multiplier

Scheduling/resource 
allocation/binding



Example: High-level 
synthesis, second run

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 11

• Notice that there is only one multiplier
• Sharing mux/registers are automatically allocated and bound to 

the generated FSM 



HLS and Abstraction
• The tool automatically generates the micro-architecture details 

– latencies, muxes, registers, FSMs 
 this is what can be abstracted out in the SystemC code

• Starting from SystemC code, HLS tool does: 
1. Map arithmetic/logical operations to resources
2. Allocate resources and try to share them as much as possible
3. Automatically generate FSM and sharing logic
4. Allocate registers and try to share them as much as possible
5. Optionally add clock cycles to get positive slack and maximize sharing
6. Generate RTL

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 12



SystemC to Describe Hardware

• Input SystemC code still needs to capture hardware architecture
– what is the high-level control, data flow and I/O protocols
– what are the necessary concurrent processes
– which are the abstract datapath functions for the tool to refine

 Best done by hardware designer

• Fast turnaround is a big benefit
– Small changes in the SystemC / synthesis directives can quickly generate new 

RTL with new and very different micro-architecture
– Impossible to do with RTL design

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 13



SystemC Language

• Designers can use many of the nice C++ features to help write the code
– Structs/classes, templates, arrays/pointers, functions, fixed/complex 

classes, etc.
– Coding patterns/guidelines to separate signal processing code from 

I/O, etc.

• A standard interpretation of SystemC will help energize the SystemC HLS 
marketplace and accelerate adoption

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 14



The Accellera SystemC 
Synthesizable Subset

Mike Meredith
Vice Chair – Accellera Synthesis Working Group

Cadence Design Systems



SystemC Synthesizable Subset Work

• Development of a description 
of a synthesizable subset of 
SystemC

• Started in the OSCI 
Synthesis Working Group

• Current work is in Accellera
Systems Initiative Synthesis 
Working Group

• Standard approved 3/11/2016

• Many contributors 
over a number of years

• Broadcom, Cadence, 
Calypto, Forte, Fujitsu, 
Freescale, Global Unichip, 
Intel, ITRI, Mentor, NEC, 
NXP, Offis, Qualcomm, 
Sanyo, Synopsys 

165/1/2017 Mike Meredith Cadence Design Systems



General Principles

• Define a meaningful minimum subset
– Establish a baseline for transportability of code between 

HSL tools
– Leave open the option for vendors to implement larger 

subsets and still be compliant
• Include useful C++ semantics if they can be known 

statically – eg templates

5/1/2017 Mike Meredith Cadence Design Systems 17



Scope of The Standard
• Synthesizable SystemC
• Defined within IEEE 1666-2011
• Covers behavioral model in SystemC for 

synthesis
– SC_MODULE, SC_CTHREAD, 

SC_THREAD
• Covers RTL model in SystemC for 

synthesis
– SC_MODULE, SC_METHOD

• Main emphasis of the document is on 
behavioral model synthesizable subset for 
high-level synthesis

185/1/2017 Mike Meredith Cadence Design Systems



Scope Of The Standard

SystemC Elements
• Modules
• Processes

– SC_CTHREAD
– SC_THREAD
– SC_METHOD

• Reset
• Signals, ports, exports
• SystemC datatypes

C++ Elements
• C++ datatypes 
• Expressions
• Functions
• Statements
• Namespaces
• Classes
• Overloading
• Templates

195/1/2017 Mike Meredith Cadence Design Systems



SC_MODULE

Module Structure for Synthesis

clock
reset

Ports
required for

SC_CTHREAD,
SC_THREAD

Signal-level
ports for
reading

data

Signal-level
ports for
writing
data

SC_CTHREAD SC_METHOD

Member 
functionsMember 

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
Signals

20

SC_THREAD

5/1/2017 Mike Meredith Cadence Design Systems



Module Declaration
• Module definition

– SC_MODULE macro
or

– Derived from sc_module
• class or struct

– SC_CTOR
or 

– SC_HAS_PROCESS

• Classes that derive from 
modules are supported

21

// A module declaration
SC_MODULE( my_module1 ) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_CTOR( my_module1 ) {…}

};

// A module declaration
SC_MODULE( my_module1 ) {
sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_HAS_PROCESS( my_module1 );
my_module1(const sc_module_name
name )
: sc_module(name)

{…}
};

5/1/2017 Mike Meredith Cadence Design Systems



SC_THREAD & SC_CTHREAD 
Reset Semantics

• At start_of_simulation each SC_THREAD and 
SC_CTHREAD function is called
– It runs until it hits a wait()

• When an SC_THREAD or SC_CTHREAD is 
restarted after any wait() 
– If reset condition is false

• execution continues
– If reset condition is true 

• stack is torn down and function is called 
again from the beginning

• This means
– Everything before the first wait will be 

executed while reset is asserted

SC_CTHREAD
or SC_THREAD

reset behavior

while (true)  {
main loop

}

post-reset 
initialization

wait();

Note that every path through 
main loop must contain a wait() 
or simulation hangs with an 
infinite loop

5/1/2017 Mike Meredith Cadence Design Systems 22



SC_(C)THREAD

reset behavior

while (true)  {
main loop

}

post-reset 
initialization

wait();

SC_THREAD & SC_CTHREAD
Process Structure

void process() {
// reset behavior must be 
// executable in a single cycle 
reset_behavior();

wait();

// initialization may contain 
// any number of wait()s. 
// This part is only executed
// once after a reset. 
initialization();     

// infinite loop
while (true) {
rest_of_behavior(); 

}
}

235/1/2017 Mike Meredith Cadence Design Systems



Specifying Clock and Reset
Simple signal/port and level 
SC_CTHREAD( func, clock.pos() );

reset_signal_is( reset, true );
areset_signal_is( areset, true );

SC_THREAD( func );
sensitive << clk.pos();
reset_signal_is( reset, true );
areset_signal_is( areset, true );

reset_signal_is( const sc_in<bool> &port, bool level )
reset_signal_is( const sc_signal<bool> &signal, bool level )
async_reset_signal_is( const sc_in<bool> &port, bool level )
async_reset_signal_is( const sc_signal<bool> &signal, bool level )

24

For synthesis, 
SC_THREAD 

can only have a 
single sensitivity 
to a clock edge

5/1/2017 Mike Meredith Cadence Design Systems



Use Of wait()
• For synthesis, wait(...) can only reference the clock edge 

to which the process is sensitive
• For SC_CTHREADs

– wait()
– wait(int)

• For SC_THREADs
– wait()
– wait(int)
– wait(clk.posedge_event())
– wait(clk.negedge_event())

25

For synthesis of 
SC_THREADs 

wait(event) must 
match the sensitivity 

of the clock edge

5/1/2017 Mike Meredith Cadence Design Systems



Types and Operators
• C++ types
• sc_int, sc_uint
• sc_bv, sc_lv
• sc_bigint, sc_biguint
• sc_logic
• sc_fixed, sc_ufixed

• All SystemC arithmetic, 
bitwise, and comparison 
operators supported

• Note that shift operand 
should be unsigned to allow 
minimization of hardware

5/1/2017 Mike Meredith Cadence Design Systems 26



Data Types

• C++ integral types
– All C++ integral types 

except wchar_t
– char is signed 

(undefined in C++)
• C++ operators

– a>>b
Sign bit shifted in if a is 
signed

– ++ and -- not supported 
for bool

• For sc_lv
– “X” is not supported
– “Z” is not supported

275/1/2017 Mike Meredith Cadence Design Systems



Pointers

• Supported for synthesis
– “this” pointer 
– “Pointers that are 

statically determinable are 
supported. Otherwise, 
they are not supported.”

– If a pointer points to an 
array, the size of the array 
must also be statically 
determinable.

• Not Supported
– Pointer arithmetic
– Testing that a pointer is 

zero
– The use of the pointer 

value as data 
• eg hashing on a pointer is 

not supported for synthesis

285/1/2017 Mike Meredith Cadence Design Systems



Other C++ Constructs
• Supported

– Templates
– const
– volatile
– namespace
– enum
– class and struct

• private, protected, public
– Arrays
– Overloaded operators

• Not supported
– sizeof()
– new()

• Except for instantiating modules
– delete()
– typeid()
– extern
– asm
– Non-const global variables
– Non-const static data members
– unions

295/1/2017 Mike Meredith Cadence Design Systems



What to standardize next…
• Benefit of current standard: 

– Provides clear guidelines for synthesizability for C++/SystemC
– Set clear subset for synthesis tools

• We are currently discussing the options for the next standard

• A big list of topics… 
– What is important to us designers?
– What is valuable to EDA vendors? 
– What are the priorities?
– Did we think of everything?

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 30

Join the discussion!  
Join the SWG calls! 



Current standardization discussions

• C++ / C++11
– Unions 
– Constructor arguments
– Automatic port naming VCD 

tracing for all ports for all ports
– Safe array class
– Type handling advances 

(auto, decl)
– Many other features of interest 

…

• Datatype enhancements
– Fixed bit-width and fixed point 

type enhancements
– sc_complex
– sc_float

• Channel libraries
• Microarchitecture directives

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 31



High-Level Synthesis 
Verification

Peter Frey, HLS Technologist



Problem Statement

• Designing your RTL is hard
– Complex architectures
– Specifications open to interpretation
– Many constraints (Power, Linting, DFT, Synthesis)

• Fully debugging your RTL is impossible
– Massive vector sets for HW and SW
– Massive integrated SoCs
– Design cycles under pressure

• Each Year
– Major advances in verification technology, but…
– The problems still get worse

2/18/2016 Peter Frey, Mentor Graphics 33



Advances In Verification 
Technology

Algorithm

Specification
Document Testplan

RTL

Directed
Testbench

Coverage
Points

Constrained 
Random

TLM

UVM

Assertions

Export for SoC integration

2/18/2016 Peter Frey, Mentor Graphics 34



Review of Hardware 
Abstractions

• Algorithmic Model
– No timing or architecture

• Transaction Level Model
– Partitioned for hardware 

architecture

• RTL Implementation
– Synthesizable to gates

o = f(i,s)i,s o

i

s

o

Control i/f

i

s

o

Control i/f

2/18/2016 Peter Frey, Mentor Graphics 35



Verification in ESL Platform
• Algorithmic Model can be used as a reference model

– Can be embedded in SV/UVM environment
• Enables early software development

– Software driven testing
• <10 minutes simulation vs. 1 month simulation in RTL

CPU

TLM Fabric

Algorithmic
Model
w/TLM

TLM
Memory

ESL Platform

2/18/2016 Peter Frey, Mentor Graphics 36



Synthesizable TLM 
Verification

• Can be simulated effectively with UVM
– Early start on UVM environment

• Leverage functional testing
• Based on Algorithmic Model, but partitioned for hardware
• Additional testing for internal control
• Limited performance testing 
• Simulation ~100x faster than RTL

Control i/fAgent

Agent Agent

Analysis Components, Scoreboard, Functional Coverage

Stimulus

Register
Model

2/18/2016 Peter Frey, Mentor Graphics 37



Coverage-Driven TLM 
Verification

• Assertions and Cover Points
– Functional 
– SystemC

• Testplan Coverage
– Based on cover assertions
– Some tests require RTL

• Code Coverage
– Function, Line, Condition/Decision
– Many C++ based tools
– Nothing specialized for hardware

int18 alu(uint16 a, uint16 b, uint3 opcode)
{
int18 r;

switch(opcode) {
case ADD:

r = a+b;  break;
case SUB:

r = a-b;  break;
case MUL:

r = (0x00ff & a)*(0x00ff & b);  break;
case DIV:

r = a/b;  break;
case MOD:

r = a%b;  break;
default:

r = 0;    break;
}

assert(opcode<5);
cover((opcode==ADD));
cover((opcode==SUB));
cover((opcode==MUL));
cover((opcode==DIV));
cover((opcode==MOD));

return r;
}

2/18/2016 Peter Frey, Mentor Graphics 38



RTL Coverage

• RTL Generated from TLM model 
by HLS

• Re-use SystemC Vectors
– Will give functional coverage
– Some gaps in branch/FSM

• Add RTL tests to cover RTL
– FSM reset transitions
– Stall tests

• Gives nearly 100% coverage
– Line, branch, condition

2/18/2016 Peter Frey, Mentor Graphics 39



HLS Verification

Algorithm

Specification
Document

TestplanSynthesizable 
TLM

Export for SoC integration

Coverage
Points

Assertions

RTL

HLS

Directed
Testbench

Constrained 
Random

UVM
Formal 

Equivalence

2/18/2016 Peter Frey, Mentor Graphics 40



Summary
• Increasing design complexity & shorter design cycles

– RTL simulation based debug & verification is the bottleneck
– Faster simulation (or emulation) is not enough on its own

• Moving to higher levels of abstraction for design & debug
– Focus on verifying functionality, not implementation details
– Significant simulation performance & debug improvement

• Requiring automated generation of RTL from TLMs
– Technology targeting
– Power Performance Area analysis & optimization
– Verifiably correct by construction 

• Adopting HLS methodology shortens verification timescales 
– Majority of functional verification at algorithmic/TLM levels
– Minimal RTL simulation and/or formal equivalence checks to prove RTL is 

correct

2/18/2016 Peter Frey, Mentor Graphics 41



HLS in the Wild 
-- Intel's experience

Bob Condon, Intel DTS



Hi…
• Bob Condon  - past 5 years at Intel 

– (past life HLS, FV, Logic Synthesis at Mentor and Exemplar)
– Coach new teams adopting HLS adoption
– HLS-specific tools and libraries

• Disclaimers 
– I won’t talk about specific vendor tools. 
– I won’t talk about specific Intel products.
– “Customers”  are internal Intel product groups 

designing RTL IP which will get integrated into a full 
SOC.

5/1/2017 Bob Condon      Intel DTS 43



Spoiler Alert…
• Many production teams at Intel are using SystemC- based 

High-Level Synthesis to produce the RTL we ship in product.   
• These designs include both algorithm dominated designs and 

control dominated designs.   
• The groups who are happiest report :

“The HLS flow got us to meet the ___ RTL readiness 
milestone ___ weeks faster than we estimate with our 
hand-written RTL approach”

5/1/2017 Bob Condon      Intel DTS 44



Why adopt HLS?
Marketing pitch gives lots of reasons:
– Retarget new process technology
– Automatic (or rapid) design exploration 
– Free simulation 
– Faster time to validated RTL 
– Code is easier to modify 
– Eliminates the need for hardware designers 
– Provides single source with the VP/Functional model 
– Design is “correct by construction”

5/1/2017 Bob Condon      Intel DTS 45



Reality Check
– Faster time to validated RTL (the big one)
– Code is easier to modify (pretty big)
– Retarget new process technology (somewhat )  
– Provides single source with the VP/Functional model (not really)

• You can share code but these teams are often very disjoint.

(Not worth it….)
– Automatically do design exploration (not much)
– Free simulation (nope)
– Eliminates the need for hardware designers (nope)
– Design is “correct by construction”  (myth)

5/1/2017 Bob Condon      Intel DTS 46



Plan for success…
• Project

• Under time pressure
• Has a significant amount of new code
• Has line of sight to a derivative
• A C/C++ model of some flavor exists
• The project size corresponds to the “testability” size

• Team 
• >= 4 people with skin in the game
• at least one of them has decent C++ skills
• lined up HLS support
• Verification and Product build team involved

• The first deliverable is a Smoke Test testbench
• Verification team and Build team is involved early

5/1/2017 Bob Condon      Intel DTS 47



Who does the work?
• 3 Pools of people

– Verilog coders moving up a level of abstraction
• ask them to anticipate a “dreaded” change
• C++ is often a hurdle
• Symptom – they write an SC_METHOD in their first design.

– Architects – Our sweet spot
• “Is overall design better if we tradeoff bus traffic for a bigger RAM?”

– Algorithm specialists (we don’t really see them doing much HLS)
• Hardware knowledge is still critical
• Some software techniques work against HLS

5/1/2017 Bob Condon      Intel DTS 48



DataPath vs Control
We do both and HLS is a win for both
• DataPath designs rely a lot on the HLS tools –

• automatic pipelining, 
• common subexpression extraction.

• Control based designs rely on lots of use of C++ idioms.
• Things that are hard get implemented as library components.

• Start to think of re-use (IP?) differently
• DataPath: A FIR filter with three taps (traditional “algorithm” IP) 
• Control: A unknown block with Streaming Input, Streaming output, reading 

coefficients from a RAM and the ability to flush FIFOS on an interrupt.

5/1/2017 Bob Condon      Intel DTS 49



How do I integrate to my backend flow?

• HLS output is “generated” RTL (gRTL).   
• Use the same flows as for your h(and)RTL.   (We relax some lint 

rules)
• May need a RTL wrapper to leave exactly the same pins as before 

including things like scan.
• The gRTL is uglier

– Minimize the amount of debugging there.
• Add monitors if you need them
• What about ECOs?

– We see very few.  ECO modes of the tools are satisfactory

5/1/2017 Bob Condon      Intel DTS 50



How do I verify?
• Same as today 

– really – same way you validated the architectural model against your current 
RTL

– RTL still needed for final verification.  
– The source is (usually) multi-threaded and not cycle accurate.  

• Formal only works in restricted domains (and with formal expertise).
– Still need a full testplan to release quality silicon.

• Find bugs with “cheapest” test possible
– HLS designs ready before full SV test ready
– Some flavor of model (vectors, c++ code, matlab exists) – use it
– Find (as many) algorithm bugs as possible in the fast SystemC simulation.
– Mixed language sim to find final communication bugs (and spec changes)

• HLS lets you find and fix your bugs faster 

5/1/2017 Bob Condon      Intel DTS 51



déjà vu all over again…
• Many production teams at Intel are using SystemC- based 

High-Level Synthesis to produce the RTL we ship in product.   
• These designs include both algorithm dominated designs and 

control dominated designs.   
• The groups who are happiest report :

“The HLS flow got us to meet the ___ RTL readiness 
milestone ___ weeks faster than we estimate with our 
hand-written RTL approach”

5/1/2017 Bob Condon      Intel DTS 52



Questions/Comments?

5/1/2017 Frederic Doucet, Qualcomm Atheros, Inc 53


	Cut Your Design Time in Half with Higher Abstraction
	Agenda
	How High-level Synthesis Works: �An Intro for hardware designers
	High-level Synthesis
	High-level Synthesis
	SystemC: Hardware Model in C++
	Example : Synthesizable SystemC
	Example: High-level synthesis
	Example: High-level synthesis
	Example: High-level synthesis, second run
	Example: High-level synthesis, second run
	HLS and Abstraction
	SystemC to Describe Hardware
	SystemC Language
	The Accellera SystemC Synthesizable Subset
	SystemC Synthesizable Subset Work
	General Principles
	Scope of The Standard
	Scope Of The Standard
	Module Structure for Synthesis
	Module Declaration
	SC_THREAD & SC_CTHREAD �Reset Semantics
	SC_THREAD & SC_CTHREAD�Process Structure
	Specifying Clock and Reset
	Use Of wait()
	Types and Operators
	Data Types
	Pointers
	Other C++ Constructs
	What to standardize next…
	Current standardization discussions
	High-Level Synthesis �Verification
	Problem Statement
	Advances In Verification Technology
	Review of Hardware Abstractions
	Verification in ESL Platform
	Synthesizable TLM Verification
	Coverage-Driven TLM Verification
	RTL Coverage
	HLS Verification
	Summary
	HLS in the Wild �-- Intel's experience
	Hi…
	Spoiler Alert…
	Why adopt HLS?
	Reality Check
	Plan for success…
	Who does the work?
	DataPath vs Control
	How do I integrate to my backend flow?
	How do I verify?
	déjà vu all over again…
	Questions/Comments?

